Übungen zu Quantenfeldtheorie

Prof. Dr. V. Braun

Axial anomaly from triangle diagrams

For this exercise, consider Quantum Electrodynamcs. Let

$$
\begin{array}{lr}
V_{\mu}(x)=\bar{\psi}(x) \gamma_{\mu} \psi(x), & \text { vector current } \\
A_{\mu}(x)=\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \psi(x), & \text { axial current } \\
P(x)=\bar{\psi}(x) i \gamma_{5} \psi(x) & \text { pseudoscalar current } \tag{1}
\end{array}
$$

Classically, the vector current is conserved and the axial current is conserved if electron mass is set to zero. We have shown in the Lectures that in quantum field theory

$$
\begin{align*}
& \partial^{\mu} V_{\mu}=0 \\
& \partial^{\mu} A_{\mu}=\frac{g^{2}}{8 \pi^{2}} F_{\alpha \beta} \widetilde{F}^{\alpha \beta} \quad \text { Adler-Bardeen Anomaly } \tag{2}
\end{align*}
$$

where the first statement is valid for arbitrary electron mass and the second one assumes $m=0$. The aim of this exercise is to show how these results arise in perturbation theory on diagrammatic level.

For this purpose, consider (lowest order) contributions to the following three-point correlation functions:

$$
\begin{align*}
& \mathbb{V}_{\mu \nu}\left(k_{1}, k_{2}\right)=i \int d^{4} x_{1} d^{4} x_{2}\langle 0| T\left\{V_{\mu}\left(x_{1}\right) V_{\nu}\left(x_{2}\right) \partial^{\lambda} V_{\lambda}(0)\right\}|0\rangle e^{i k_{1} x_{1}+i k_{2} x_{2}} \\
& \mathbb{A}_{\mu \nu}\left(k_{1}, k_{2}\right)=i \int d^{4} x_{1} d^{4} x_{2}\langle 0| T\left\{V_{\mu}\left(x_{1}\right) V_{\nu}\left(x_{2}\right) \partial^{\lambda} A_{\lambda}(0)\right\}|0\rangle e^{i k_{1} x_{1}+i k_{2} x_{2}} \tag{3}
\end{align*}
$$

- Draw the relevant Feynman diagrams are write down the corresponding expressions.
- Without doing an explicit calculation, show that naively, i.e. if all integrals were finite and well defined, $\mathbb{V}_{\mu \nu}\left(k_{1}, k_{2}\right)=0$ and $\mathbb{A}_{\mu \nu}\left(k_{1}, k_{2}\right)=0$ for $m=0$.
- To calculate the diagrams more carefully one needs to introduce some regularization. Since extending the γ_{5} matrix to $d=4-2 \epsilon$ dimensions involves some subtleties, do not use dimensional regularization for this calculation, but make use of the so-called Pauli-Villars regularization which is defined as follows:

The idea is to suppress contributions of large momenta modifying the expression for the fermion propagators in loops as

$$
\begin{equation*}
\frac{1}{\not p-m} \mapsto \frac{1}{\not p-m}-\frac{1}{\not p-M} \tag{4}
\end{equation*}
$$

that is, subtracting a contribution of a fermion with a very large mass M that serves as a regulator. It is obvious that with this modification the propagator vanishes for $p \gg M$ so that the high-momentum tails are subtracted. The renormalized amplitude, e.g. $\mathbb{A}_{\mu \nu}$ for the present case can be defined as the difference of amplitude calculated with the physical mass m and the regulator mass M,

$$
\begin{equation*}
\mathbb{A}_{\mu \nu}^{\mathrm{reg}}=\mathbb{A}_{\mu \nu}(m)-\mathbb{A}_{\mu \nu}(M) \tag{5}
\end{equation*}
$$

where one has to take the limit $M \rightarrow \infty$.

- Using this procedure, show that the result for the vector current does not change, but for axial current one obtains in the limit $M^{2} \rightarrow \infty$ and $m^{2} \rightarrow 0$

$$
\begin{equation*}
\mathbb{A}_{\mu \nu}^{\mathrm{reg}}\left(k_{1}, k_{2}\right)=\frac{1}{2 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} k_{1}^{\rho} k_{2}^{\sigma} \tag{6}
\end{equation*}
$$

- Show that this result is in agreement with the Adler-Bardeen anomaly (2).

