Monads and their applications II 8

Exercise 1.

Let \mathscr{A}, \mathscr{K} be 2-categories, $W: \mathscr{A}^{\mathrm{op}} \to \mathbf{Cat}$ and $D, D': \mathscr{A} \to \mathscr{K}$ 2-functors. Let $\alpha: \mathscr{D} \to \mathscr{D}'$ be an equivalence. Show that if W is a flexible weight and $\alpha_a: D_a \to D'_a$ is an equivalence for each $a \in \mathscr{A}$, then the induced 1-cell

$$W \odot_{\mathscr{A}} \alpha \colon W \odot_{\mathscr{A}} D \to W \odot_{\mathscr{A}} D'$$

is an equivalence.

Exercise 2.

Each bilimit $\{W, D\}_b$ comes with a unit $\zeta \colon W \to \mathscr{K}(\{W, D\}_b, D-)$ (corresponding to the identity of $\{W, D\}_b$).

If $(\{W, D\}'_b, \zeta')$ is another bilimit, let \mathscr{C} be the category whose objects are pairs (f, φ) of an equivalence $f \colon \{W, D\}_b \to \{W, D\}'_b$ and an invertible modification φ between the resulting triangle involving ζ , ζ' , and f. The morphisms are modifications between the equivalences satisfying the evident equation. Show that \mathscr{C} is a contractible groupoid, that is, \mathscr{C} is non-empty and there is a unique isomorphism between any two equivalences.

Exercise 3.

A weight $W: \mathscr{A}^{\mathrm{op}} \to \mathbf{Cat}$ is called *sifted* if $W \odot_{\mathscr{A}} - : [\mathscr{A}, \mathbf{Cat}] \to \mathbf{Cat}$ preserves finite products. Show that W is sifted if and only if it preserves the terminal object and binary products of representable presheaves.