Monads and their applications II 4

Exercise 1.

Write down a presentation for the 2-monad whose algebras are $(\mathcal{V}$ -)categories with chosen (conical) *limits* of a given shape. What are the lax morphisms in this case?

Exercise 2.

A 2-monad is called *lax idempotent* if every 1-cell in the underlying 2-category \mathscr{K} has a *unique* lax *T*-morphism structure (for example, the 2-monad for finitely cocomplete categories is lax idempotent). Show that the following are equivalent:

- (i) The 2-monad T is lax idempotent;
- (ii) For each algebra (A, a), there exists a 2-cell $\theta_{(A,a)}$: $\mathrm{id}_{TA} \Rightarrow \eta_A.a$ such that $(a, \eta_A, \theta_{(A,a)}, 1_{\mathrm{id}_A})$ is an adjunction in \mathscr{K} ;
- (iii) In $[\mathscr{K}, \mathscr{K}]$, there exists a modification λ : id $\Rightarrow \eta T.\mu: T^2 \to T^2$ giving an adjunction $(\mu, \eta T, \lambda, 1)$ with identity counit in $[\mathscr{K}, \mathscr{K}]$.

Exercise 3.

Let B be a small category. Show that the 2-functor $\operatorname{Cat} / B \to \operatorname{Cat} / B$ which sends $p: E \to B$ to $p \downarrow B \to B$ is a lax idempotent 2-monad whose algebras are the Grothendieck opfibrations over B.

Exercise 4.

Let $T = id_{\mathscr{K}} \colon \mathscr{K} \to \mathscr{K}$ be the identity 2-monad on \mathscr{K} . What are the lax *T*-algebras?

Exercise 5.

Let \mathscr{K} be a cocomplete and let \mathscr{A} be a small 2-category. Let T be the 2-monad whose 2-category of algebras is given by the 2-functors $\mathscr{A} \to \mathscr{K}$, (strict/pseudo/lax) 2-natural transformations, and modifications. Show that the pseudo T-algebras are precisely the pseudofunctors and the lax T-algebras are the lax functors.