Monads and their applications II 3

Exercise 1.

Complete the proof that pseudomonoids in a locally presentable (strict) monoidal 2 -category are 2-monadic. This entails checking the 2 -functoriality of κ_{1} and κ_{2} and completing the construction of the β_{i} (the "unit triangle" part).

Exercise 2.

Let \mathscr{K} be a symmetric monoidal locally κ-presentable 2 -category such that $X \otimes-$ is κ-accessible for all $X \in \mathscr{K}$. Show that the 2-categories of braided pseudomonoids and symmetric pseudomonoids (with braided respectively symmetric lax monoidal morphisms and 2-cells) are isomorphic to categories of the form T - $\mathbf{A l g}_{\ell}$ for certain κ-accessible 2-monads T. In fact, show that these can be built using only co-iso-inserters and coequifiers from the 2monad for pseudomonoids constructed in class.

Exercise 3.

Let R be a commutative ring. Show that there is a finitary 2-monad on Cat_{R}, the 2-category of small R-linear categories, whose algebras are symmetric monoidal R-linear categories \mathscr{A} with (chosen) finite colimits with the additional property that $X \otimes$ - preserves finite colimits (not strictly, only up to isomorphism); the 1-cells are the R-linear symmetric monoidal functors which preserve finite colimits (again up to isomorphism), and the 2-cells are the symmetric monoidal natural transformations. (Hint: combine the 2-monad from Exercise 2 with the 2 -monad for finite colimits constructed in class (forming a coproduct in the first step), and then use an inverter).

Exercise 4.

Let T be a 2 -monad on the 2-category \mathscr{K} and let $A \in \mathscr{K}$ be an object. A lax T-algebra structure on \mathscr{A} is a lax monad morphism $T \rightsquigarrow\langle A, A\rangle$. Use the definition of $\langle A, A\rangle$ as right 2-adjoint to $T \mapsto T A$ to unravel this definition in terms of a 1-cell $T A \rightarrow A$, various 2-cells in place of the strict algebra axioms, and coherence laws between these.

Exercise 5.

Show that a 2-category \mathscr{K} with products, inserters, and equifiers, also has iso-inserters, comma-objects, and iso-comma-objects. Moreover, show that the power $\{C, X\}$ exists for any $X \in \mathscr{K}$ and any small category C. For the latter, consider the truncated nerve of C consisting of the set of objects C_{0}, the set of arrows C_{1}, and the set of composable arrows $C_{1} \times{ }_{C 0} C_{1}$.

