Monads and their applications II 1

Exercise 1.

Let (T, μ, η) be a 2 -monad on a 2 -category \mathscr{K}. Show that T - $\mathbf{A l g}_{p}, T$ - $\mathbf{A l g}_{\ell}$, and T - Alg_{c} are 2-categories.

Exercise 2.

Let \mathscr{M} be a strict monoidal 2-category (a monoid in 2- CAT) and let

$$
-\circ-: \mathscr{M} \times \mathscr{K} \rightarrow \mathscr{K}
$$

be a strict action of \mathscr{M} on \mathscr{K}. Assume that each 2-functor $-\circ A$ has a right 2 -adjoint $\langle A,-\rangle$, so there are isomorphisms of categories

$$
\mathscr{K}(M \circ A, B) \cong \mathscr{M}(M,\langle A, B\rangle)
$$

2-natural in M, A, and B.
Show that $\langle A, A\rangle$ has a monoid structure in \mathscr{M}. Moreover, show that monoid morphisms $(M, \mu, \eta) \rightarrow\langle A, A\rangle$ are in bijection with M-actions on A, that is, 1-cells $a: M \circ A \rightarrow A$ subject to the two axioms $a . M \circ a=$ $a . \mu \circ A$ and $a . \eta \circ A=\mathrm{id}_{A}$. Analogously to the case of monads we can define lax morphism of M-actions. Show that the above bijection extends to an isomorphism of categories between the category of monoid morphisms and 2-cells as defined in class on the one hand, and the category of M-actions on A and lax morphisms whose underlying 1-cell is the identity on A on the other.

Exercise 3.

Let \mathscr{K} be a complete 2-category. Apply Exercise 2 to the action

$$
[\mathscr{K}, \mathscr{K}] \times \mathscr{K} \rightarrow \mathscr{K}, \quad(F, A) \mapsto F A
$$

to show that the endo-2-functor $\langle A, A\rangle$ is a 2 -monad and that 2 -monad morphisms $T \rightarrow\langle A, A\rangle$ are in bijection with T-algebra structures on A. (Hint: why is $\langle A,-\rangle$ a right 2-adjoint?)

Exercise 4.

Let \mathscr{K} be a complete 2 -category. Let Colax $[\mathcal{Z}, \mathscr{K}]$ be the 2 -category with objects the 1-cells $f: A \rightarrow B$ in \mathscr{K}, 1-cells the triples $(a, \varphi, b): f \rightarrow f^{\prime}$ where $a: A \rightarrow A^{\prime}$ and $b: B \rightarrow B^{\prime}$ are 1-cells in \mathscr{K} and $\varphi: b . f \Rightarrow f^{\prime} . a$ is a 2 -cell in \mathscr{K}, and 2-cells $\left(a_{1}, \varphi_{1}, b_{1}\right) \Rightarrow\left(a_{2}, \varphi_{2}, b_{2}\right)$ the pairs (γ, δ) of 2-cells $\gamma: a_{1} \Rightarrow a_{2}$
and $\delta: b_{1} \rightarrow b_{2}$ such that the equation

holds. Show that composition with an endo-2-functor defines a strict action

$$
[\mathscr{K}, \mathscr{K}] \times \operatorname{Colax}[\mathscr{2}, \mathscr{K}] \rightarrow \operatorname{Colax}[\mathcal{L}, \mathscr{K}]
$$

and show that $\{f,-\}_{\ell}: \operatorname{Colax}[\mathscr{Z}, \mathscr{K}] \rightarrow[\mathscr{K}, \mathscr{K}]$ is a right 2 -adjoint of $-\circ f$ ("acting on f "). Use this and the previous exercises to show that $\{f, f\}_{\ell}$ is a 2-monad, that the two 2-natural transformations $\partial_{0}:\{f, f\}_{\ell} \rightarrow\langle A, A\rangle$ and $\partial_{1}:\{f, f\}_{\ell} \rightarrow\langle B, B\rangle$ from the definition are 2-monad morphisms, and show that 2-monad morphisms $T \rightarrow\{f, f\}_{\ell}$ correspond to 2-cells which make f a lax T-morphism.

Exercise 5.

Recall that a comonad in a 2 -category \mathscr{K} is a 1 -cell $c: C \rightarrow C$ with a counit $\varepsilon: c \rightarrow \operatorname{id}_{C}$ and a comultiplication $\gamma: c \rightarrow c . c$. An Eilenberg-Moore object for c is a universal c-coaction, that is, a 1-cell $w: A \rightarrow C$ together with a 2-cell $\rho: w \Rightarrow c . w$ satisfying the dual axioms of the Eilenberg-Moore object of a monad.

Let T be a 2 -monad on \mathscr{K}. Show that the forgetful 2 -functor

$$
U_{\ell}: T-\operatorname{Alg}_{\ell} \rightarrow \mathscr{K}
$$

creates Eilenberg-Moore objects for comonads. This gives an abstract explanation for the fact that comodules of a Hopf algebra inherit a monoidal structure which is strictly preserved by the forgetful functor.

