Monads and their applications II 1

Exercise 1.

Let (T, μ, η) be a 2-monad on a 2-category \mathscr{K} . Show that T-Alg_p, T-Alg_{\ell}, and T-Alg_c are 2-categories.

Exercise 2.

Let \mathcal{M} be a strict monoidal 2-category (a monoid in 2- CAT) and let

$$-\circ -\colon \mathscr{M} imes \mathscr{K} o \mathscr{K}$$

be a strict action of \mathscr{M} on \mathscr{K} . Assume that each 2-functor $-\circ A$ has a right 2-adjoint $\langle A, -\rangle$, so there are isomorphisms of categories

$$\mathscr{K}(M \circ A, B) \cong \mathscr{M}(M, \langle A, B \rangle)$$

2-natural in M, A, and B.

Show that $\langle A, A \rangle$ has a monoid structure in \mathscr{M} . Moreover, show that monoid morphisms $(M, \mu, \eta) \to \langle A, A \rangle$ are in bijection with *M*-actions on *A*, that is, 1-cells $a: M \circ A \to A$ subject to the two axioms $a.M \circ a =$ $a.\mu \circ A$ and $a.\eta \circ A = \mathrm{id}_A$. Analogously to the case of monads we can define lax morphism of *M*-actions. Show that the above bijection extends to an isomorphism of categories between the category of monoid morphisms and 2-cells as defined in class on the one hand, and the category of *M*-actions on *A* and lax morphisms whose underlying 1-cell is the identity on *A* on the other.

Exercise 3.

Let \mathscr{K} be a complete 2-category. Apply Exercise 2 to the action

$$[\mathscr{K}, \mathscr{K}] \times \mathscr{K} \to \mathscr{K}, \quad (F, A) \mapsto FA$$

to show that the endo-2-functor $\langle A, A \rangle$ is a 2-monad and that 2-monad morphisms $T \to \langle A, A \rangle$ are in bijection with T-algebra structures on A. (Hint: why is $\langle A, - \rangle$ a right 2-adjoint?)

Exercise 4.

Let \mathscr{K} be a complete 2-category. Let $\operatorname{Colax}[2, \mathscr{K}]$ be the 2-category with objects the 1-cells $f: A \to B$ in \mathscr{K} , 1-cells the triples $(a, \varphi, b): f \to f'$ where $a: A \to A'$ and $b: B \to B'$ are 1-cells in \mathscr{K} and $\varphi: b.f \Rightarrow f'.a$ is a 2-cell in \mathscr{K} , and 2-cells $(a_1, \varphi_1, b_1) \Rightarrow (a_2, \varphi_2, b_2)$ the pairs (γ, δ) of 2-cells $\gamma: a_1 \Rightarrow a_2$

and $\delta: b_1 \to b_2$ such that the equation

$$A \underbrace{\uparrow \uparrow}_{f \downarrow} A' = A \underbrace{\uparrow \downarrow}_{f \downarrow} A' = A \underbrace{\uparrow \downarrow}_{f \downarrow} A' = A' = A'$$

$$B \underbrace{\downarrow \varphi_2 \uparrow \uparrow}_{b_1} B' = B \underbrace{\downarrow \varphi_2 \uparrow \uparrow}_{b_1} B'$$

holds. Show that composition with an endo-2-functor defines a strict action

$$[\mathscr{K}, \mathscr{K}] \times \operatorname{Colax}[2, \mathscr{K}] \to \operatorname{Colax}[2, \mathscr{K}]$$

and show that $\{f, -\}_{\ell}$: Colax $[2, \mathscr{K}] \to [\mathscr{K}, \mathscr{K}]$ is a right 2-adjoint of $-\circ f$ ("acting on f"). Use this and the previous exercises to show that $\{f, f\}_{\ell}$ is a 2-monad, that the two 2-natural transformations $\partial_0 \colon \{f, f\}_{\ell} \to \langle A, A \rangle$ and $\partial_1 \colon \{f, f\}_{\ell} \to \langle B, B \rangle$ from the definition are 2-monad morphisms, and show that 2-monad morphisms $T \to \{f, f\}_{\ell}$ correspond to 2-cells which make f a lax T-morphism.

Exercise 5.

Recall that a comonad in a 2-category \mathscr{K} is a 1-cell $c: C \to C$ with a counit $\varepsilon: c \to \mathrm{id}_C$ and a comultiplication $\gamma: c \to c.c.$ An Eilenberg–Moore object for c is a universal c-coaction, that is, a 1-cell $w: A \to C$ together with a 2-cell $\rho: w \Rightarrow c.w$ satisfying the dual axioms of the Eilenberg–Moore object of a monad.

Let T be a 2-monad on \mathscr{K} . Show that the forgetful 2-functor

$$U_\ell \colon T\text{-}\mathbf{Alg}_\ell \to \mathscr{K}$$

creates Eilenberg–Moore objects for comonads. This gives an abstract explanation for the fact that comodules of a Hopf algebra inherit a monoidal structure which is strictly preserved by the forgetful functor.