Monads and their applications 11

Exercise 1.

Let \mathscr{V} be the category $\mathrm{Ch}(\mathbf{A b})$ of chain complexes over abelian groups ("differential graded \mathbb{Z}-modules"). The tensor product of X_{\bullet} and Y_{\bullet} is given in degree n by $\oplus_{i+j=n} X_{i} \otimes Y_{j}$, with differential $d(x \otimes y)=d x \otimes y+(-1)^{i} x \otimes d y$ for $x \otimes y \in X_{i} \otimes Y_{j}$. Show that this is a symmetric monoidal closed category and explicitly describe the self-enrichment of \mathscr{V} (specifically, the composition morphism).

Exercise 2.

Let \mathscr{C} be a \mathscr{V}-category with powers, $T: \mathscr{C} \rightarrow \mathscr{C}$ a \mathscr{V}-monad. Show that the forgetful \mathscr{V}-functor T - Alg $\rightarrow \mathscr{C}$ creates powers (that is, for every T-algebra (A, a) and $V \in \mathscr{V}$ one can put a unique T-algebra structure on A^{V} making it a power of (A, a) in T - $\mathbf{A l g})$.

Exercise 3.

Let $t: C \rightarrow C$ be a monad in the 2 -category \mathscr{K}. A t-action on a 1 -cell $g: A \rightarrow C$ is a 2 -cell $\alpha: t g \Rightarrow g$ satisfiying the laws for a t-algebra. This defines a 2-functor

$$
t \text {-act }(-): \mathscr{K}^{\text {op }} \rightarrow \mathbf{C a t}
$$

and we say that the Eilenberg-Moore object of t exists if this 2 -functor is representable, that is, there exists a universal t-action $(u, \alpha): C_{t} \rightarrow C$.
(a) Show that U : T - $\mathbf{A l g} \rightarrow \mathscr{C}$ is an Eilenberg-Moore object in \mathscr{V} - Cat.
(b) Given any Eilenberg-More object $u: C_{t} \rightarrow C$, show that there exists a left adjoint f of u such that the monad $u f$ is t. (Hint: define a suitable t-action on t itself).

Exercise 4.

(a) Let $\mathscr{V}=$ Set and consider the discrete category $2=\{0,1\}$ on two objects. A weight W on this category amounts to a choice of two sets. What is the W-weighted colimit on a diagram $2 \rightarrow \mathscr{C}$?
(b) Let $\mathscr{V}=\mathbf{A b}$ and let R be a ring, considered as a 1-object \mathscr{V}-category. Let $\mathscr{C}=\mathbf{A b}$ as well. Show that weighted colimits over R correspond to the usual tensor product of a right and a left R-module.
(c) Let $\mathscr{V}=$ Cat and consider the category $\mathscr{I}=0 \longrightarrow 2 \longleftarrow 1$. Let W be the weight with $W(0)=*, W(1)=*$, and $W(2)=[1]$, with
the morphisms $W(i) \rightarrow[1]$ picking out $i \in[1]=\{0 \rightarrow 1\}$. Show that W-weighted limits in a 2 -category \mathscr{K} are precisely comma-objects.

Exercise 5. (bonus)
Show that $\prod_{j \in J} \mathscr{V}$ is the free cocomplete \mathscr{V}-cateogry on the discrete category j. More precisely, given a cocomplete \mathscr{V}-categories \mathscr{C}, \mathscr{D}, write $\operatorname{Cocts}_{0}[\mathscr{C}, \mathscr{D}]$ for the category of cocontinuous \mathscr{V}-functors and \mathscr{V}-natural transformations. Show that the functor $\operatorname{Cocts}_{0}\left[\prod_{j \in J} \mathscr{V}, \mathscr{C}\right] \rightarrow \prod_{j \in J} \mathscr{C}_{0}$ given by $F \mapsto\left(F I_{j}\right)_{j \in J}$ is an equivalence of categories. Here I_{j} stands for the object which is given by I in degree j and by the initial object everywhere else. You need to be careful when showing that the functor is full!

If one checks all the requirements by only referring to copowers, \mathscr{V} coproducts, and \mathscr{V}-coequalizers, (the latter is not even necessary), then one can use this to show that cocontinuous endofunctors of the product are equivalent, as a monoidal category, to \mathscr{V}-matrices on J. This can then be used to give a rigorous proof that any \mathscr{V}-category with object set J gives rise to the cocontinous \mathscr{V}-monad T defined in the lecture.

