Monads and their applications 4

Exercise 1.

Let $F: \mathscr{A} \to \mathscr{C}, K: \mathscr{A} \to \mathscr{B}$ be two functors where \mathscr{A} is essentially small. Note that K is not assumed to be full and faithful.

- (a) Show that $[\mathscr{A}^{\mathrm{op}}, \mathbf{Set}](\widetilde{K}c, \widetilde{F}-) \colon \mathscr{D} \to \mathbf{Set}$ is representable if and only if the colimit of the diagram $K/c \to \mathscr{D}$ which sends $(a, \varphi \colon Ka \to c)$ to $Fa \in \mathscr{D}$ has a colimit.
- (a) Assume that the colimit of part (a) always exist. By Yoneda, there exists a functor $L: \mathscr{C} \to \mathscr{D}$ with bijections

$$\mathscr{D}(Lc,d) \cong [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}](\tilde{K}c, \tilde{F}d)$$

which are natural in c and d. Show that, in this case, there exists a natural transformation $\eta: F \Rightarrow LK$ which exhibits L as left Kan extension of F along K.

Exercise 2.

- (a) Let $(\mathscr{C}_i)_{i \in I}$ be a family of locally finitely presentable categories. Show that the product $\prod_{i \in I} \mathscr{C}_i$ is locally finitely presentable.
- (b) Let \(\alphi\) be a small category and \(\mathcal{C}\) locally finitely presentable. Show that \[\(\alphi\), \(\mathcal{C}\)] is locally finitely presentable.

Exercise 3.

Let \mathscr{C} be a cocomplete category. An object $a \in \mathscr{C}$ is called *small projective* if $\mathscr{C}(a, -)$ preserves *all* small colimits. Suppose there exists a small subcategory $\mathscr{A} \subseteq \mathscr{C}$ such that the closure of \mathscr{A} under colimits is all of \mathscr{C} . Show that $\mathscr{C} \simeq [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}]$. (Hint: start by showing that the inclusion $K \colon \mathscr{A} \to \mathscr{C}$) is dense.

Exercise 4.

Let \mathscr{C} be locally finitely presentable, \mathscr{A} a small dense subcategory consisting of finitely presentable objects. Let \mathscr{A}' be the closure of \mathscr{A} under finite colimits. Let $\mathscr{C}_{\rm fp}$ denote the full subcategory consisting of finitely presentable objects. From the lecture, we know that $\mathscr{A}' \subseteq \mathscr{C}_{\rm fp}$. Show that this in fact an equality: every finitely presentable object lies in the closure of \mathscr{A} under finite colimits.

Exercise 5. (bonus)

Show that the finitely presentable objects in the category of topological spaces are precisely the finite discrete spaces, and that they do not form a dense generator. Thus **Top** is not finitely presentable.