Monads and their applications 3

Exercise 1.

Let $F: \mathscr{A} \to \mathscr{C}, K: \mathscr{A} \to \mathscr{B}$ and $L: \mathscr{B} \to \mathscr{C}$ be functors. A natural transformation $\eta: F \Rightarrow L \circ K$ is said to exhibit L as left Kan extension of F along K if the composite

$$[\mathscr{B},\mathscr{C}](L,G) \xrightarrow{-\circ K} [\mathscr{A},\mathscr{C}](LK,G) \xrightarrow{\eta^*} [\mathscr{A},\mathscr{C}](F,G)$$

is a bijection for all functors $G: \mathscr{B} \to \mathscr{C}$. If a left Kan extension of F along K exists, then it is unique up to unique natural isomorphism and it is denoted by $\operatorname{Lan}_K F$.

- (a) Show that left adjoints preserve left Kan extensions in the following sense: if $\eta: F \Rightarrow LK$ exhibits L as left Kan extension of F along K and $H: \mathscr{C} \to \mathscr{D}$ is a left adjoint, then $H\eta$ exhibits HL as left Kan extension of HF along K.
- (b) Show that left Kan extensions compose: if $\operatorname{Lan}_{K} F$ exists and

$$K' \colon \mathscr{B} \to \mathscr{B}'$$

is any functor, then $\operatorname{Lan}_{K'}\operatorname{Lan}_{K} F$ exists if and only if $\operatorname{Lan}_{K'K} F$ exists. Moreover, show that in this case there is a natural isomorphism $\operatorname{Lan}_{K'}\operatorname{Lan}_{K} F \cong \operatorname{Lan}_{K'K} F$.

Exercise 2.

The notion of *right* Kan extension is dual to left Kan extension: it is given by a universal natural transformation $\gamma \colon RK \Rightarrow F$ and denoted by $\operatorname{Ran}_K F$.

(a) Let $F: \mathscr{A} \to \mathscr{C}$ be a functor such that the right Kan extension

$$\operatorname{Ran}_F F \colon \mathscr{C} \to \mathscr{C}$$

of F along itself exists. Show that $\operatorname{Ran}_F F$ has the structure of a monad in a natural way. This monad is called the *codensity monad* of F.

(b) If $\mathscr{A} = *$ is the terminal category, then giving a functor $F \colon \mathscr{A} \to \mathscr{C}$ amounts to picking an object $c \in \mathscr{C}$, c = F(*). Show that, in this case, $\operatorname{Ran}_F F$ exists if \mathscr{C} has products. The resulting codensity monad is called the *endomorphism monad* of c and denoted by $\langle c, c \rangle$.

Exercise 3.

Let k be a field and Vect_k the category of k-vector spaces. Let $\mathscr{A} = \{k\}$ be the full subcategory on the one-dimensional vector space k. Note that every object of Vect_k is a colimit of some diagram that factors through \mathscr{A} (since all vector spaces are free).

- (a) Show that, nevertheless, the inclusion $\mathscr{A} \to \operatorname{Vect}_k$ is not dense.
- (b) Let $\mathscr{B} = \{k \oplus k\}$ be the full subcategory one the two-dimensional vector space. Show that the inclusion $\mathscr{B} \to \operatorname{Vect}_k$ is dense.

Exercise 4.

Let \mathscr{A} be a small category and let $Y \colon \mathscr{A} \to [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}]$ be the Yoneda embedding.

- (a) Use the Yoneda lemma to show that the canonical cocone on Y/F exhibits F as colimit of the domain functor dom: $Y/F \to [\mathscr{A}^{\mathrm{op}}, \mathbf{Set}],$ $(\varphi: \mathscr{A}(-, a) \Rightarrow F) \mapsto \mathscr{A}(-, a).$
- (b) The category el(F) of elements of F has objects the pairs (a, x) where $a \in \mathscr{A}$ and $x \in Fa$ and morphisms $(a, x) \to (b, y)$ the morphisms $f: a \to b$ in \mathscr{A} which satisfy Ff(y) = x. Show that there is an isomorphism $Y/F \cong el(F)^{\text{op}}$.

Exercise 5. (bonus)

An object $c \in \mathscr{C}$ is called *strongly finitely presentable* if the representable functor $\mathscr{C}(c, -): \mathscr{C} \to \mathbf{Set}$ preserves sifted colimits. A cocomplete category \mathscr{C} is called *locally strongly finitely presentable* if there exists a small dense subcategory \mathscr{A} of \mathscr{C} which consists of strongly finitely presentable objects.

- (a) Show that finite coproducts of strongly finitely presentable objects are strongly finitely presentable.
- (b) Let $U: \mathscr{D} \to \mathscr{C}$ have a left adjoint $F: \mathscr{C} \to \mathscr{D}$. Show the following claim: if U preserves sifted colimits, then F preserves strongly finitely presentable objects.
- (c) Let \mathscr{C} be a strongly finitely presentable category and let $T: \mathscr{C} \to \mathscr{C}$ be a monad which commutes with sifted colimits. Show that T- Alg is locally strongly finitely presentable. (Hint: let \mathscr{A} be a dense subcategory of \mathscr{C} consisting of strongly finitely presentable objects. Show that the objects (Ta, μ_a) form a dense subcategory of T- Alg).