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Categories arising in algebraic geometry

An algebraic variety is a space that is locally the zero-set of a set of
polynomials with coefficients in k.
Closed subsets are sets of solutions to polynomial equations.
Sheaf of rings OX : rational functions whose denominator is non-zero

Definition

A quasi-coherent sheaf is a sheaf of OX -modules which locally admits a
presentation ⊕

I OU
//
⊕

J OU
//M // 0

The category of quasi-coherent sheaves on X is denoted by QC(X).

Fact

The category QC(X) is a Grothendieck abelian k-linear symmetric
monoidal closed category.
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Daniel Schäppi (University of Chicago) Weakly Tannakian categories CT 2013 3 / 16



Categories arising in algebraic geometry

An algebraic variety is a space that is locally the zero-set of a set of
polynomials with coefficients in k.
Closed subsets are sets of solutions to polynomial equations.

Sheaf of rings OX : rational functions whose denominator is non-zero

Definition

A quasi-coherent sheaf is a sheaf of OX -modules which locally admits a
presentation ⊕

I OU
//
⊕

J OU
//M // 0

The category of quasi-coherent sheaves on X is denoted by QC(X).

Fact

The category QC(X) is a Grothendieck abelian k-linear symmetric
monoidal closed category.
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Categories arising in algebraic geometry

Basic question

For two varieties X, Y , can we describe the category QC(X × Y ) in terms
of the categories QC(X) and QC(Y )?

Answer

For reasonable varieties, there is an equivalence

QCfp(X × Y ) ' QCfp(X)�QCfp(Y )

of symmetric monoidal k-linear categories.

QCfp(X) = full subcategory of finitely presentable objects
� = Kelly’s tensor product of finitely cocomplete

k-linear categories
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A proof strategy

Problem

Need to compare colimit-like universal property of � to the limit-like
property of QCfp(−) (glueing).

Definition

Let RM denote the 2-category of �-pseudomonoids:
0-cells = finitely cocomplete symmetric monoidal k-linear categories

A such that A⊗− preserves finite colimits for all A ∈ A
1-cells = right exact symmetric monoidal functors
2-cells = symmetric monoidal natural transformations

Theorem (Lurie ‘05, Brandenburg-Chirvasitu ‘12)

For reasonable varieties, the contravariant pseudofunctor
QCfp(−) : {varieties} → RM is an equivalence on hom-categories.
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A proof strategy

Consequence

QCfp(X × Y ) has the universal property of a bicategorical coproduct in
the image of QCfp(−)

Strategy

To prove the theorem, it suffices to show:

(i) Bicategorical coproducts in RM are given by �

(ii) If A and B lie in the image of QCfp(−), then so does A �B.

Indeed: both QCfp(X)�QCfp(Y ) and QCfp(X × Y ) have the same
universal property in the image.
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Coproducts

The first requirement follows from:

Theorem (S.)

Let M be a symmetric monoidal bicategory, and let (A, i,m) and (B, i,m)
be two symmetric pseudomonoids in M . Then the two morphisms

A ' A⊗ I
A⊗i // A⊗B and B ' I ⊗B

i⊗B // A⊗B

exhibit A⊗B as bicategorical coproduct in the bicategory of symmetric
pseudomonoids.

Proof: M , N commutative monoids
⇒ coproduct is given by M ⊗N .
Categorify!
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Recognizing categories in the image

We need a recognition theorem.

Such a theorem exists for categories of
representations.

Properties of Rep(G)

(i) Rep(G) is an abelian symmetric monoidal k-linear category

(ii) there exists a functor Rep(G)→ Vectk which is strong symmetric
monoidal, faithful, and exact (the forgetful functor).

(iii) it is rigid (or autonomous), every object has a dual.

Theorem (Grothendieck, Saavedra-Rivano, Deligne-Milne)

If A is a category satisfying (i)-(iii), then there exists an affine group
scheme G and an equivalence A ' Rep(G) of symmetric monoidal
k-linear categories. Such categories are called Tannakian.
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Recognizing categories in the image
Goal: generalize this theorem to a context which encompasses varieties
and schemes.

A common generalization

X variety or scheme  functor of points: X(−) : CAlg→ Set
G affine group scheme  functor G(−) : CAlg→ Grp

Both of these are groupoid valued presheaves.

To get the desired embedding theorem, we need to pass to associated
stacks (Lurie ‘05). (Recall that we need recognition and embedding.)

Definition

Stacks is the 2-category of pseudofunctors CAlg→ Gpd which send
certain colimits in Aff = CAlgop to limits. The Yoneda embedding

Aff = CAlgop → Stacks

is therefore universal among pseudofunctors which preserve these colimits.
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Coherent sheaves, revisited
Let C M be the 2-category of k-linear locally presentable symmetric
monoidal closed categories, and strong symmetric monoidal left adjoints.

Definition

Let QC be the essentially unique left biadjoint which makes the diagram

Aff = CAlgop Y //

Mod(−) ''

Stacks

QC
��

C M op

commute up to isomorphism. (This is a left Kan extension.)

Definition

A stack X is algebraic (in the sense of Goerss and Hopkins) if it is
associated to a flat affine groupoid. It is called an Adams stack if, in
addition, the duals form a strong generator in QC(X).
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The Embedding Theorem

Remark

If X is algebraic, then QC(X) is Grothendieck abelian.

Let A S denote the 2-category of Adams stacks.

Theorem (S.)

The restriction QCfp : A S op → RM of QCfp(−) to Adams stacks is an
equivalence on hom-categories.

Proof: full and faithful on 2-cells (Lurie), 1-cell is in the image if and only
if it is tame (Lurie).
Need to show that tameness is automatic in case of Adams stacks.

Goal

Find a characterization of the image of QCfp : A S op → RM .
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Find a characterization of the image of QCfp : A S op → RM .
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Weakly Tannakian categories

Definition

Let A be an abelian symmetric monoidal k-linear category. The category
A is called Tannakian if

(i) There exists a strong symmetric monoidal functor

w : A → Vect

which is faithful and exact (called the fiber functor);

(ii) Every object of A has a dual.

An algebraic stack X is called coherent if QCfp(X) is an abelian
subcategory of QC(X). Then we write C(X) := QCfp(X).

Theorem (S.)

A weakly Tannakian ⇔ A ' C(X) for some coherent Adams stack X.
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Why is this true?

Classical Tannakian category A  group Aut⊗(w)

This does not help to get a stack from a weakly Tannakian category.
Instead we use the symmetric monoidal adjunction induced by w:

A

w
##

// Ind(A )

aL
��

ModB

R

OO

Use duals to show: LR is a symmetric Hopf monoidal comonad
Show it comes from a flat Hopf algebroid = affine groupoid
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Daniel Schäppi (University of Chicago) Weakly Tannakian categories CT 2013 13 / 16



Why is this true?

Classical Tannakian category A  group Aut⊗(w)
This does not help to get a stack from a weakly Tannakian category.
Instead we use the symmetric monoidal adjunction induced by w:

A

w
##

// Ind(A )

aL
��

ModB

R

OO

Use duals to show: LR is a symmetric Hopf monoidal comonad
Show it comes from a flat Hopf algebroid = affine groupoid
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What about the original question?

Combining the recognition theorem with the embedding theorem, we get:

Corollary

The functor C(−) gives a biequivalence between the 2-category of
coherent Adams stacks and the 2-category of weakly Tannakian categories,
right exact strong symmetric monoidal k-linear functors, and symmetric
monoidal natural transformations.

Can we use this to prove the result mentioned at the beginning? No!

Problem

X, Y coherent Adams stacks ; X × Y coherent Adams stack.

Daniel Schäppi (University of Chicago) Weakly Tannakian categories CT 2013 14 / 16



What about the original question?

Combining the recognition theorem with the embedding theorem, we get:

Corollary

The functor C(−) gives a biequivalence between the 2-category of
coherent Adams stacks and the 2-category of weakly Tannakian categories,
right exact strong symmetric monoidal k-linear functors, and symmetric
monoidal natural transformations.

Can we use this to prove the result mentioned at the beginning? No!

Problem

X, Y coherent Adams stacks ; X × Y coherent Adams stack.
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Back to the drawing board!

Definition

Let A be an abelian symmetric monoidal k-linear category. The category
A is called weakly Tannakian if

(i) There exists a strong symmetric monoidal functor

w : A → ModB

which is faithful and exact (called the fiber functor) for some
commutative algebra B;

(ii) Every object of A is a quotient of a dual.

The recognition theorem is still true (using essentially the same proof):

Theorem (S.)

A weakly Tannakian ⇔ A ' QCfp(X) for some Adams stack X.
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QCfp(−) preserves products

Theorem (S.)

Let X, Y be Adams stacks over k. Then the comparison functor

QCfp(X)�QCfp(Y )→ QCfp(X × Y )

is an equivalence of symmetric monoidal k-linear categories.

Proof: (sketch)

(i) X, Y Adams stacks ⇒ X × Y Adams stack

(ii) RHS is bicategorical coproduct in RM

(iii) LHS is bicategorical coproduct in the image of QCfp(−) by the
embedding theorem.

(iv) Check that A , B weakly Tannakian ⇒ A �B weakly Tannakian
(use the fiber functor w � v)
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