Generalized Tannakian duality

Daniel Schäppi

University of Chicago

22 July, 2011
International Category Theory Conference
University of British Columbia
Outline

1. Introduction

2. A bicategorical interpretation

3. The Tannakian biadjunction

4. Applications
Classical Tannaka duality

- Group-like objects
- Categories equipped with suitable structures

Reconstruction problem: Can a group-like object be reconstructed from its category of representations?

Recognition problem: Which categories are equivalent to categories of representations for some group-like object?
Classical Tannaka duality

Group-like objects

Categories equipped with suitable structures

Reconstruction problem

Can a group-like object be reconstructed from its category of representations?
Classical Tannaka duality

Group-like objects

Categories equipped with suitable structures

Reconstruction problem
Can a group-like object be reconstructed from its category of representations?

Recognition problem
Which categories are equivalent to categories of representations for some group-like object?
Tannaka duality for Hopf algebras over fields

Theorem
Every Hopf algebra can be reconstructed from the category of finite-dimensional comodules.

Theorem (Saavedra Rivano, Deligne)
Let k be a field. If A is an abelian autonomous symmetric monoidal k-linear category $w : A \to \text{Vect}_k$ is a faithful exact symmetric strong monoidal k-linear functor then there exists a Hopf algebra H such that $A \cong \text{Rep}(H)$.

Daniel Schäppi (University of Chicago)
Generalized Tannakian duality
Tannaka duality for Hopf algebras over fields

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.
Theorem
Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem (Saavedra Rivano, Deligne)
Let k be a field. If
Tannaka duality for Hopf algebras over fields

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem (Saavedra Rivano, Deligne)

Let k be a field. If

- \mathcal{A} is an abelian autonomous symmetric monoidal k-linear category

such that $\mathcal{A} \cong \text{Rep}(H)$.
Tannaka duality for Hopf algebras over fields

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem (Saavedra Rivano, Deligne)

Let k be a field. If

- \mathcal{A} is an abelian autonomous symmetric monoidal k-linear category
- $w: \mathcal{A} \to \text{Vect}_k$ is a faithful exact symmetric strong monoidal k-linear functor

Then there exists a Hopf algebra H such that $\mathcal{A} \cong \text{Rep}(H)$.
Tannaka duality for Hopf algebras over fields

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem (Saavedra Rivano, Deligne)

Let k be a field. If

- \mathcal{A} is an abelian autonomous symmetric monoidal k-linear category
- $w: \mathcal{A} \rightarrow \text{Vect}_k$ is a faithful exact symmetric strong monoidal k-linear functor

then there exists a Hopf algebra H such that $\mathcal{A} \simeq \text{Rep}(H)$.
The classical proof

Deligne’s proof

A abelian, \(w: A \rightarrow \text{Vect}_k \) faithful & exact
\Rightarrow A \cong \text{Comod}(C)

Symmetric monoidal structure
\Rightarrow \text{bialgebra structure on C}

Autonomous
\Rightarrow \text{Hopf algebra structure on C}

Theorem (Street)
There is a biadjunction between \(k \)-linear categories over \(\text{Vect}_k \) and coalgebras.

Reconstruction problem: when is the counit an isomorphism?
Recognition problem: when is the unit an equivalence?
The classical proof

Deligne’s proof
- \mathcal{A} abelian, $w: \mathcal{A} \to \text{Vect}_k$ faithful & exact $\leadsto \mathcal{A} \simeq \text{Comod}(C)$
The classical proof

Deligne’s proof

- \mathcal{A} abelian, $w: \mathcal{A} \to \text{Vect}_k$ faithful & exact $\leadsto \mathcal{A} \simeq \text{Comod}(C)$
- symmetric monoidal structure \leadsto bialgebra structure on C
The classical proof

Deligne’s proof

- **Abelian**: \mathcal{A} abelian, $w: \mathcal{A} \rightarrow \text{Vect}_k$ faithful & exact $\rightsquigarrow \mathcal{A} \simeq \text{Comod}(C)$
- **Monoidal Structure**: Symmetric monoidal structure \rightsquigarrow bialgebra structure on C
- **Autonomous**: \mathcal{A} autonomous \rightsquigarrow Hopf algebra structure on C
The classical proof

Deligne’s proof

- \mathcal{A} abelian, $w: \mathcal{A} \rightarrow \text{Vect}_k$ faithful & exact $\Rightarrow \mathcal{A} \simeq \text{Comod}(C)$
- symmetric monoidal structure \Rightarrow bialgebra structure on C
- \mathcal{A} autonomous \Rightarrow Hopf algebra structure on C

Theorem (Street)

There is a biadjunction between k-linear categories over Vect_k and coalgebras.
The classical proof

Deligne's proof

- \(A \) abelian, \(w: A \to \text{Vect}_k \) faithful & exact \(\xRightarrow{\sim} \ A \cong \text{Comod}(C) \)
- symmetric monoidal structure \(\xRightarrow{\sim} \) bialgebra structure on \(C \)
- \(A \) autonomous \(\xRightarrow{\sim} \) Hopf algebra structure on \(C \)

Theorem (Street)

There is a biadjunction between \(k \)-linear categories over \(\text{Vect}_k \) and coalgebras.

Reconstruction problem: when is the counit an isomorphism?
The classical proof

Deligne’s proof
- \mathcal{A} abelian, $w: \mathcal{A} \to \text{Vect}_k$ faithful & exact $\leadsto \mathcal{A} \simeq \text{Comod}(C)$
- symmetric monoidal structure \leadsto bialgebra structure on C
- \mathcal{A} autonomous \leadsto Hopf algebra structure on C

Theorem (Street)
There is a biadjunction between k-linear categories over Vect_k and coalgebras.

Reconstruction problem: when is the counit an isomorphism?
Recognition problem: when is the unit an equivalence?
Definition
A cosmos is a complete and cocomplete symmetric monoidal closed category V.

Definition
A profunctor (also known as distributor or module) $A \to B$ is a cocontinuous functor $[A^{\text{op}}, V] \to [B^{\text{op}}, V]$. The category of profunctors is denoted by $\text{Prof}(V)$.

Observation
Coalgebras are precisely comonads $I \to I$ in $\text{Prof}(V)$.

Daniel Schäppi (University of Chicago)
Generalized Tannakian duality
CT 2011 Vancouver
Definition

A cosmos is a complete and cocomplete symmetric monoidal closed category \mathcal{V}.
Finding the right environment

Definition

A **cosmos** is a complete and cocomplete symmetric monoidal closed category \(\mathcal{V} \).

Definition

A **profunctor** (also known as **distributor** or **module**) \(\mathcal{A} \to \mathcal{B} \) is a cocontinuous functor \([\mathcal{A}^{\mathsf{op}}, \mathcal{V}] \to [\mathcal{B}^{\mathsf{op}}, \mathcal{V}] \). The category of profunctors is denoted by \(\mathbf{Prof}(\mathcal{V}) \).
Finding the right environment

Definition
A cosmos is a complete and cocomplete symmetric monoidal closed category \mathcal{V}.

Definition
A profunctor (also known as distributor or module) $\mathcal{A} \to \mathcal{B}$ is a cocontinuous functor $\left[\mathcal{A}^{\text{op}}, \mathcal{V}\right] \to \left[\mathcal{B}^{\text{op}}, \mathcal{V}\right]$. The category of profunctors is denoted by $\text{Prof}(\mathcal{V})$.

Observation
Coalgebras are precisely comonads $\mathcal{I} \to \mathcal{I}$ in $\text{Prof}(\mathcal{V})$.
Finding the right environment

Definition

A left adjoint 1-cell in a bicategory is called a **map**.
Finding the right environment

Definition
A left adjoint 1-cell in a bicategory is called a map.

Lemma
Maps $\mathcal{A} \to \mathcal{B}$ in $\text{Prof}(\mathcal{V})$ are in bijection with \mathcal{V}-functors $\mathcal{A} \to \overline{\mathcal{B}}$.

Proof.
Let $L: \mathcal{A}^{\text{op}}, \mathcal{V} \to \mathcal{B}^{\text{op}}, \mathcal{V}$ be cocontinuous. Then there exists $w: \mathcal{A} \to \mathcal{B}^{\text{op}}, \mathcal{V}$ such that $L = \text{Lan}_Y w$.

Lan$_Y w$ has a right adjoint $X \mapsto \text{Hom}(w^\text{-}, X)$. The right adjoint is cocontinuous $\iff w(A) \in \mathcal{B}$ for all $A \in \mathcal{A}$.

Observation
The Cauchy completion of \mathcal{I} is the full subcategory of dualizable objects in \mathcal{V}.

Daniel Schäppi (University of Chicago) Generalized Tannakian duality CT 2011 Vancouver 7 / 17
Finding the right environment

Definition
A left adjoint 1-cell in a bicategory is called a map.

Lemma
Maps $A \to B$ in $\text{Prof}(\mathcal{V})$ are in bijection with \mathcal{V}-functors $A \to \overline{B}$.

Proof.

- Let $L : [A^{\text{op}}, \mathcal{V}] \to [B^{\text{op}}, \mathcal{V}]$ be cocontinuous.
Finding the right environment

Definition
A left adjoint 1-cell in a bicategory is called a map.

Lemma
Maps $\mathcal{A} \to \mathcal{B}$ in $\text{Prof}(\mathcal{V})$ are in bijection with \mathcal{V}-functors $\mathcal{A} \to \overline{\mathcal{B}}$.

Proof.
- Let $L : [\mathcal{A}^{\text{op}}, \mathcal{V}] \to [\mathcal{B}^{\text{op}}, \mathcal{V}]$ be cocontinuous.
- Then there exists $w : \mathcal{A} \to [\mathcal{B}^{\text{op}}, \mathcal{V}]$ such that $L = \text{Lan}_Y w$.
Finding the right environment

Definition

A left adjoint 1-cell in a bicategory is called a map.

Lemma

Maps $\mathcal{A} \rightarrow \mathcal{B}$ in $\text{Prof}(\mathcal{V})$ are in bijection with \mathcal{V}-functors $\mathcal{A} \rightarrow \mathcal{B}$.

Proof.

- Let $L: [\mathcal{A}^{\text{op}}, \mathcal{V}] \rightarrow [\mathcal{B}^{\text{op}}, \mathcal{V}]$ be cocontinuous.
- Then there exists $w: \mathcal{A} \rightarrow [\mathcal{B}^{\text{op}}, \mathcal{V}]$ such that $L = \text{Lan}_Y w$.
- $\text{Lan}_Y w$ has a right adjoint $X \mapsto \text{Hom}(w-, X)$.

Daniel Schäppi (University of Chicago)
Generalized Tannakian duality
CT 2011 Vancouver
7 / 17
Finding the right environment

Definition
A left adjoint 1-cell in a bicategory is called a map.

Lemma
Maps $\mathcal{A} \rightarrow \mathcal{B}$ in $\text{Prof}(\mathcal{V})$ are in bijection with \mathcal{V}-functors $\mathcal{A} \rightarrow \overline{\mathcal{B}}$.

Proof.
- Let $L: [\mathcal{A}^{\text{op}}, \mathcal{V}] \rightarrow [\mathcal{B}^{\text{op}}, \mathcal{V}]$ be cocontinuous.
- Then there exists $w: \mathcal{A} \rightarrow [\mathcal{B}^{\text{op}}, \mathcal{V}]$ such that $L = \text{Lan}_Y w$.
- $\text{Lan}_Y w$ has a right adjoint $X \mapsto \text{Hom}(w-, X)$.
- The right adjoint is cocontinuous $\iff w(A) \in \overline{\mathcal{B}}$ for all $A \in \mathcal{A}$.

Observation
The Cauchy completion of I is the full subcategory of dualizable objects in \mathcal{V}.

Daniel Schäppi (University of Chicago)
Generalized Tannakian duality
CT 2011 Vancouver
7 / 17
Finding the right environment

Definition
A left adjoint 1-cell in a bicategory is called a map.

Lemma
Maps $\mathcal{A} \to \mathcal{B}$ in $\text{Prof}(\mathcal{V})$ are in bijection with \mathcal{V}-functors $\mathcal{A} \to \overline{\mathcal{B}}$.

Proof.
- Let $L : [\mathcal{A}^{\text{op}}, \mathcal{V}] \to [\mathcal{B}^{\text{op}}, \mathcal{V}]$ be cocontinuous.
- Then there exists $w : \mathcal{A} \to [\mathcal{B}^{\text{op}}, \mathcal{V}]$ such that $L = \text{Lan}_Y w$.
- $\text{Lan}_Y w$ has a right adjoint $X \mapsto \text{Hom}(w-, X)$.
- The right adjoint is cocontinuous $\iff w(A) \in \overline{\mathcal{B}}$ for all $A \in \mathcal{A}$.

Observation
The Cauchy completion of \mathcal{I} is the full subcategory of dualizable objects in \mathcal{V}.
Finding the right environment

Question
Can we characterize $\text{Comod}(C')$ in terms of a 2-categorical universal property in $\text{Prof}(\mathcal{V})$?
A coaction of a comonad \(c: B \to B \) is a morphism \(v: A \to B \), together with a 2-cell \(\rho: v \Rightarrow c.v \), compatible with the comonad structure.
Tannaka-Krein objects

Definition

- A coaction of a comonad \(c: B \to B \) is a morphism \(v: A \to B \),
together with a 2-cell \(\rho: v \Rightarrow c.v \), compatible with the comonad
structure.

- A coaction \((v, \rho)\) is called a map coaction if \(v \) is a map (left adjoint).
Tannaka-Krein objects

Definition

- A *coaction* of a comonad $c : B \to B$ is a morphism $v : A \to B$, together with a 2-cell $\rho : v \Rightarrow c \cdot v$, compatible with the comonad structure.

- A coaction (v, ρ) is called a *map coaction* if v is a map (left adjoint).

- A morphism of (map) coactions $(v, \rho) \to (w, \sigma)$ is a 2-cell $\alpha : v \Rightarrow w$ compatible with ρ and σ.

- A Tannaka-Krein object is a *universal* map coaction, i.e., a map coaction (v, ρ) such that every map coaction is isomorphic to $v \cdot f$ for some map f. For all maps f and all 1-cells g, whiskering with v induces a bijection between 2-cells $g \Rightarrow f$ and morphisms of coactions $v \cdot g \to v \cdot f$.

Daniel Schäppi (University of Chicago) Generalized Tannakian duality CT 2011 Vancouver 9 / 17
Tannaka-Krein objects

Definition

- A coaction of a comonad $c : B \to B$ is a morphism $v : A \to B$, together with a 2-cell $\rho : v \Rightarrow c.v$, compatible with the comonad structure.
- A coaction (v, ρ) is called a map coaction if v is a map (left adjoint).
- A morphism of (map) coactions $(v, \rho) \to (w, \sigma)$ is a 2-cell $\alpha : v \Rightarrow w$ compatible with ρ and σ.

Definition

A Tannaka-Krein object is a universal map coaction, i.e., a map coaction (v, ρ) such that
Tannaka-Krein objects

Definition

- A **coaction** of a comonad \(c: B \to B \) is a morphism \(v: A \to B \), together with a 2-cell \(\rho: v \Rightarrow c.v \), compatible with the comonad structure.
- A coaction \((v, \rho)\) is called a **map coaction** if \(v \) is a map (left adjoint).
- A morphism of (map) coactions \((v, \rho) \to (w, \sigma)\) is a 2-cell \(\alpha: v \Rightarrow w \) compatible with \(\rho \) and \(\sigma \).

Definition

A **Tannaka-Krein object** is a *universal* map coaction, i.e., a map coaction \((v, \rho)\) such that

- Every map coaction is isomorphic to \(v.f \) for some map \(f \).
Tannaka-Krein objects

Definition

- A **coaction** of a comonad \(c : B \to B \) is a morphism \(v : A \to B \), together with a 2-cell \(\rho : v \Rightarrow c.v \), compatible with the comonad structure.

- A coaction \((v, \rho)\) is called a **map coaction** if \(v \) is a map (left adjoint).

- A morphism of (map) coactions \((v, \rho) \to (w, \sigma)\) is a 2-cell \(\alpha : v \Rightarrow w \) compatible with \(\rho \) and \(\sigma \).

Definition

A **Tannaka-Krein object** is a *universal* map coaction, i.e., a map coaction \((v, \rho)\) such that

- Every map coaction is isomorphic to \(v.f \) for some map \(f \).

- For all maps \(f \) and all 1-cells \(g \), whiskering with \(v \) induces a bijection between 2-cells \(g \Rightarrow f \) and morphisms of coactions \(v.g \to v.f \).
Tannaka-Krein objects in $\text{Prof}(\mathcal{V})$

Definition

Let C be a cocontinuous comonad on $[\mathcal{B}^{\text{op}}, \mathcal{V}]$. A **Cauchy comodule of C** is a comodule whose underlying object lies in $\overline{\mathcal{B}}$.
Tannaka-Krein objects in $\mathbf{Prof}(\mathcal{V})$

Definition

Let C be a cocontinuous comonad on $[\mathcal{B}^{\text{op}}, \mathcal{V}]$. A Cauchy comodule of C is a comodule whose underlying object lies in \mathcal{B}. The \mathcal{V}-category of Cauchy comodules of C is denoted by $\text{Rep}(C)$.
Definition

Let C be a cocontinuous comonad on $[\mathcal{B}^{\text{op}}, \mathcal{V}]$. A Cauchy comodule of C is a comodule whose underlying object lies in \mathcal{B}. The \mathcal{V}-category of Cauchy comodules of C is denoted by $\text{Rep}(C)$.

Theorem (S.)

The forgetful functor $\text{Rep}(C) \to \mathcal{B}$ is a Tannaka-Krein object in $\text{Prof}(\mathcal{V})$.
Theorem (S.)

If M is a 2-category with Tannaka-Krein objects, then the functor

\[L : \text{Map}(M) / B \to \text{Comon}(B) \]

given by $w \mapsto \Delta(w)$ has a right biadjoint $\text{Rep}(-)$ (which sends a comonad c to the Tannaka-Krein object of c).

The category $\text{Map}(M) / B$ has morphisms the triangles that commute up to invertible 2-cell.

This theorem does not require the full strength of the definition of Tannaka-Krein objects.
Theorem (S.)

If \mathcal{M} is a 2-category with Tannaka-Krein objects, then the functor

$$L: \text{Map}(\mathcal{M})/B \to \text{Comon}(B)$$

given by $w \mapsto w \cdot w$ has a right biadjoint $\text{Rep}(\cdot)$ (which sends a comonad c to the Tannaka-Krein object of c).
Theorem (S.)

If \mathcal{M} is a 2-category with Tannaka-Krein objects, then the functor

$$L : \text{Map}(\mathcal{M})/B \to \text{Comon}(B)$$

given by $w \mapsto w.\overline{w}$ has a right biadjoint $\text{Rep}(-)$ (which sends a comonad c to the Tannaka-Krein object of c).

- The category $\text{Map}(\mathcal{M})/B$ has morphisms the triangles that commute up to invertible 2-cell.
Theorem (S.)

If \mathcal{M} is a 2-category with Tannaka-Krein objects, then the functor

$$L: \text{Map}(\mathcal{M})/B \to \text{Comon}(B)$$

given by $w \mapsto w.\overline{w}$ has a right biadjoint $\text{Rep}(-)$ (which sends a comonad c to the Tannaka-Krein object of c).

- The category $\text{Map}(\mathcal{M})/B$ has morphisms the triangles that commute up to invertible 2-cell.
- This theorem does not require the full strength of the definition of Tannaka-Krein objects.
Let \mathcal{M} be a monoidal 2-category, and $(B, m, u) \in \mathcal{M}$ a map pseudomonoid.
Monoidal structure on the slice category

Let \mathcal{M} be a monoidal 2-category, and $(B, m, u) \in \mathcal{M}$ a map pseudomonoid. Given w and w' in $\text{Map}(\mathcal{M})/B$, let $w \bullet w'$ be the composite

$$A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$
Let \mathcal{M} be a monoidal 2-category, and $(B, m, u) \in \mathcal{M}$ a map pseudomonoid. Given w and w' in $\text{Map}(\mathcal{M})/B$, let $w \bullet w'$ be the composite

$$A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$

Proposition

The above assignment endows $\text{Map}(\mathcal{M})/B$ with the structure of a monoidal 2-category.
Let \mathcal{M} be a monoidal 2-category, let (A, d, e) be a pseudocomonoid in \mathcal{M}, and let (B, m, u) be pseudomonoid in \mathcal{M}.

Definition

The convolution product $f \star g$ of two 1-cells $f, g \in \mathcal{M}(A, B)$ is given by:

$A \xrightarrow{d} A \otimes A \xrightarrow{f \otimes g} B \otimes B \xrightarrow{m} B$

Proposition

Let (B, m, u) be a map pseudomonoid in \mathcal{M}. Then (B, m, u) is a pseudocomonoid, and the convolution product on $\mathcal{M}(B, B)$ lifts to the category $\text{Comon}(B)$ of comonads on B.

A monoid in $\text{Comon}(B)$ is precisely a monoidal comonad.
Let \mathcal{M} be a monoidal 2-category, let (A, d, e) be a pseudocomonoid in \mathcal{M}, and let (B, m, u) be pseudomonoid in \mathcal{M}.

Definition

The convolution product $f \star g$ of two 1-cells $f, g \in \mathcal{M}(A, B)$ is given by

$$
\begin{array}{c}
A \xrightarrow{d} A \otimes A \xrightarrow{f \otimes g} B \otimes B \xrightarrow{m} B
\end{array}
$$
Convolution monoidal structure

Let \mathcal{M} be a monoidal 2-category, let (A, d, e) be a pseudocomonoid in \mathcal{M}, and let (B, m, u) be pseudomonoid in \mathcal{M}.

Definition

The convolution product $f \star g$ of two 1-cells $f, g \in \mathcal{M}(A, B)$ is given by

\[
\begin{align*}
A \xrightarrow{d} A \otimes A \xrightarrow{f \otimes g} B \otimes B \xrightarrow{m} B
\end{align*}
\]

Proposition

Let (B, m, u) be a map pseudomonoid in \mathcal{M}. Then $(B, \overline{m}, \overline{u})$ is a pseudocomonoid, and the convolution product on $\mathcal{M}(B, B)$ lifts to the category $\text{Comon}(B)$ of comonads on B.

Daniel Schäppi (University of Chicago)
Convolution monoidal structure

Let \mathcal{M} be a monoidal 2-category, let (A, d, e) be a pseudocomonoid in \mathcal{M}, and let (B, m, u) be pseudomonoid in \mathcal{M}.

Definition

The convolution product $f \star g$ of two 1-cells $f, g \in \mathcal{M}(A, B)$ is given by

$$A \xrightarrow{d} A \otimes A \xrightarrow{f \otimes g} B \otimes B \xrightarrow{m} B$$

Proposition

Let (B, m, u) be a map pseudomonoid in \mathcal{M}. Then $(B, \overline{m}, \overline{u})$ is a pseudocomonoid, and the convolution product on $\mathcal{M}(B, B)$ lifts to the category $\text{Comon}(B)$ of comonads on B.

A monoid in $\text{Comon}(B)$ is precisely a monoidal comonad.
The Tannakian biadjunction is monoidal

Theorem (S.)

If \mathcal{M} is a monoidal 2-category and (B, m, u) is a map pseudomonoid in \mathcal{M}, then the left adjoint of the Tannakian biadjunction is strong monoidal.
The Tannakian biadjunction is monoidal

Theorem (S.)

If \mathcal{M} is a monoidal 2-category and (B, m, u) is a map pseudomonoid in \mathcal{M}, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let $w: A \to B$, $w': A' \to B$ be two objects in the domain of L.

Daniel Schäppi (University of Chicago) Generalized Tannakian duality CT 2011 Vancouver 14 / 17
The Tannakian biadjunction is monoidal

Theorem (S.)

If \mathcal{M} is a monoidal 2-category and (B, m, u) is a map pseudomonoid in \mathcal{M}, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let $w: A \to B$, $w': A' \to B$ be two objects in the domain of L. Since \otimes is a pseudofunctor, we have

$$L(w \bullet w') = B \xrightarrow{m} B \otimes B \xrightarrow{w \otimes w'} A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$
The Tannakian biadjunction is monoidal

Theorem (S.)

If \mathcal{M} is a monoidal 2-category and (B, m, u) is a map pseudomonoid in \mathcal{M}, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let $w: A \to B$, $w': A' \to B$ be two objects in the domain of L. Since \otimes is a pseudofunctor, we have

$$L(w \bullet w') = B \xrightarrow{m} B \otimes B \xrightarrow{w \otimes w'} A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$

By definition, $L(w) \star L(w')$ is given by

$$B \xrightarrow{m} B \otimes B \xrightarrow{w \cdot \overline{w} \otimes w' \cdot \overline{w}'} B \otimes B \xrightarrow{m} B$$
The Tannakian biadjunction is monoidal

Theorem (S.)

If \mathcal{M} is a monoidal 2-category and (B, m, u) is a map pseudomonoid in \mathcal{M}, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let $w : A \to B$, $w' : A' \to B$ be two objects in the domain of L. Since \otimes is a pseudofunctor, we have

$$L(w \bullet w') = B \xrightarrow{\overline{m}} B \otimes B \xrightarrow{\overline{w} \otimes \overline{w}'} A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$

By definition, $L(w) \star L(w')$ is given by

$$B \xrightarrow{\overline{m}} B \otimes B \xrightarrow{w \cdot \overline{w} \otimes \overline{w}'} B \otimes B \xrightarrow{m} B$$

Thus $L(w) \star L(w') \cong L(w \bullet w')$.
Braiding, syllepsis and symmetry

If \mathcal{M} is braided and B is a braided map pseudomonoid, then

$\text{Map}(\mathcal{M})/B$ is a braided 2-category.

$\text{Comon}(B)$ is a braided category.

The left adjoint of the Tannakian biadjunction is a braided strong monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

Corollary
If \mathcal{M} is (braided, sylleptic) monoidal, then the Tannakian biadjunction lifts to (braided, symmetric) pseudomonoids.

Theorem (S.)
If A and B are autonomous map pseudomonoids, and $w: A \to B$ is a strong monoidal map, then $L(w) = w$. w is a Hopf monoidal comonad.
Braiding, syllepsis and symmetry

If \mathcal{M} is braided and B is a braided map pseudomonoid, then

- $\text{Map}(\mathcal{M})/B$ is a braided 2-category.
Braiding, syllepsis and symmetry

If \mathcal{M} is braided and B is a braided map pseudomonoid, then

- $\text{Map}(\mathcal{M})/B$ is a braided 2-category.
- $\text{Comon}(B)$ is a braided category.
Braiding, syllepsis and symmetry

If \mathcal{M} is braided and B is a braided map pseudomonoid, then

- $\text{Map}(\mathcal{M})/B$ is a braided 2-category.
- $\text{Comon}(B)$ is a braided category.
- The left adjoint of the Tannakian biadjunction is a braided strong monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

Corollary

If \mathcal{M} is (braided, sylleptic) monoidal, then the Tannakian biadjunction lifts to (braided, symmetric) pseudomonoids.

Theorem (S.)

If A and B are autonomous map pseudomonoids, and $w: A \to B$ is a strong monoidal map, then $L(w) = w$. w is a Hopf monoidal comonad.
Braiding, syllepsis and symmetry

If \mathcal{M} is braided and B is a braided map pseudomonoid, then

- $\text{Map}(\mathcal{M})/B$ is a braided 2-category.
- $\text{Comon}(B)$ is a braided category.
- The left adjoint of the Tannakian biadjunction is a \textit{braided} strong monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.
If \mathcal{M} is braided and B is a braided map pseudomonoid, then

- $\text{Map}(\mathcal{M})/B$ is a braided 2-category.
- $\text{Comon}(B)$ is a braided category.
- The left adjoint of the Tannakian biadjunction is a braided strong monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

Corollary

If \mathcal{M} is (braided, sylleptic) monoidal, then the Tannakian biadjunction lifts to (braided, symmetric) pseudomonoids.
Braiding, syllepsis and symmetry

If \mathcal{M} is braided and B is a braided map pseudomonoid, then

- $\text{Map}(\mathcal{M})/B$ is a braided 2-category.
- $\text{Comon}(B)$ is a braided category.
- The left adjoint of the Tannakian biadjunction is a braided strong monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

Corollary

If \mathcal{M} is (braided, sylleptic) monoidal, then the Tannakian biadjunction lifts to (braided, symmetric) pseudomonoids.

Theorem (S.)

If A and B are autonomous map pseudomonoids, and $w: A \to B$ is a strong monoidal map, then $L(w) = w \cdot \overline{w}$ is a Hopf monoidal comonad.
Theorem (S.)
Let B be a commutative R-algebra, and let A be an additive autonomous symmetric monoidal R-linear category. Let $w : A \to \text{Mod}_B$ be a symmetric strong monoidal R-linear functor. Suppose that:

1. w is faithful and reflects isomorphisms;
2. w is flat;
3. whenever the cokernel of $w(f)$ is finitely generated projective, then the cokernel of f exists and is preserved by w.

Then there exists a Hopf algebroid (H, B) and an equivalence $A \cong \text{Rep}(H, B)$.
Let B be a commutative R-algebra, and let \mathcal{A} be an additive autonomous symmetric monoidal R-linear category. Let $w: \mathcal{A} \to \text{Mod}_B$ be a symmetric strong monoidal R-linear functor. Suppose that:

1. w is faithful and reflects isomorphisms;
2. w is flat;
3. whenever the cokernel of $w(f)$ is finitely generated projective, then the cokernel of f exists and is preserved by w.

Then there exists a Hopf algebroid (H, B) and an equivalence $\mathcal{A} \simeq \text{Rep}(H, B)$.

Daniel Schäppi (University of Chicago) Generalized Tannakian duality CT 2011 Vancouver 16 / 17
Theorem (S.)

Let B be a commutative R-algebra, and let \mathcal{A} be an additive autonomous symmetric monoidal R-linear category. Let $w: \mathcal{A} \to \text{Mod}_B$ be a symmetric strong monoidal R-linear functor. Suppose that:

1. w is faithful and reflects isomorphisms;
2. w is flat;
3. whenever the cokernel of $w(f)$ is finitely generated projective, then the cokernel of f exists and is preserved by w.

Then there exists a Hopf algebroid (H,B) and an equivalence $\mathcal{A} \cong \text{Rep}(H,B)$.
Theorem (S.)

Let B be a commutative R-algebra, and let \mathcal{A} be an additive autonomous symmetric monoidal R-linear category. Let $w: \mathcal{A} \to \text{Mod}_B$ be a symmetric strong monoidal R-linear functor. Suppose that:

1. w is faithful and reflects isomorphisms;
2. w is flat;
3. whenever the cokernel of $w(f)$ is finitely generated projective, then the cokernel of f exists and is preserved by w.

Then there exists a Hopf algebroid (H, B) and an equivalence $\mathcal{A} \simeq \text{Rep}(H, B)$.

Daniel Schäppi (University of Chicago)
Theorem (S.)

Let B be a commutative R-algebra, and let \mathcal{A} be an additive autonomous symmetric monoidal R-linear category. Let $w: \mathcal{A} \to \text{Mod}_B$ be a symmetric strong monoidal R-linear functor. Suppose that:

1. w is faithful and reflects isomorphisms;
2. w is flat;
3. whenever the cokernel of $w(f)$ is finitely generated projective, then the cokernel of f exists and is preserved by w.

Then there exists a Hopf algebroid (H, B) and an equivalence $\mathcal{A} \simeq \text{Rep}(H, B)$.
The category of Cauchy comodules has the universal property of a TK-object in $\text{Prof}(V)$. The existence of TK-objects in M implies that the Tannakian biadjunction exists. If M is monoidal, then the Tannakian biadjunction is monoidal. The same is true for braided, sylleptic and symmetric M. This explains why the Tannakian biadjunction lifts to (braided or symmetric) pseudomonoids.

Thanks!

Daniel Schäppi (University of Chicago)
The category of Cauchy comodules has the universal property of a TK-object in $\text{Prof}(\mathcal{V})$.
The category of Cauchy comodules has the universal property of a TK-object in $\text{Prof}(\mathcal{V})$.

The existence of TK-objects in \mathcal{M} implies that the Tannakian biadjunction exists.
The category of Cauchy comodules has the universal property of a TK-object in $\text{Prof}(\mathcal{V})$.

The existence of TK-objects in \mathcal{M} implies that the Tannakian biadjunction exists.

If \mathcal{M} is monoidal, then the Tannakian biadjunction is monoidal.
The category of Cauchy comodules has the universal property of a TK-object in $\text{Prof}(\mathcal{V})$.

The existence of TK-objects in \mathcal{M} implies that the Tannakian biadjunction exists.

If \mathcal{M} is monoidal, then the Tannakian biadjunction is monoidal.

The same is true for braided, sylleptic and symmetric \mathcal{M}.

Summary
The category of Cauchy comodules has the universal property of a TK-object in $\text{Prof}(\mathcal{V})$.

The existence of TK-objects in \mathcal{M} implies that the Tannakian biadjunction exists.

If \mathcal{M} is monoidal, then the Tannakian biadjunction is monoidal.

The same is true for braided, sylleptic and symmetric \mathcal{M}.

This explains why the Tannakian biadjunction lifts to (braided or symmetric) pseudomonoids.
The category of Cauchy comodules has the universal property of a TK-object in $\text{Prof}(\mathcal{V})$.

The existence of TK-objects in \mathcal{M} implies that the Tannakian biadjunction exists.

If \mathcal{M} is monoidal, then the Tannakian biadjunction is monoidal.

The same is true for braided, sylleptic and symmetric \mathcal{M}.

This explains why the Tannakian biadjunction lifts to (braided or symmetric) pseudomonoids.

Thanks!