ONE PLUS ONE EQUALS ONE TIMES ONE

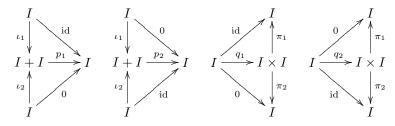
DANIEL SCHÄPPI

1. Autonomous categories and semiadditivity

Let \mathscr{C} be an autonomous symmetric monoidal category with a zero object 0. Assume that the coproduct I + I of the unit object I with itself exists. Write $\iota_i \colon I \to I + I$ for the structure maps of this coproduct. For all objects $C \in \mathscr{C}$, the functors $C \otimes - : \mathscr{C} \to \mathscr{C}$ are left adjoint to $C^{\vee} \otimes - : \mathscr{C} \to \mathscr{C}$, so they preserve all colimits. In particular, the maps $C \otimes \iota_i \colon C \otimes I \to C \otimes (I + I)$ exhibit $C \otimes (I + I)$ as the coproduct of two copies of $C \otimes I \cong C$. Furthermore, we have

$$\mathscr{C}(C, (I+I)^{\vee}) \cong \mathscr{C}(C \otimes (I+I), I) \cong \mathscr{C}(C, I) \times \mathscr{C}(C, I)$$

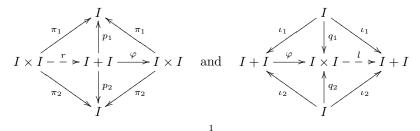
which shows that $(I+I)^{\vee}$ is a product of I with itself. This shows in particular that \mathscr{C}^{op} is again a category satisfying all our assumptions. We fix a product $I \times I$ of I with itself, and we write $\pi_i \colon I \times I \to I$ for the projection maps. Let $p_i \colon I + I \to I$ and $q_i \colon I \to I \times I$ be the unique maps making the diagrams



commutative.

Proposition 1.1. The object $(I + I, p_1, p_2)$ is a weak product of I with itself, i.e., given an object $C \in \mathscr{C}$ and maps $f_i: C \to I$, there exists a map $f: C \to I + I$ with $p_i f = f_i$ for i = 1, 2. Dually, the object $(I \times I, q_1, q_2)$ is a weak coproduct of I with itself.

Before proving this, we show how to use this to prove that the canonical map $\varphi: I+I \to I \times I$ is an isomorphism. First note φ is the unique map with $\pi_i \circ \varphi = p_i$, and it is also the unique map with $\varphi \circ \iota_i = q_i$. From Proposition 1.1 it follows that the dotted morphisms l and r in the commutative diagrams



exist. Commutativity immediately implies that $\varphi r = \text{id}$ and $l\varphi = \text{id}$, which shows that the canonical morphism $I + I \rightarrow I \times I$ is indeed an isomorphism.

Corollary 1.2. Let \mathscr{C} be an autonomous symmetric monoidal category with a zero object 0 such that the coproduct I + I of the unit object I with itself exists. Then \mathscr{C} is enriched in commutative monoids. If \mathscr{C} has all finite coproducts, then \mathscr{C} is semiadditive.

Proof. The functors $C \otimes -$ are both left and right adjoint, hence the coproduct C + C and the product $C \times C$ exist (they are the images of I + I and $I \times I$ under $C \otimes -$). Moreover, it follows from the above considerations that $C + C \cong C \times C$, i.e., that the biproduct of C with itself exists. Using the diagonal and codiagonal maps one obtains the desired monoid structure on hom-sets.

Corollary 1.3. Let \mathscr{V} be a cosmos (a complete and cocomplete symmetric monoidal closed category) with a zero object such that the object I + I is dualizable. Then \mathscr{V} is semiadditive.

Proof. Let $\mathscr{C} \subseteq \mathscr{V}$ be the full subcategory of dualizable objects. First note that the existence of internal homs implies that $V \otimes -$ will preserve colimits, so we have

$$\mathscr{V}(V, (I+I)^{\vee}) \cong \mathscr{V}(V \otimes (I+I), I) \cong \mathscr{V}(V, I) \times \mathscr{V}(V, I)$$

for any object $V \in \mathcal{V}$. This shows that $(I + I)^{\vee}$ is isomorphic to $I \times I$, i.e., that $I \times I$ lies in \mathscr{C} . Thus we can apply Corollary 1.2 to find that the canonical map $I+I \to I \times I$ is an isomorphism. Moreover, for any $M, N \in \mathcal{V}$ we have isomorphisms

$$\mathscr{V}(M, N \otimes (I \times I)) \cong \mathscr{V}(M \otimes (I + I), N) \cong \mathscr{V}(M, N) \times \mathscr{V}(M, N)$$

which are natural in M. This shows that $N \otimes (I \times I) \cong N \times N$, which implies that the canonical map $N + N \to N \times N$ is an isomorphism. It follows that \mathscr{V} is enriched in commutative monoids.

In order to prove Proposition 1.1 we need to introduce some auxiliary maps. We first fix an object $C \in \mathcal{C}$, together with two morphisms $f_i: C \to I$. Let

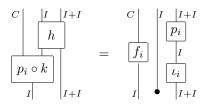
$$h: I \otimes (I+I) \to (I+I) \otimes (I+I)$$
 and $k: C \otimes (I+I) \to I+I$

be the unique maps which make the diagrams

$$\begin{array}{c|c} I \otimes I & C \otimes I \xrightarrow{f_1 \otimes \iota_1} I \otimes (I+I) \\ I \otimes \iota_1 & & I \\ I \otimes (I+I) \xrightarrow{h} (I+I) \otimes (I+I) \\ I \otimes \iota_2 & & C \otimes \iota_1 \\ I \otimes I & & C \otimes (I+I) \xrightarrow{k} I+I \\ I \otimes \iota_2 & & C \otimes \iota_2 \\ I \otimes I & & C \otimes I \xrightarrow{f_2 \otimes \iota_2} I \otimes (I+I) \end{array}$$

commutative.

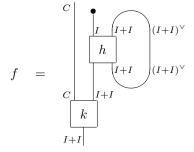
Lemma 1.4. The equality



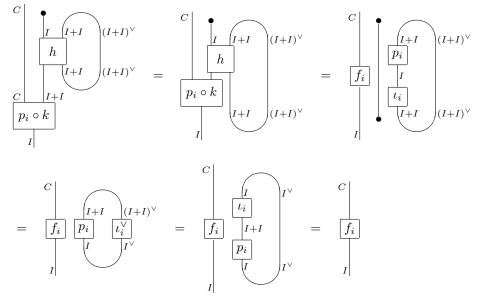
holds.

Proof. Since $C \otimes I \otimes -$ preserves coproducts, it suffices to check that both sides of the above equation coincide when precomposed with $C \otimes I \otimes \iota_i$ and $C \otimes I \otimes \iota_{3-i}$. It follows easily from the definitions that these composites are $(l_I \circ f_i \otimes I) \otimes \iota_i$ and 0 respectively, where $l_I : I \otimes I \to I$ is the canonical isomorphism. \Box

Proof of Prop 1.1. We define a map $f: C \to I + I$ by the string diagram



Lemma 1.4 gives one of the equalities in the sequence



which shows that $p_i \circ f = f_i$, as desired. This proves that $(I + I, p_1, p_2)$ is a weak product of I with itself. Moreover, we already showed that the product of I with

DANIEL SCHÄPPI

itself exists (it is isomorphic to the dual of I + I), so we can apply our reasoning to \mathscr{C}^{op} to find that $(I \times I, q_1, q_2)$ is a weak coproduct of I with itself. \Box

University of Chicago, Department of Mathematics, 5734 S University Avenue, 60637 Chicago