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CHAPTER 1

Preliminaries

In these notes, whenever we refer to a topological space we mean a compactly
generated topological space (or Kelley space). In particular for us the category of
topological spaces will be cartesian closed.�

Denis: We need to
split this chapter in
two: simplicial homo-
topy theory and ho-
motopy coherent dia-
grams

1. Simplicial homotopy theory

The standard reference for simplicial homotopy theory is the book by Goerss
and Jardine [GJ09]. Much of this chapter is modeled on Kan’s original papers
[Kan58] and [Kan57].

Let ∆ be the category whose objects are finite nonempty totally ordered sets
and maps are continuous maps. Concretely the typical object is going to be

[n] = {0 < 1 < · · · < n}

There’s a functor | − | : ∆ → Top from ∆ to the category of topological spaces
sending [n] to the n-dimensional topological simplex

|∆n| = {t ∈ Rn+1 |
∑
i

ti = 1, ti ≥ 0}

and extend the maps on the vertices linearly.
Important arrows are for every 0 ≤ i ≤ n

∂i : [n]→ [n+ 1] j 7→

{
j if j < i

j + 1 if j ≥ i

si : [n]→ [n− 1] j 7→

{
j if j ≤ i
j − 1 if j ≥ i+ 1

.

The first one corresponds under the functor | − | as the inclusion of the i-th face
(i.e. the face opposed to the i-th vertex), and correspondingly it is called the i-th
face map. The second one corresponds to the projection onto the i + 1-th face
parallel to the edge {i, i+ 1} and it is called the i-th degeneracy map.

Exercise 1. Show that every arrow in ∆ can be written as a composition of a
sequence of degeneracy maps followed by a sequence of face maps.

We can visualize a the category ∆ as follows

[0] [1] [2] · · ·

Definition 1.1. A simplicial set is a functor X : ∆op→ Set.

The first important example of a simplicial set is the singular complex of a
topological space.

Example 1.2. Let T be a topological space. Then the singular complex Sing T
is the simplicial set

[n] 7→ HomTop(|∆n|, T )

5



6 1. PRELIMINARIES

So for example (Sing T )0 is just the set of points of T , (Sing T )1 is just the set
of paths in T and the two maps

∂0, ∂1 : (Sing T )1 → (Sing T )0

send a path γ to γ(1) and γ(0) respectively.

Bolstered by this example if X is a simplicial set we will often refer to elements
of X([0]) as points of X, and elements of X([1]) as paths in X.

Example 1.3. There is also a functor ∆ → Cat sending a poset to the corre-
sponding category. From this we can construct for every category C a simplicial set
NC, called the nerve of C, such that (NC)([n]) is the set of functors [n] → C, i.e.
the set of n composable arrows in C. Face maps correspond to taking composition
of arrows and degeneracies to inserting identity arrows. We will return on this
example later.

Example 1.4. We can take the nerve of the poset [n] seen as a category. This
is called the standard n-simplex and denoted ∆n := N [n]. The functor ∆→ sSet
sending [n] to ∆n is simply the Yoneda embedding for the category ∆. In particular
(∆n)([m]) is just the set of maps f : [m] → [n], or equivalently the sequences
0 ≤ i0 ≤ · · · ≤ im ≤ n.

Exercise 2. Let P be a poset. Then NP is the colimit of ∆#S where S ranges
through the finite non-empty totally ordered subsets of P . For example

∆1 ×∆1 = ∆{(0,0)<(0,1)<(1,1)} ∪∆{(0,0)<(1,1)} ∆{(0,0)<(1,0)<(1,1)} .

Example 1.5. In what follows an important example will be the following sub-
complexes of ∆n. First, we let the boundary ∂∆n be the union of all proper faces
of ∆n, i.e. its m-simplices are the maps f : [m]→ [n] that are not surjective.

If 0 ≤ i ≤ n, we let the i-th horn Λni be the union of all proper faces of ∆n

except the i-th one. Said differently Λni ([m]) is the set of all maps f : [m] → [n]
such that the image does not contain {0, . . . , i− 1, i+ 1, . . . , n}.

Example 1.6. The functor Sing : Top → sSet has a left adjoint called the
geometric realization. It sends a simplicial set X to the following topological
space

|X| :=

(∐
n

X([n])× |∆n|

)
/ ∼

where ∼ is the equivalence relation generated by

(σ, f∗t) ∼ (f∗σ, t)

for every σ ∈ X([n]), t ∈ |∆m| and f : [m]→ [n].

The following proposition is taken from [GZ12, 3.1].

Proposition 1.7. The geometric realization functor from simplicial sets to
compactly generated topological spaces commutes with finite products.

Proof. Let us remark that one can verify the special case

|∆n ×∆m| → |∆n| × |∆m|
using exercise 2 (for the details see 3.4 in Gabriel-Zisman).

Now let us fix an m-simplex τ ⊆ Y and consider the poset of subsets A where
A ⊆ X and the map |A×τ | → |A|×|∆m| is a homeomorphism. This has a maximal
element by Zorn, since both sides commute with colimits. Then if σ is a minimal
simplex not in A we can write A′ = A ∩∂∆n ∆n. But then

|A′ ×B| ∼= |(A ∩∂∆n ∆n)×∆m| ∼= |(A×∆m)| ∪|∂∆n×∆m| |∆n

�



1. SIMPLICIAL HOMOTOPY THEORY 7

If X is a topological space SingX has an additional property that not all
simplicial sets have.

Definition 1.8. Let X be a simplicial set. We say that X is a Kan complex
if every map f : Λni → X from a horn has an extension to ∆n.

Lemma 1.9. Let X be a topological space. Then SingX is a Kan complex.

Proof. By the adjunction |−||Sing giving a map f : Λni → SingX is the same
thing as giving a continuos map f : |Λni | → X, and giving an extension to ∆n is the
same as giving an extension to |∆n|. But the inclusion |Λni | ⊆ |∆n| has a retraction
pushing the barycenter of the i-th face to the i-th vertex. �

Example 1.10. Let X,Y be two topological spaces. We can define the mapping
space as the simplicial set

[n] 7→ HomTop(X × |∆n|, Y ) .

This is a Kan complex, where the points are continuous maps and paths are homo-
topies. Note that this is well defined even when there is no sensible topology on the
space of continuous maps.

Example 1.11. Let M,N be smooth manifolds. We can define the subsimplicial
set

Emb(M,N) ⊆ Map(M,N)

whose n-simplices are smooth maps f : M × |∆n| → N such that f |M×{t} is an
embedding for every t ∈ |∆n|. Its points are smooth embeddings and paths are
smooth isotopoies. Then Emb(M,N) is a Kan complex.

In fact Emb(M,N) can be realized as the Sing of a certain topological space,
but this is not an easy statement to prove at all. We will see that the Kan complex
Emb(M,N) is completely sufficient to talk about the homotopy type of the space of
embeddings.

Example 1.12. Let S, T be simplicial sets. Then Hom(S, T ) is the simplicial
set given by

[n] 7→ HomsSet(S ×∆n, T ) .

This has the property that giving a map A→ Hom(S, T ) is the same thing as giving
a map A× S → T .

Our goal in this section is to show that SingX contains all the information
about the weak homotopy type of X. As a first step we will show that it contains
all the information in the homotopy groups.

Lemma 1.13. Let X be a Kan complex. Then the relation on X0 given by

x ∼ y ⇔ ∃γ ∈ X1 ∂1γ = x, ∂0γ = y

is an equivalence relation. The set of equivalence classes will be denoted by π0X
and called the set of connected components of X.

Proof. We need to check the three properties of an equivalence relation: ∼
is reflexive since the existence of the degenerate 1-simplex s0x ∈ X1 implies x ∼ x.
Then it is reflexive since if x ∼ y, let γ ∈ X1 witnessing the equivalence. Then
we can extend γ to a map f0 : Λ2

2 → X whose restriction to ∆1,2 is γ and whose
restriction to ∆0,2 is the degenerate simplex s0y. Then we can extend f0 to f :
∆2 → X and the restriction of f to ∆0,1 is a witness of y ∼ x.

Similarly, if we have x ∼ y and y ∼ z, we can take γ, δ ∈ X1 witnessing those
relations. Then we build f0 : Λ2

1 → X such that f0|∆0,1 = γ and f0|∆1,2 = δ and
extend it to f : ∆2 → X. Then f |∆0,2 witnesses x ∼ z. �



8 1. PRELIMINARIES

Exercise 3. Let X be a Kan complex. Then we can write

X ∼=
∐

α∈π0X

Xα

where Xα ⊆ X is the simplicial subset consisting of simplices of X all whose vertices
are in α.

Exercise 4. Show that for X a topological space and Y a Kan complex there
are natural bijections

π0X ∼= π0 SingX and π0Y ∼= π0|Y |

In order to define higher homotopy groups we want to extend the above equiv-
alence relation to higher simplices.

Definition 1.14. Let X be a simplicial set and n ≥ 0. Then two n-simplices
σ, τ ∈ Xn are homotopic relative to the boundary if σ|∂∆n = τ |∂∆n and there
exists an (n+ 1)-simplex η such that

• ∂nη = σ;
• ∂n+1η = τ ;
• For every 0 ≤ i < n we have ∂iη = sn−1∂iσ = sn−1∂iτ .

Exercise 5. The homotopy relative to the boundary is an equivalence relation
on the set of n-simplices.

Exercise 6. Let Y be a topological space. Then two maps f, g : |∆n| → Y
are homotopic relative to |∂∆n| if and only if they are homotopic relative to the
boundary as elements of (Sing Y )([n]).

Definition 1.15. Let X be a Kan complex and x ∈ X be a point of X. Then
the n-th homotopy group is the quotient of the set of n-simplices σ : ∆n → X such
that σ|∂∆n = x up to homotopy relative to the boundary.

Example 1.16. If X is a topological space, and x ∈ X is a point the set
πn(SingX,x) is just the n-th homotopy group of X.

Construction 1.17. By analogy with the topological case we want πn(X,x)
to be a group when n ≥ 1. Let α, β : ∆n → X such that α|∂∆n = β|∂∆n = x. Then
we can build a map η0 : Λn+1

n → X such that η0|∂n−1∆n+1 = α, η0|∂n+1∆n = β and

η0|∂i∆n = x for 0 ≤ i ≤ n − 2. Then we can extend it to η : ∆n+1 → X and let
[α] · [β] := [η|∂n∆n+1 ].

Lemma 1.18. The multiplication is well-defined up to homotopy and it turns
πn(X,x) into a group.

Proof. For simplicity we will do only the case n = 1. Let us say that a triple
of 1-simplices (α, β, γ) is a composition pair if all their faces are the degenerate
simplices at x and there is a 2-simplex σ such that ∂0σ = α, ∂1σ = γ and ∂2σ = β.
Note that α and α′ are homotopic if and only if (α, x, α′) is a composition pair.

Clearly taking the degenerate 2-simplex s0α we see that (α, sx, α) is always a
composition pair, therefore the multiplication is unital. We claim that if (α, β, γ),
(γ, δ, ε) and (β, δ, θ) are composition pairs, so is (α, δ, θ). In fact we can build
f : Λ3

1 → X such that ∂0f is a 2-simplex representing (α, β, γ), ∂2f represents
(γ, δ, ε) and ∂3f represents (β, δ, θ). Then if we extend f to ∆3 we see that ∂1f
represents (α, θ, ε), as required.

In particular if the composition is well-defined it is associative. Moreover if α
and α′ are homotopic, this means that (α, x, α′) is a composition pair. Therefore
for every composition pair (α, β, γ), since (β, x, β) is a composition pair, we deduce
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that (α′, β, γ) is also a composition pair, therefore the composition is well-defined
in α. A similar argument shows it is also well-defined in β.

Finally, considering the map f : Λ2
0 → X such that ∂1f = x and ∂0f = α

and taking its extension to ∆2 we see that there is a β such that (α, β, x) is a
composition pair. Therefore every element has a left inverse, and so πn(X,x) is a
group. �

Our next step is to define the notion of homotopy a map of Kan complexes and
study the behaviour of homotopy groups under it. To do so we will need a technical
lemma.

Lemma 1.19 (Homotopy lifting property). Let K be a simplicial set. Then K
is a Kan complex if and only if for every inclusion A ⊆ B and every commutative
square

A Hom(∆1,K)

B K

where the vertical map is induced by {0} ⊆ ∆1, the dashed lift exists.

Proof. Let us show first that if K satisfies the conditions of the lemma, it is
a Kan complex. Let us take f0 : Λni → K. Let us define the map

r : ∆n ×∆1 → ∆n r(j, 0) =

{
j if j 6= i+ 1

i if j = i+ 1
, r(j, 1) = j

(morally r is a homotopy of the identity to the projection onto the (i+ 1)-th face).
This sends Λni ×∆1 and ∆n × {0} to Λni . Therefore we can construct a diagram

Λni Hom(∆1,K)

∆n K

g

where the top face is adjoint to the restriction of f0r to Λni ×∆1 and the bottom face
is the restriction of f0r to ∆n×{0}. If we let g be the lift, we see that f = g|∆n×{1}
is the map we were looking for.

Now let us prove the other direction. Suppose K is a Kan complex and let us
do first the case where A = ∂∆n and B = ∆n. Concretely we have a map

f0 : ∂∆n ×∆1 ∪∆n × {0} → K

and we want to extend it to ∆n×∆1. For −1 ≤ i ≤ n let Bi be the subcomplex of
∆n ×∆1 given by

Bi = ∂∆n ×∆1 ∪∆n × {0} ∪H0 ∪H1 ∪ · · · ∪Hi ,

where Hi is the (n+ 1)-simplex corresponding to the map of posets

Hi(j) =

{
(j, 0) if j ≤ i
(j − 1, 1) if j > i

.

Then it is easy to verify that

Bi = Bi−1 ∪Λn+1
i

∆n+1

and Bn = ∆n×∆1. Thus we can extend f0 by induction to Bi, proving the thesis.
To do the general case let us consider the poset of pairs (C, h : C → Hom(∆1,K)

such that C is a subset of B containing A and h is a partial lift. We can apply Zorn
and deduce that it has a maximal object (C, h). Our goal is to show that in the
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maximal object C = B. Suppose this is not true and let σ ∈ B([n]) be a simplex
of minimal dimension not in C. Then σ|∂∆n lives in C (because it is composed of
simplices of smaller dimension) and we can apply the special case proved above to
extend h to C ∪ σ, thus proving a contradiction. �

Corollary 1.20. Let S be a simplicial set and X be a Kan complex. Then
Hom(S,X) is a Kan complex (which we will write as Map(S,X).

Proof. We verify that Hom(S,X) satisfies the conditions of lemma 1.19. In-
deed let us fix a diagram

A Hom(∆1,Hom(S,X))

B Hom(S,X)

But providing a lift for this is equivalent to providing a lift for the diagram

A× S Hom(∆1, X)

B × S X

which exists by lemma 1.19. �

Let X be a Kan complex. Then two maps f, g : S → X are homotopic if
they lie in the same connected component of Map(S,X). This is equivalent to
saying that there is H : S × ∆1 → X such that H|S×{0} = f and H|S×{1} = g

or, equivalently, that there’s H : X → Map(∆1, X) such that ev0 ◦ H = f and
ev1 ◦H = g.

Lemma 1.21. For any x ∈ X and γ : ∆1 → X, the map

(ev0)∗ : πn(Hom(∆1, X), γ)→ πn(X, γ0)

is an isomorphism (and analogously for ev1.

Proof. Since the constant map δ : X → Hom(∆1, X) adjoint to X×∆1 → X
is a right inverse, the map is obviously surjective. We need to prove that it is injec-
tive. Let α, β : ∆n → Hom(∆1, X) representing two classes in πn(Hom(∆1, X), γ)
and let η : ∆n+1 → X be a witness of a homotopy between ev0α and ev0β. Then
we can construct the diagram

∂∆n+1 Hom(∆1, X)

∆n+1 X
η

where the top horizontal map is the boundary of a homotopy between α and β.
Then lemma 1.19 implies there’s a lift. �

Using the lemma we can construct for any path γ : ∆1 → X an isomorphism

πn(X, γ0)
(ev0)−1

∗−−−−−→ πn(Hom(∆1, X), γ)
(ev1)∗−−−−→ πn(X, 1) .
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Exercise 7. Let H : X × ∆1 → Y be a homotopy between two maps f =
H|X×{0} and g = H|X×{1}. Then for every x ∈ X there’s a commutative diagram

πn(X,x) πn(Y, fx)

πn(Y, gx)

f∗

g∗
γ∗ .

In particular homotopy equivalences induce isomorphisms between homotopy groups.

Theorem 1.22. Let K be a Kan complex. Then the map

η : K → Sing |K|

sending an n-simplex ∆n → K to its geometric realization |∆n| → |K|, is a homo-
topy equivalence of Kan complexes.

Proof. Let us consider the map

ε|Sing |K|| → |K|

which is adjoint to the identity Sing |K| → Sing |K|. Then η is the inclusion of a
subcomplex such that ε ◦ |η| = id|K|. In particular it is a simplicial map, so we can
apply theorem 1.91 and obtain a map of simplicial complexes f : Sing |K| → K
such that fη ∼= idK and a homotopy

H : |Sing |K|| × |∆1| → |K|

from |f | to ε relative to |K|. But then |Sing |K|| × |∆1| ∼= |Sing |K| × ∆1| by ...
and the adjoint map is

H̃ : Sing |K| ×∆1 → Sing |K| .

One can then immediately verify that H̃ is a homotopy of ηf with the identity. �

Corollary 1.23. If X is a topological space, the map

|SingX| → X

is a weak equivalence.

Proof. Using the fact that SingX is a Kan complex we obtain that, by the
previous corollary

πn(|SingX|, x) ∼= πn(SingX,x) = πn(X,x) .

for every x ∈ X. Since π0|SingX| ∼= π0X it suffices to check the condition of being
a weak equivalence only on the point coming from X. �

Corollary 1.24. Let f : X → Y be a map of Kan complexes such that for
every x ∈ X and n ≥ 0 the map πn(X,x)→ πn(Y, fx) is an isomorphism. Then f
is a homotopy equivalence.

Proof. By example 1.16 it follows that |f | is a weak equivalence of topological
spaces. But |X| and |Y | are CW complexes, so |f | is a homotopy equivalence. Then
Sing |f | is a homotopy equivalence of Kan complexes and the thesis follows from
theorem 1.22. �

Corollary 1.25. Let X,Y be topological spaces. Then X and Y are weakly
equivalent if and only if SingX and Sing Y are homotopy equivalent.

Proof. Let f : X → Y be a weak equivalence between X and Y . But then
the previous corollary implies that Sing f is a homotopy equivalence. �
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Putting together the above results, we can deduce the Kan complex SingX up
to simplicial homotopy knows everything about X up to weak equivalence. In what
follows we will refer to SingX (as an element of the category of Kan complexes or,
later, of the ∞-category of spaces) as the weak homotopy type of X.

Exercise 8. The categories Kan[h.e.−1] and Top[w.e.−1] obtained by respec-
tively inverting the homotopy equivalences and the weak equivalences in the cate-
gories of Kan complexes and of topological spaces are equivalent. This category is
normally called the homotopy category hS .

Moreover hS is equivalent to the category whose objects are Kan complexes
and whose morphisms are homotopy classes of maps.

2. ∞-categories

Our goal in this section is to briefly introduce the theory of ∞-categories. The
main reason for us to do so is because it will allow us to speak in a very simple way
of coherently commutative diagrams. In order to motivate this let us first see a few
examples.

Let C be a category enriched in the category Kan of Kan complexes. Con-
cretely means that we have a set ob C of objects and for every x, y ∈ ob C a Kan
complex MapC(x, y). Moreover we have a composition operation

◦ : MapC(x, y)×MapC(y, z)→ MapC(x, z)

which is associative and unital. We will refer to the 0-simplices of MapC(x, y) as
maps from x to y and to the 1-simplices as homotopies between maps. We will
sometimes refer to higher simplices as “higher homotopies”.

Example 1.26. We will leave as an exercise to show that all the simplicial sets
we define here are in fact Kan complexes.

(1) The category Kan itself has a canonical enrichment such that

MapKan(K,S)n = HomKan(K ×∆n, S) .

(2) The category Top of topological spaces has a canonical enrichment in Kan
complexes

MapTop(X,Y )n = HomTop(X × |∆n|, Y ) .

(3) The category Emb of smooth manifolds and embeddings has a canonical
enrichment such that the n-simplices in MapEmb(M,N) are the smooth
maps F : M × |∆n| → N such that F |M×{t} is an embedding for every
t ∈ |∆n|. In particular, homotopies between maps are isotopies.

Recall that if I is a category, an I-shaped diagram in some category C is just
a functor F : I → C. Concretely this is the datum of an object Fi ∈ ob C for
every i ∈ ob I and an arrow Ff : Fi → Fj for every arrow i → j in I such that
F (idi) = idFi and F (gf) = F (g) ◦ F (f) for every pair of composable arrows f, g.
Now if we move to the context of categories enriched in Kan complexes

In order to motivate the definion of coherently commutative diagrams in C we
will first see a few examples:

Example 1.27. We want to say what it means to give a homotopy commutative
diagram of the form

x0 x1

x2
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in C. This should be the datum of x0, x1, x2 objects in C, arrows f01 ∈ MapC(x0, x1)0,
f12 ∈ MapC(x1, x2) and f02 ∈ MapC(x0, x2) such that f02 is homotopic to f12◦f01.
The big difference with a coherently commutative diagram (or coherent diagram
for short) is that in a coherent diagram we remember the homotopy. That is, we
add the additional datum of f012 ∈ MapC(x0, x2)1 such that ∂1f012 = f02 and
∂0f012 = f12 ◦ f01.

Example 1.28. Let’s try to see a bigger example: suppose we want to describe
triples of composable arrows. Then such a diagram should consist in

• Four objects x0, x1, x2, x3 in C;
• Six arrows f01, f02, f03, f12, f13, f23 where fij ∈ MapC(xi, xj);
• Four homotopies f012 ∈ MapC(x0, x2)1, f123 ∈ MapC(x1, x3)1 and f013, f023 ∈

MapC(x0, x3)1 such that ∂1fijk = fik and ∂0fijk = fjk ◦ fij
• A higher homotopy f0123 : ∆1 × ∆1 → MapC(x0, x3) representing the

following diagram

f03 f13 ◦ f01

f23 ◦ f02 f23 ◦ f12 ◦ f01

f013

f023 f123◦f01

f23◦f012

Recall that the nerve of a category I is the simplicial set N(I) such that

N(I)n = ob Fun([n], I) .

We will define a coherent diagram in C of shape I as a map of simplicial sets
N(I)→ N∆(C) for some suitably defined simplicial set N∆(C).

Definition 1.29. Let n ≥ 0. Then we define C[∆n] to be the category enriched
in simplicial sets whose objects are the numbers 0, . . . , n and such that

MapC[∆n](i, j) =

{
{A ⊆ {i, i+ 1, . . . , j − 1, j} | i, j ∈ A} if i ≤ j
∅ otherwise

.

The composition is given by
One should think of MapC(i, j) as the poset of monotone paths from i to j

ordered by refinement.

The following definition is due to Cordier and Porter [CP86].

Definition 1.30. Let C be a category enriched in simplicial sets. Then N∆C
is the simplicial set whose n-simplices are enriched functors

C[∆n]→ C .

So 0-simplices of N∆C are just objects of C, 1-simplices of N∆C are arrows in C,
2-simplices of N∆C are diagrams as in example 1.27, etc..

Concretely an n-simplex of N∆C can be thought of n + 1 objects c0, . . . , cn,
for every i < j an arrow fij : ci → cj, for every triple i < j < k a homotopy
fik ∼ fjk ◦ fij, etc..

Example 1.31. If C is an ordinary category seen as a category enriched in
discrete simplicial sets, then N∆C ∼= NC. So the two notions of nerve we have
coincide in this case.

Definition 1.32. Let I be a category and C be a category enriched in Kan
complexes. Then a coherent diagram of shape I in C is a map of simplicial sets
NI → N∆C.
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Exercise 9. Let P be a poset and C a category enriched in Kan complexes.
Then a coherent diagram of shape P in C is the same as an enriched functor

C[P ]→ C

where C[P ] is the category enriched in simplicial sets with objects the objects of P
and such that MapC[P ](p, p

′) is the nerve of the poset of chains {p = p0 < p1 <

· · · < pr = p′} in P .

Example 1.33. Let I = [1] × [1] be the square diagram. Then an I-shaped
coherent diagram in C is the datum of

• Four objects x, y, z and t in C;
• Five arrows f : x→ y, g : x→ z, f ′ : z → t, g′ : y → t, r : x→ t;
• Two homotopies H : r ∼ f ′g, K : r ∼ g′f .

We will often draw it as the following

x y

z t

f

g
r

g′

f ′

When C is enriched in Kan complexes we can use the composition of paths to get
a homotopy H ′ = K ◦ H−1, so we disregard part of the data and just write the
diagram as

x y

z t

f

g g′
H′

f ′

As in the case of Sing Y for a topological space Y , the simplicial set N∆C has
a special property that makes it easy to work with.

Definition 1.34. A simplicial set C is an ∞-category (also called quasi-
category or weak Kan complex) if for every n ≥ 0 and 0 < i < n every map
f0 : Λni → C can be extended to f : ∆n → C.

A map of simplicial sets between ∞-categories will be called a functor.

Example 1.35. Let us see what the condition says for n = 1. Then a map
f : Λ2

1 → C is just a pair of composable 1-simplices f01 and f12, and finding an
extension to ∆2 is just telling us that we can find a composition f02.

Exercise 10. The simplicial set N∆C is an ∞-category. In particular for
every category C the nerve NC is an ∞-category.

Example 1.36. Every Kan complex is an ∞-category.

Example 1.37. Let i : ∆→ ∆ the functor sending a totally ordered set (T,≤)
to the same set with the opposite order (T,≤op) (that is t ≤op t′ if and only if
t′ ≤ t). Then if C : ∆op → Set is an ∞-category, the composition

Cop : ∆op iop

−−→ ∆op C−→ Set

is an ∞-category, called the opposite ∞-category.
Note that if C is a category, N(C)op ∼= N(Cop).

Lemma 1.38. Let C be an ∞-category. Then the relation of being homotopic
relative to the boundary is an equivalence relation on 1-simplices and it respects the
composition.
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Example 1.39. Let C be a Kan-enriched category. Then two 1-simplices f, g ∈
N∆C([1]) with the same boundary {x, y} are the same thing as two maps f, g ∈
MapC(x, y), and they are homotopic if and only if there’s a path between f and g in
MapC(x, y). Therefore the two notions of homotopy of morphisms in C coincide.

Definition 1.40. Let C be an ∞-category. Then the homotopy category hC
of C is the category whose objects are the objects of C and whose morphisms are
homotopy classes of maps in C

HomhC(x, y) := {f ∈ C[1] | ∂1f = x, ∂0f = y}/ ∼ .

Example 1.41. If C is a Kan-enriched category, the homotopy category of the
coherent nerve hN∆C is the category whose objects are the objects of C and whose
morphisms are the paths components in MapC:

HomhN∆C(x, y) = π0 MapC(x, y) .

This will often be written hC for brevity.

Remark 1.42. There’s a functor C → N(hC) sending an n-simplex σ ∈ C([n])
to the sequence of composable arrows ([σ|01], · · · , [σ|n−1,n]) in N(hC)([n]). There-
fore every coherent diagram in C produces a diagram in hC.

Definition 1.43. Let C be an ∞-category and f : x → y be an arrow in C.
Then f is an equivalence if it is an isomorphism in hC. Equivalently, if there exists
another arrow g : y → x in C such that gf and fg are homotopic to the identity.

Lemma 1.44. An ∞-category is a Kan complex if and only if all its arrows are
equivalences. Therefore Kan complexes are also sometimes called ∞-groupoids.

Proposition 1.45. Let C be an ∞-category and ιC be the simplicial subset
consisting of all n-simplices whose 1-dimensional faces are equivalences. Then ιC
is a Kan complex (in fact the biggest simplicial subset of C that is a Kan complex).

The following lemma is proven in a similar way to lemma 1.19.

Lemma 1.46. Let C be a simplicial set. Then the following are equivalent:

(1) C is an ∞-category;
(2) For any n ≥ 0 and any diagram

∂∆n Hom(∆2, C)

∆n Hom(Λ2
1, C)

there exists a lift.
(3) For inclusion of simplicial sets A ⊆ B and any diagram

A Hom(Λ1
2, C)

B Hom(∆2, C)

there exists a lift.

The intuition behind this result is that Hom(Λ2
1, C) is the simplicial set parametriz-

ing composable pairs of arrows in C and Hom(∆2, C) parametrizes composable pairs
of arrows together with a choice of composition. So this is saying that C is an
∞-category exactly when the composition of two arrows is well-defined up to a
contractible space of choices.
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Corollary 1.47. If S is a simplicial set and C is an∞-category, then Hom(S, C)
is an ∞-category, which will be denoted Fun(S, C).

Proof. We will show that Hom(S, C) satisfies the condition (3) in lemma 1.46.
Let us pick a diagram

A Hom(Λ1
2,Hom(S, C))

B Hom(∆2,Hom(S, C))

.

Then finding a lift filling the diagram is equivalent, by the adjunction properties of
Hom(S,−), to finding a lift in the diagram

A× S Hom(Λ1
2, C)

B × S Hom(∆2, C)

.

Then we can apply lemma 1.46 to C and deduce that the required lift exists. �

Let C be an∞-category and x, y ∈ ob C objects of C. Then we want to associate
a Kan complex MapC(x, y) whose points are maps x→ y. There are many possible
equivalent definitions for this object, we will present here one that is particular
convenient for the definition of composition.

Definition 1.48. Let C be an ∞-category and x, y ∈ ob C. Then the mapping
space is the simplicial set

MapC(x, y) := Fun(∆1, C)×C×C {(x, y)}

where the map Fun(∆1, C) → C × C comes from precomposition along the map
∂∆1 → ∆1.

There is a distinguished point idx ∈ MapC(x, x) corresponding to the degenerate
1-simplex sx at x.

Example 1.49. If C = Sing Y is the singular complex of a space, then MapC(x, y)
is the singular complex of the space of paths in Y from x to y.

Lemma 1.50. The simplicial set MapC(x, y) is a Kan complex.

Proof. By using the criterion of lemma 1.19 we need to construct a lift in
every diagram of the form

A MapC(x, y)∆1

B MapC(x, y)

.

Unwrapping everything and plugging in the definition of MapC(x, y), this is equiv-
alent to constructing a dashed arrow in the following diagram

A×∆1 ×∆1 ∪B × {0} ×∆1 ∪B ×∆1 × ∂∆1 C

B ×∆1 ×∆1

,
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where the map B ×∆1 × ∂∆1 is given by the constant maps B ×∆1 → C at x and
y respectively. Using the adjunction again this is equivalent to constructing a lift
in

A Fun(∆1 ×∆1, C)

B Fun({0} ×∆1 ∪∆1 × ∂∆1, C)
Using the pushout square in sSet

Λ2
1 {0} ×∆1 ∪∆1 × ∂∆1

∆2 ???

and lemma 1.46 we can reduce to construct a lift

A Fun(∆2/∆1, C)

B Fun(∆1, C)

INCOMPLETE! �

Exercise 11. Two points f, g ∈ MapC(x, y) are in the same path component
if and only if they are homotopic relative to the boundary as 1-simplices of C.

Proposition 1.51. Let C be a Kan-enriched category and x, y ∈ ob C. Then
there is a natural equivalence

MapC(x, y) ∼= MapN∆(C)(x, y)

Proof. MISSING! PROBABLY JUST GIVE A REFERENCE, SINCE THIS
IS TRICKY. �

Construction 1.52. Now we want to construct a composition map

MapC(x, y)×MapC(y, z)→ MapC(x, z) .

Unfortunately there won’t exist a canonical such map: the construction of the com-
position involves choices but we can show that the space of such choices is con-
tractible (in particular any two of them are homotopic). Let us contemplate the
diagram

∅ Fun(∆2, C)×C×C×C {(x, y, z)} Fun(∆2, C)

MapC(x, y)×MapC(y, z) Fun(Λ2
1, C)×C×C×C {(x, y, z)} Fun(Λ2

1, C)
∼

Then by the lemma 1.46 we can find a map

MapC(x, y)×MapC(y, z)→ Fun(∆2, C)
making the diagram commute, and then the commutativity of the diagram shows
that there is a map

MapC(x, y)×MapC(y, z)→ Fun(∆2, C)×C×C×C {(x, y, z)} ,
and finally precomposing with the face ∂1 : ∆1 → ∆2 we obtain a map

MapC(x, y)×MapC(y, z)→ Fun(∆2, C)×C×C×C{(x, y, z)} → Fun(∆1, C)×C×C{(x, z)} = MapC(x, z)

Exercise 12. Use lemma 1.46 to show that the simplicial set of lifts in the
previous construction is a contractible Kan complex.
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Exercise 13. Show that for x, y ∈ ob C one can choose the section so that the
composition map

MapC(x, x)×MapC(x, y)→ MapC(x, y)

sends the pair (idx, f) to f for every f ∈ MapC(x, y).

Exercise 14. Show that for any choice of composition map and three arrows
f ∈ MapC(x, y), g ∈ MapC(y, z) and h ∈ MapC(x, z), there is a homotopy h ∼ g ◦ f
if and only if there exists a 2-simplex σ : ∆2 → C such that ∂0σ = g, ∂1σ = h and
∂2σ = f .

Definition 1.53. Let C be an ∞-category. Its homotopy category hC is
the ordinary category with set of objects the set of 0-simplices ob C of C and with
morphisms the homotopy classes of morphisms in C, that is

HomhC(x, y) := π0 MapC(x, y) .

Composition is defined by the map induced on π0 by the map of construction 1.52.

Example 1.54. If C = Sing Y for a topological space Y , then hC is the funda-
mental groupoid of Y . More generally we will call hX the fundamental groupoid of
X for X a Kan complex.

Example 1.55. Let S := N∆(Kan) be the coherent nerve of the Kan-enriched
category of Kan complexes. We will refer to S as the ∞-category of spaces.
Then hS is equivalent to the category of CW-complexes and homotopy classes of
maps. Similarly we can define the ∞-category of pointed spaces S∗.

Definition 1.56. Let C be an ∞-category and f : x → y be an arrow in C.
Then we say that f is an equivalence when its class in hC is an isomorphism.
Equivalently, f is an equivalence when there exists an arrow g : y → x such that
fg ∼ idy and gf ∼ idx.

Proposition 1.57. Let C be an ∞-category and f : ∆1 → C be an arrow in C.
Then the following are equivalent:

• f is an equivalence;
• f can be extended to a map N(∆̄1) → C where ∆̄1 is the groupoid with

two objects and four arrows;
• For every map σ0 : Λn0 → C with σ0|∆0,1 = f , there exists an extension
σ : ∆n → C.

Proof. MISSING! �

Corollary 1.58. Let C be an ∞-category. Then C is a Kan complex if and
only if hC is a groupoid, that is if all arrows in C are equivalences.

Due to the previous corollary the Kan complexes are also sometimes called
∞-groupoids.

Construction 1.59. If C is an ∞-category we can construction its interior
as the subsimplicial set ιC ⊆ C given by all n-simplices σ : ∆n → C such that every
1-face of σ is an equivalence. This is the biggest Kan complex contained in C (i.e.
every other simplicial subset of C is a Kan complex, then it is contained in ιC.

Definition 1.60. Let C be an ∞-category and F,G : S → C be two functors
from a simplicial set S. Then a natural transformation F ⇒ G is just an arrow in
the ∞-category Fun(S, C) of corollary 1.47.
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Exercise 15. Show that if C,D are categories there’s a natural isomorphism
of simplicial sets

N Fun(C,D) ∼= Fun(NC, ND)

where Fun(C,D) is the category of functors and natural transformations. In partic-
ular the notion of natural transformation we have given here recovers the classical
one.

Definition 1.61. Let qCat be the simplicial category whose objects are the
∞-categories and such that the mapping spaces are

MapqCat(C,D) = ιFun(C,D) ,

i.e. we take natural equivalences as our homotopies. Then its coherent nerve is the
∞-category of ∞-categories Cat∞ := N∆(qCat).

Remark 1.62. Unwrapping the previous definition, a functor F : C → D be-
tween ∞-categories is an equivalence if and only if there is a functor G : D → C
such that FG is naturally equivalent to idD and GF is naturally equivalent to idC.
One can show that this is equivalent to hF : hC → hD being essentially surjective
and F inducing homotopy equivalences on mapping spaces�.

Denis: elaborate?

Remark 1.63. One could consider also a variant of qCat where we take the
full functor category, without restricting to the interior. Then its coherent nerve
would not be an∞-category anymore but rather the (∞, 2)-category of∞-categories.
For more details on these ideas see XXX.

Definition 1.64. Let C be an∞-category and x ∈ ob C be an object of C. Then
we say that

• x is initial if for every y ∈ ob C the Kan complex MapC(x, y) is con-
tractible;

• x is terminal if for every y ∈ ob C the Kan complex MapC(y, x) is con-
tractible.

Example 1.65. Let C be a category. Then an object of C is initial (resp.
terminal) in the ∞-category NC if and only if it is initial (resp. terminal) in C.

Example 1.66. Let X be a Kan complex. Then X has an initial (resp. termi-
nal) object if and only if it is contractible.

Definition 1.67. Let S be a simplicial set. Then its right cone S. is the
simplicial set

[n] 7→ {(f, σ) | f : ∆n → ∆1, σ : f−1(0)→ S}

Exercise 16. If C is an ∞-category, then the objects of C. are the set ob C ∪
{∞} obtained by adding an object ∞ to the set of objects of C. The mapping spaces
can be computed as

MapC.(x, y) =


MapC(x, y) if x, y ∈ ob C;
∆0 if y =∞
∅ if x =∞, y 6=∞

.

Example 1.68. If S = Λ2
0 (i.e. the nerve of the poset {b < a > c}), then

S. ∼= ∆1 ×∆1. More generally if S is the nerve of a poset, then S. is the nerve of
the poset obtained by adding an element ∞ which is bigger than all the others.

Definition 1.69. Let C be an ∞-category and p : S → C be a diagram. A
colimit of p is a diagram p̄ : S. → C such that p̄|S = p and it is an initial object
of the ∞-category

Fun(S., C)×Fun(S,C) {p} .



20 1. PRELIMINARIES

That is it is such that for every diagram q̄ : S. → C such that q̄|S = p, then the space
of natural transformations p̄⇒ q̄ that restrict to the identity on S is contractible.

Example 1.70. If C is the nerve of a category, this notion of colimit coincides
with the notion of colimit in ordinary category theory.

Example 1.71. If S = Λ2
0, this notion of colimit in S coincides with the notion

of homotopy colimit discussed in algebraic topology II�.
Denis: Insert details!

Remark 1.72. By considering the left cone S/ instead there is a dual notion
of limit in ∞-categories.

Definition 1.73. Let C an ∞-category. Then a zero object 0 ∈ ob C is an
object that is both initial and terminal. If C has a zero object we say that C is
pointed.

Definition 1.74. Let C be a pointed ∞-category. Then the suspension Σx of
an object x ∈ ob C is the pushout of the diagram

x 0

0 Σx

.

Dually the loopspace Ωx is the pullback of the diagram

Ωx 0

0 x

Example 1.75. Let X : N∆op → C be a functor into an ∞-category C. Then
we call the colimit of X (if it exists) the geometric realization of X. This
terminology is due to the following example: suppose we have a functor

Y : ∆op → Top

into the category of topological spaces such that for every face map ∂i : [n−1]→ [n]
the induced map Y (∂i) is a closed cofibration. Then we can construct the composi-
tion

X : N∆op NY−−→ N∆Top
N∆ Sing−−−−−→ Kan ∼= S .

The colimit of X is represented by the following topological space∐
n≥0

(Y ([n])× |∆n|)/{(f∗x, t) ∼ (x, f∗t) | f : [n]→ [m], x ∈ X([m]), t ∈ |∆n|}

Compare with example 1.6.

Example 1.76. Suppose C is a Kan-enriched category with all coproducts.
Then N∆(C) has all coproducts and they are given by the coproducts in C. This
example works also if we restrict to a smaller set of coproducts.

Example 1.77. Suppose C is a Kan enriched category that is tensored over
simplicial sets. That is for every simplicial set S and object x ∈ ob C there is an
object S ⊗ x such that there exists a natural equivalence

MapC(S ⊗ x, y) ∼= Map(S,MapC(x, y)) .

For example Top is such a Kan enriched category, with the tensoring S⊗x ∼= |S|×x.
Suppose moreover that C has pushouts. Then for every pushout diagram

A B

C
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in N∆C, the (homotopy) pushout exists and it is given by

B qhA C ∼= B qA (∆1 ⊗A)qA C .

Theorem 1.78 (Bousfield-Kan formula). Let C be an ∞-category admitting
coproducts and geometric realizations and let X : S → C be a diagram where S is a
simplicial set. Then colimS X exists and it is given by the geometric realization of
the simplicial object in C

[n] 7→
∐

σ∈S([n])

X(σ(0)) .

Proof. This is [Sha18, Corollary 12.3].� �
Denis: Worth adding
the proof in an appen-
dix? It’s not long but
it requires saying what
a Kan extension is

Remark 1.79. One can show that an∞-category has all (finite) colimits if and
only if it has all pushouts and all (finite) coproducts. Therefore by example 1.76 and
example 1.77 one can show that the ∞-categories S and Cat∞ have all colimits
(and, by a dual argument, all limits).

Definition 1.80. Let C,D be two ∞-categories. An adjunction between C and
D is a pair of functors F : C → D and G : D → C plus a natural equivalence

MapD(Fx, y) ∼= MapC(x,Gy)

of functors Cop ×D → S .

Remark 1.81. As in classical category theory, giving an adjunction is the same
as giving two natural transformations

η : 1C → GF ε : FG→ 1D

together with two homotopies implementing the triangular identities:

εF ◦ Fη ∼= 1F ηG ◦ εG ∼= 1G

(note that now however the triangular identities are additional data). This can be
proven using the ∞-categorical Yoneda lemma.

Discuss colimits in functor categories (w/out proof)

Definition 1.82. A simplicial set S is filtered if for any finite simplicial set
K and every map f : K → S there is an extension f̄ : K. → S.

Example 1.83. If S = NP for P a poset, S is filtered if and only if for every
p, p′ ∈ P there exists q ∈ P such that q ≥ p and q ≥ p′.

Example 1.84. If S = NC for C a category, S is filtered if and only if the
following two conditions are satisfied:

• For every x, x′ ∈ ob C there exists y ∈ C and maps f : y → x and f ′ : y →
x′;

• For every two maps f, f ′ : x→ x′ in C there exists a map g : z → x such
that fg = f ′g.

Exercise 17. Let S be a filtered simplicial set. Then the space Sing |S| is
contractible.

Proposition 1.85. In the ∞-category S filtered colimits commute with pull-
backs. That is, for S a filtered simplicial set the subcategory of colimit diagrams in
Fun(S.,S ) is closed under pullbacks.

Proof. This follows from [Lur09, Proposition 5.3.3.3].� �
Denis: Can we per-
haps find a direct ar-
gument deducing it
from some other prop-
erty of S (perhaps
Whitehead)? Ulti-
mately this should fol-
low from the compact
generation of S

Proposition 1.86. The forgetful functor U : S∗ → S commutes with filtered
colimits.
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Proof. MISSING! In the end this comes from the fact that U is a right adjoint
and that filtered colimits of contractible diagrams at the point are contractible. �

Corollary 1.87. The functor π0 : S → Set commutes with all colimits, and
the functor πn : S∗ → Set commutes with filtered colimits.

Proof. The functor π0 commutes with filtered colimits because it is the left
adjoint of the fully faithful inclusion Set ⊆ S . Then the functor πn can be written
as the composition

S∗
Ωn−−→ S∗

U−→ S
π0−→ Set

where Ω : S∗ → S∗ commutes with filtered colimits by proposition 1.85. �

ADD THAT SEQUENTIAL COLIMITS ARE COMPUTED AS A PUSHOUT
OF COPRODUCTS

A1. Simplicial approximation (INCOMPLETE!)

Let P be a poset. Its barycentric subdivision sdP is the poset of non-empty
totally ordered subsets of P . The last vertex map is the map of posets sdP → P
sending a subset to its maximum.

If S ⊆ N(P ) is a simplicial subset, we let sdS ⊆ sdP to be the subposet of
those simplices that are contained in S

Lemma 1.88. There’s a natural homeomorphism

|P | ∼= | sdP |
sending a vertex of | sdP | corresponding to a subset A ⊆ P to the baricenter of
|∆#A| → |P |.

Lemma 1.89. Let X be a Kan complex and f : N(sdP ) → X be a map of
simplicial sets. Then f is homotopic to a map factoring through the last vertex
map. Moreover if S ⊆ N(P ) is such that f |N(sdS) factors through the last vertex
map, we can choose the homotopy so that it is relative to N(sdS).

Proof. Let us consider the poset s̃d(P ) whose elements are either pairs (A, 0)
with A a finite totally ordered subset of P , or (p, 1) where p ∈ P . We equip it with
the ordering

(A, 0) ≤ (B, 0)⇔ A ⊆ B (p, 1) ≤ (q, 1)⇔ p ≤ q (A, 0) ≤ (p, 1)⇔ maxA ≤ p

Then it is clear that there is a map N(sd(P ))×∆1 → N(s̃d(P )) which is the identity
onN(sd(P ))×{0} and the last vertex map onN(sd(P ))×{1}. Let f : N(sdP )→ X
be a map such that f |N(sdS) factors through the last vertex map. Then we can
build a map

N(sdP ) ∪N(s̃dS)→ X

and our goal is to extend it to N(s̃dP ). �

Proposition 1.90.

Theorem 1.91 (Simplicial approximation). Let X be a simplicial set, A ⊆ X be
a simplicial subset, and K be a Kan complex. If g0 : A→ K is a map of simplicial
sets and f : |X| → |K| be a map of topological spaces such that g||A| = |g0|, then
there exists g : X → K map of simplicial sets such that g|A = g0 and a homotopy
H : |g| ∼ f relative to |A|.

Proof. �

UNFINISHED
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A2. Existence results for homotopy colimits

Lemma 1.92. Let S, T be two simplicial sets and C be an ∞-category. Let
F : S×T → C be a diagram such that for every s ∈ S the colimit of F |{s}×T exists.
Then there exists a diagram colimT F : S → C sending s ∈ S to colim{s}×T F and

colim
S×T

F ∼= colim
S

colim
T

F

in the sense that either side exists if the other does and they coincide.

Lemma 1.93. Let S, T,R be simplicial sets with maps R → S and R → T .
Then there is a natural isomorphism of simplicial sets

(S qT R). ∼= S. qT. R. .
Lemma 1.94. An object is initial (terminal) in C ×C′ C′′ if and only if ...

Proposition 1.95. Let S, T,R be simplicial sets and F : S qR T → C be
a diagram. Suppose colimS F , colimT F and colimR F exist and that C has all
pushouts. Then colimSqRT F exists and the following square

colimR F colimS F

colimT F colimSqRT F

is a pushout square.

Theorem 1.96. Let C be an∞-category with all coproducts and pushouts. Then
C has all colimits.

Proof. Let S be a simplicial set and F : S → C be a diagram. For every
n ≥ 0, let S(n) ⊆ S be the n-skeleton of S: it is the simplicial subset of S generated
by all non-degenerated n-simplices. We say that S is n-dimensional if S = S(n).
We will show by induction that C has colimits for all n-dimensional diagrams for
every n. The base case n = 0 follows from the coproduct. Suppose that C has
all colimits for all n-dimensional diagrams, let us show that it has colimits for all
(n+ 1)-dimensional diagrams

Then there’s a pushout diagram in simplicial sets

S([n+ 1])×∆n+1 S(n)

S([n+ 1])×∆n S(n+1)

so by proposition 1.95 it suffices to show that it has colimits for all the other vertices
of the square. But the top right and top left vertices are n-dimensional, so we can
apply the induction hypothesis. �

Exercise 18. Let X be a normal space, and U, V ⊆ X open subsets such that
U ∪ V = X. Then the square

U ∩ V U

V X

is a homotopy pushout square. (Hint: use Urysohn lemma to construct a section
s of the projection p : U ∪(U∩V )×{0} (U ∩ V ) × [0, 1] ∪(U∩V )×{1} V → X and do a
straight-line homotopy to show that sp ∼ id.

UNFINISHED





CHAPTER 2

The ∞-category of spectra

This chapter is mostly based on chapter 1 of [Lur17]. Another classical refer-
ence for these ideas is Adams’ blue book [Ada74].

1. Cohomology theories and Brown representability

Let S∗ be the∞-category of spaces. Our goal is to describe axiomatically what
a cohomology theory is

Definition 2.1. 1 A cohomology theory is a pair (E∗, ∂) where

E∗ : hS∗
op → grAb

is a functor from the homotopy category of pointed spaces to graded abelian groups
and

∂ : E∗ ∼= E∗+1 ◦ Σ

is a natural isomorphism, satisfying the following conditions

(1) For every small collection of spaces {Xα}α∈A the natural map

E∗

(∐
α∈A

Xα

)
→
∏
α∈A

E∗(Xα)

is an isomorphism. In particular E∗(∗) ∼= 0.
(2) For any cofiber sequence

X ′ → X → X ′′

the sequence
E∗(X ′′)→ E∗(X)→ E∗(X ′)

is exact.

Example 2.2. The functor sending a pointed space X to its reduced ordinary
cohomology H̃∗(X) is a cohomology theory.

In this class we will see many more examples of cohomology theories. To name
a few, topological K-theory, cobordism etc.

Remark 2.3. If E∗ is a cohomology theory and

X ′ → X → X ′′

is a cofiber sequence, we know that

En(X ′′)→ En(X)→ En(X ′)

is exact in the middle. But we can “shift” the cofiber sequence to

X → X ′′ → ΣX ′

and so we get that the sequence

En(ΣX ′)→ En(X ′′)→ En(X)

1see Eilenberg-Steenrod, [Lur17, Definition 1.4.1.6]

25



26 2. THE ∞-CATEGORY OF SPECTRA

is exact in the middle. Using ∂ : En(ΣX ′) ∼= En+1(X ′) we obtain an exact sequence

En+1(X ′)→ En(X ′′)→ En(X)→ En(X ′)

and inducting and letting n vary we recover a long exact sequence

· · · → En+1(X)→ En+1(X ′)→ En(X ′′)→ En(X)→ En(X ′)→ En−1(X ′′)→ · · · .

Remark 2.4. From a cohomology theory in the sense above we can recover a
cohomology theory on pairs by setting

E∗(X,A) := E∗(X/A) ,

where X/A is pointed by A/A. Recall that X/∅ = X+. So the previous construction
applied to the cofiber sequence of pointed spaces

A+ → X+ → X/A

recovers the long exact sequence of a pair.

Our goal in this section is to classify all possible cohomology theories. In order
to do so we will use the Brown representability theorem. Recall that a functor is
called representable

Theorem 2.5 (Brown representability theorem). Let hS∗
≥0 be the homotopy

category of connected pointed spaces. Then a functor F : (hS∗
≥0)op → Set is

representable if and only if it has the following two properties:

(1) For every collection {Xα}α∈A of connected pointed spaces the map

F

(∨
α∈A

Xα

)
→
∏
α∈A

F (Xα)

is a bijection.
(2) For every pushout square

X Y

X ′ Y ′

in S∗
≥0, the map

F (Y ′)→ F (X ′)×F (X) F (Y )

is surjective.

Proof. One direction is clear, by the universal property of the wedge and of
the pushout. We will then prove the other.

We will first prove the following property of the functor F :
Claim: For every X connected pointed space and ξ ∈ F (X) there exists and

arrow fX : X → ZX and a class ξ̃ ∈ F (ZX) such that f∗X ξ̃ = ξ and for every m ≥ 1

[Sm, ZX ]∗ → F (Sm)

sending f to f∗ξX is a bijection.
First let us define

Z0 = X ∨
∨

m≥0, γ∈F (Sm)

Sm

by condition 1 we can pick the element

ξ0 := (ξ, γ) ∈ F (X)×
∏

m≥0, γ∈F (Sm)

F (Sm) ∼= F (Z0)
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and the map f0 : X → Z0 including the summand has the property that f∗0 ξ0 = ξ
by construction.

By Yoneda this induces a map

[−, Z0]∗ → F (−)

sending f to f∗ξ0 which is surjective on every sphere and sends f0 to ξ. Our goal
is to fix it so that it is bijective on every sphere. We will do so by constructing a
sequence of spaces

Z0
r0−→ Z1

r1−→ Z2
r2−→ · · ·

and classes ηn ∈ F (Zn) such that r∗i ηi+1 = ηi. We will do this by induction on
n. Suppose Zn has been constructed and let Kn be the functor sending X to the
kernel of

[X,Zn]∗ → F (X) .

Then we let Zn+1 be the pushout∨
m≥0,γ∈Kn(Sm)

Sm ∗

Zn Zn+1

Note that pulling back along the left vertical arrow sends ξn to 0 by definition and
so by condition (ii) we can find a lift ξn+1 ∈ F (Zn+1). Let ZX be the colimit of
Zn. Since we can write it as a pushout∨

n Zn
∨
n Z2n

∨
n Z2n+1 ZX

by condition (ii) we can lift {ξn} to a class ξ̃ ∈ F (Z). This induces a natural
transformation

[−, ZX ]∗ → F (−)

that sends the composition X → Z0 → ZX to ξ. We want to show that it is
bijective on every sphere. It is clearly surjective, since the composition

[Sm, Z0]∗ → [Sm, Z]∗ → F (Sm)

is surjective by construction. Now let ψ ∈ [Sm, Z]∗ = πmZ in the kernel. Since
homotopy groups commute with filtered colimits (REF!) we have that ψ lifts to
some πmZn for finite n. But then ψ ∈ Kn(Sm) and so it is sent to 0 to πmZn+1.
Therefore ψ = 0 in πmZX . Thus we have proven the claim.

Let now Z := Z∗ (where ξ = 0 ∈ F (∗) = 0) and let us denote with η the
corresponding class. We want to show that the map

[X,Z]→ F (X)

sending f : X → Z to f∗η is bijective. We know this is the case for X = Sm

by the claim. Let us show that it is surjective for every X. Let ξ ∈ F (X) we
need to show that it is pulled back from Z. We can consider the class (ξ, η) ∈
F (X)× F (Z) = F (X qZ) and apply the claim to this class. Then we find Z̃ with
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a map X qZ → Z̃ and a lift ξ̃ of (ξ, η). But notice that the map Z → Z̃ induces a
commutative diagram

[Sm, Z]∗ ∼= πmZ [Sm, Z̃]∗ ∼= πmZ̃

F (Sm)

where the vertical arrows are bijections. Therefore the map Z → Z̃ is an equivalence
and the composite X → Z̃

∼←− Z pulls back η to ξ.
Let us now show injectivity. Let f, g : X → Z such that ξ := f∗η = g∗η. We

can then form the pushout diagram

X qX Z

X Y

(f,g)

and by condition (ii) we can find ψ ∈ F (Y ) such lifting η and ξ. Let us apply the

claim to (Y, ψ). Then we can find (Z̃, ψ̃) with a map Y → Z̃ lifting ψ such that

πmY → F (Sm)

is a bijection. But proceeding as before we see that the map Z → Z̃ is an equivalence
and therefore f and g are homotopic (since X q X → Z factors through the fold
map). �

Corollary 2.6. Let E∗ : S∗
op → grAb be a cohomology theory. Then there

exist a (unique) collection of pointed spaces En ∈ S∗ and homotopy equivalences

δn : En
∼−→ ΩEn+1

such that there are natural isomorphisms

ϕn : En(X) ∼= [X,En]∗

such that the isomorphisms ∂ : En(X) ∼= En+1(X) are given by

En(X) ∼= [X,En]∗ ∼= [X,ΩEn+1]∗ ∼= [ΣX,En+1]∗ ∼= En+1(ΣX) .

Proof. First we need to show that the functor X 7→ En(X) satisfies the
hypotheses of the Brown representability theorem. The first hypothesis is obvious,
so we need to show the second. Let

X Y

X ′ Y ′

f

f ′

be a pushout square. Then the vertical map induces an equivalence of cofibers
Y/X

∼−→ Y ′/X ′ and we can write a diagram of long exact squences

En(Y ′/X ′) En(Y ′) En(X ′) En−1(Y ′/X ′)

En(Y/X) En(Y ) En(X) En−1(Y/X)

o o

Let us take α ∈ En(X ′) and β ∈ En(Y ) such that (g′)∗α = f∗β. Our goal is to
find a class γ ∈ En(Y ′) such that (f ′)∗γ = α and g∗γ = β. Now first notice that
∂β = 0 (since it becomes ∂(g′)∗α = 0 downstairs), so we can find γ0 ∈ En(Y ′) such
that (f ′)∗γ0 = β. Now if we let ε = α = (f ′)∗γ0 we have that ∂ε = 0, therefore we
can lift it to ε̃ ∈ En(Y/X) ∼= En(Y ′/X ′). But then it suffices to let γ = γ0 + (p′)∗ε̃.
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So there exist connected pointed spaces Z̃n and natural equivalences

En(X) ∼= [X, Z̃n]∗

for all connected pointed spaces X. But notice that for every pointed space X, the
space ΣX is connected, so we have

En(X) ∼= En+1(ΣX) ∼= [ΣX, Z̃n+1]∗ ∼= [X,ΩZ̃n+1]∗ .

Therefore, letting Zn := ΩZ̃n+1 we have that En is represented by Zn on all pointed
spaces.

Finally the existence and uniqueness of δn follows from the Yoneda lemma
applied to the isomorphisms ∂. �

The corollary allows us to give the most important definition of this course.

Definition 2.7. A spectrum E is a pair ({En}n∈Z, δn) where {En}n∈Z is a

collection of pointed spaces and δn : En
∼−→ ΩEn+1 is a family of equivalence of

each space with the loopspace of the following one.
More precisely, we can define the ∞-category of spectra as

Sp ∼= lim
(
S∗

Ω←− S∗
Ω←− S∗

Ω←− · · ·
)

Warning: while every cohomology theory is represented by a spectrum (and in
fact every map of cohomology theories is represented by a map of spectra – exer-
cise?) there are differnet maps of spectra that induce the same map on cohomology
theories. These are the famous phantom maps. It’d be cool to add an example.

Warning: let E, F be two spectra. Then we can describe the mapping space as

MapSp(E,F ) ∼= lim
n

MapS∗(En, Fn) .

That is a map of spectra is the datum of a family of maps of pointed sets fn : En →
Fn and homotopies Hn : fn ∼ Ωfn+1. On the other hand, Yoneda tells us that a
map of cohomology theories E∗ → F ∗ is given by a collection of homotopy classes
[fn] ∈ [En, Fn]∗ such that [fn] = [Ωfn+1].

Therefore every map of cohomology theories induces a map of spectra, but
this is not injective: different choices of homotopies might induce different maps
of spectra. We will see later an example where this happens: a non-zero map of
spectra inducing the zero map on cohomology theories.

Remark 2.8. So far we have only talked about the relationship between spectra
and cohomology theories. There is a similar story about homology theories on
which we will return after we have discussed the symmetric monoidal structure on
spectra. For now let us limit to note that if E is a spectrum we can define the
E-homology groups of a pointed space X as follows

En(X) := colim
k→∞

πn+k(Ek ∧X) .

2. Examples of spectra

The spectrum 0 such that 0n := ∗ with the obvious bounding maps is a zero
object for Sp. In fact

MapSp(0, E) = lim
n

MapS∗(∗, En) = ∗ MapSp(E, 0) = lim
n

MapS∗(En, ∗) = ∗

Applying the Brown representability theorem to ordinary homology H̃∗(−;M),
we obtain a representing spectrum HM , which is called the Eilenberg-MacLane
spectrum. This name is because

πn(HMm) = [Sn, HMm]∗ = H̃m(Sn;M) =

{
M if n = m

0 otherwise.
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Therefore HMm is the Eilenberg-MacLane space K(M,m). We will see later� that
Denis: when?

H− is a fully faithful functor from abelian groups to spectra.
If E = ({En}n∈Z, ∂) is a spectrum we write

Ω∞E := E0

This induces a functor Ω∞ : Sp→ S∗, which is sometimes called the 0-th space of
the spectrum. Let us try to construct the left adjoint.

If X ∈ S∗ is a pointed space, we let

QX := colim
m∈Z

ΩmΣmX .

Since Ω : S∗ → S∗ commutes with filtered colimits (REF!), we have a natural
equivalence

QX
∼−→ ΩQΣX

therefore we can construct a spectrum Σ∞X whose n-th space is QΣnX. We call
this the suspension spectrum of X. There is a map of pointed spaces

X → QX ∼= Ω∞Σ∞X .

Lemma 2.9. Let X ∈ S∗ be a pointed space and E ∈ Sp a spectrum. Then the
transformation

MapSp(Σ∞X,E)→ MapS∗(Ω
∞Σ∞X,Ω∞E)→ MapS∗(X,Ω

∞E)

is an equivalence. Therefore the functor Ω∞ : Sp → S∗ has a left adjoint sending
X to Σ∞X.

Proof. We can write the mapping space

MapSp(Σ∞X,E) ∼= lim
n

MapS∗(QΣnX,En)

and the map we claim is an equivalence is the projection onto the n = 0 component.
Let us consider the following diagram

MapS∗(X,E0)

MapS∗(ΩΣX,E0) MapS∗(ΣX,E1)

MapS∗(Ω
2Σ2X,E0) MapS∗(ΩΣ2X,E1) MapS∗(Σ

2X,E2)

...
...

...
...

Ω

∼

Ω Ω

∼

∼

.

Then taking the limit first in the vertical direction and then in the horizontal
direction shows that the limit of the whole diagram is precisely MapSp(Σ∞X,E),
and the map we investigating is the projection on the top left corner. But all the
diagonal maps going one step to the left and one step up are equivalences by the
Σ a Ω adjunction, and the leftmost diagonal map is cofinal. Therefore projecting
onto the first coordinate is an equivalence, as required. �

Probably the most important spectrum of all is the suspension spectrum of
S0. This is called the sphere spectrum and it is normally indicated as S. By the
previous argument we have

MapSp(S, E) ∼= MapS∗(S
0,Ω∞E) ∼= Ω∞E .
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Proposition 2.10. Let E : I → Sp be a diagram. Then limi∈I E(i) exists and
it is given by the spectrum(

{lim
i∈I

E(i)n}n∈Z, lim
i∈I

δ(i)n

)
.

Proof. First we need to check that the formula gives a spectrum, that is that
limi∈I δ(i) is an equivalence. But this is because we can write it as

lim
i∈I

E(i)n → lim
i∈I

ΩE(i)n+1
∼= Ω lim

i∈I
E(i)n+1 .

and all arrows in the diagram are equivalences.
Now let us see that this formula actually gives a limit. Let F be a spectrum.

Then we can write

MapSp(F, lim
i∈I

E(i)) ∼= lim
n

MapS∗(Fn, limi∈I
E(i)n) ∼= lim

n
lim
i∈I

MapS∗(Fn, E(i)n) ∼=
∼= lim

i∈I
lim
n

MapS∗(Fn, E(i)n) ∼= lim
i∈I

MapSp(F,E(i)) .

�

Corollary 2.11. Suspension and loop in Sp exist and are computed by shift-
ing. In particular they are inverse equivalences.

Proof. By proposition 2.10 taking loops is done pointwise, and therefore it
is equivalent to shifting. Then shifting in the opposite direction is obviously an
inverse. In particular it has to be the left adjoint to Ω (since inverses are always
both left and right adjoints to the original functor). Therefore the suspension
exists. �

Due to the previous corollary we will often write Σ−n to denote Ωn for unifor-
mity of notation.

Proposition 2.12. Let I be a filtered simplicial set and E : I → Sp be a
diagram. Then colimi∈I E(i) exists and it is given by the spectrum(

{colim
i∈I

E(i)n}n∈Z, colim
i∈I

δ(i)n

)
Proof. The proof of this is the same as the proof of proposition 2.10 using the

fact that Ω commutes with filtered colimits by proposition 1.85 and proposition 1.86.
�

Definition 2.13. A prespectrum is a sequence {En}n∈Z of spaces and maps
δn : ΣEn → En+1. If {En} is a prespectrum the associated spectrum is the
spectrum given by the formula

E := colim
(
Σ∞E0

∼= ΩΣΣ∞E0
∼= ΩΣ∞ΣE0 → ΩΣ∞E1 → Ω2Σ∞E2 → · · ·

)
.

Remark 2.14. One can construct an ∞-category of prespectra and see that Sp
is a full subcategory. Then the associated spectrum is the left adjoint to the inclusion
of spectra into prespectra. Informally we think of prespectra as “presentations” of
our spectrum by generators and relations (where the spaces En play the role of the
generators and the maps δn those of the relations).

Lemma 2.15 (Standard presentation). Let E be a spectrum. Then the natural
map

colim
n

Σ−nΣ∞En → E

is an equivalence.
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Proof. Let F be any other spectrum. We will show that MapSp(−, F ) turns
the above map into an equivalence.

MapS∗(colim
n

Σ−nΣ∞En, F ) ∼= lim
n

MapS∗(Σ
−nΣ∞En, F ) ∼= lim

n
MapS∗(Σ

∞EnΣnF ) ∼=
∼= lim

n
MapS∗(En,Ω

∞ΣnF ) ∼= lim
n

MapS∗(En, Fn) ∼= MapSp(E,F ) .

�

Corollary 2.16. The ∞-category of spectra has all colimits.

Proof. Let E : I → Sp be a diagram of spectra. Then for every n we get a
diagram of spaces En : I → S∗. We claim that the following

colim
n

Σ−nΣ∞
(

colim
i

En(i)
)
,

which exists because Sp has all filtered colimits and S∗ is cocomplete, is the colimit
of E. In fact for every F ∈ Sp

MapSp

(
colim
n

Σ−nΣ∞(colim
i

En(i)), F
)
∼= lim

n
lim
i

MapS∗(En(i),ΣnF ) ∼= lim
i

MapSp(E(i), F ) .

�

Proposition 2.17 (Stability). Let

X0 X1

X2 X12

be a square of spectra. Then it is a pushout square if and only if it is a pullback
square.

Proof. We will show that if it is a pushout square then it is a pullback square.
The other direction is similar. Let us consider the following diagram as the following
diagram

X0 X1 0

X2 X12 Y 0

0 Z ΣX0 ΣX2

0 ΣX1 ΣX12

where all the squares are pushout squares (so that Y is the cofiber of X1 → X12

etc.). Looking at the maps induced on the limits of the highlighted diagrams we
obtain a factorizations

X0 X1 ×X12 X2

ΩΣX0 ΩΣX1 ×ΩΣX12
ΩΣX2

where the diagonal arrows are equivalences by corollary 2.11. Therefore all the
other arrows in the diagram are equivalences as well. �
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Exercise 19. The functor Q : S∗ → S∗ sends the point to the point and
cocartesian squares to cartesian squares (such a functor is called a linear functor,
the ∞-category of spectra is in fact equivalent to the ∞-category of linear functors
that preserve filtered colimits).

Corollary 2.18. If E and F are two spectra, the canonical maps

E ∼= E × 0→ E × F, F ∼= 0× F → E × F

exhibit the product E × F as the coproduct. For this reason we will often write

E ⊕ F := E × F

and call it the direct sum of E and F .

Proof. Let us consider the two cartesian squares

0 E

0 E

and

0 0

F F

.

Then their product is also a cartesian square

0 E

F E × F

But then it is also a cocartesian square by proposition 2.17, which proves the
thesis. �

Definition 2.19. An exact sequence of spectra is a square

X ′ X

0 X ′′

that is both cartesian and cocartesian.

Remark 2.20. If one take the same definition of exact sequence in abelian
groups, one recovers the notion of short exact sequence.

Definition 2.21. Let E be a spectrum. Then its n-th homotopy group is the
set

πnE := [ΣnS, E] ∼= πn+mΩ∞ΣmE for n+m ≥ 0 .

Lemma 2.22 (Whitehead’s theorem for spectra). A map f : E → F of spectra
is an equivalence if and only if it is an equivalence on every homotopy group.

Proof. It is enough to show that the map fn : En → Fn is an equivalence for
every n. Note that since π∗fn is an equivalence, then fn is an equivalence on the
connected component of the basepoint. But then Ωfn = fn−1 is an equivalence,
this implies the thesis. �

Definition 2.23. Let E,F be two spectra. Then we can define a spectrum
mapSp(E,F ) such that

mapSp(E,F )n := MapSp(E,ΣnF )

and the bounding maps are the canonical equivalences

Ω MapSp(E,Σn+1F ) ∼= MapSp(E,ΩΣn+1F ) ∼= MapSp(E,ΣnF ) .
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Remark 2.24. Note that if E is a spectrum the associated cohomology theory
is given by

En(X) = [X,En]∗ ∼= π0 MapSp(Σ∞X,ΣnE) ∼= π−n mapSp(Σ∞X,E) .

By analogy with this, when F is a spectrum we define the E-cohomology of the
spectrum as

En(F ) := π−n map(F,E) .

Lemma 2.25. Let E′ → E → E′′ be an exact sequence of spectra, and let F be
an arbitrary spectrum. Then

[E′′, F ]→ [E,F ]→ [E′, F ]

is an exact sequence of abelian groups.

Proof. Note that [−, F ] = π0 map(−, F ) by definition and map(−, F ) pre-
serves exact sequences because it is a right adjoint functor (right adjoint to map(−, F )op).
Therefore it is enough to show that π0(−) := π0Ω∞(−) sends exact sequences to ex-
act sequences of pointed sets. But Ω∞(−) sends exact sequences to fiber sequences,
since it’s a right adjoint, so the thesis follows from the long exact sequence of a
fibration. �

Definition 2.26 (Tensor product of spectra). If E and F are two spectra, we
define their tensor product, or smash product, as

E ⊗ F := colim
n,m

Σ−n−mΣ∞(En ∧ Fm)

where − ∧− is the smash product of pointed spaces.

Definition 2.27. Let E be a spectrum and X be a pointed space. Then the
E-homology of X is the graded abelian group

E∗(X) := π∗(E ⊗ Σ∞X)

Exercise 20. Let A be an abelian group. Then the homology theory HA∗(−)
associated to the Eilenberg-MacLane spectrum HA coincides with singular homol-
ogy. (Hint: pick a CW-complex structure on a pointed space X and use the skeletal
filtration to show that HA∗X is given by the homology of the cellular chain com-
plex).

Proposition 2.28. Let E, F and K be three spectra. Then there is a natural
equivalence

MapSp(E ⊗ F,K) ∼= MapSp(E,map(F,K))

Proof. It suffices to plug in the definition of E ⊗ F :

MapSp(E ⊗ F,K) ∼= MapSp

(
colim
n,m

Σ−n−mΣ∞(En ∧ Fm),K

)
∼=

∼= lim
n,m

MapSp

(
Σ∞(En ∧ Fm),Σn+mK

) ∼= lim
n,m

MapS∗

(
En ∧ Fm,Ω∞Σn+mK

) ∼=
∼= lim
n,m

MapS∗

(
En,MapS∗(Fm,Ω

∞Σn+mK)
) ∼= lim

n
MapS∗

(
En, lim

m
MapS∗(Fm,Ω

∞Σn+mK)
)
∼=

∼= lim
n

MapS∗

(
En,MapSp(F,ΣnK)

) ∼= MapSp(E,map(F,K)) .

�

Corollary 2.29. There’s a natural equivalence E⊗S ∼= E for every spectrum
E.
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Exercise 21 (Brown representability for spectra). A functor F : hSpop → Ab
is representable if and only if it sends coproducts to products and exact sequences to
exact sequences. (Hint: show that the functor FnX = F (Σ−nΣ∞X) is a cohomol-
ogy theory and use the pushout formula for the sequential colimit plus the canonical
presentation of a spectrum to deduce the result for general spectra).

A1. A counterexample to Brown representability for non connected
spaces

WRITE A PROOF FOLLOWING FREYD-HELLER.





CHAPTER 3

Commutative monoids

This chapter is modeled on Segal’s foundational paper [Seg74]. A useful re-
source for more details on this story is Adams’ book on infinite loop spaces [Ada78].

1. Classifying spaces of monoids

Let T ∈ ∆. Then a gap in T is a pair of elements (t, t′) of T such that t < t′

and there is no element t′′ such that t < t′′ < t′. For example the set of gaps of the
standard object [n] = {0 < 1 < 2 < · · · < n} is

(0, 1), (1, 2), . . . , (n− 1, n) .

For every gap (t, t′) there is a map g(t,t′) : [1] → [n] sending 0 to supT ′ and 1 to
inf T ′′. In the case of the gap (i− 1, i) of [n] we will write simply gi : [1]→ [n]. We
will write Gap(T ) for the set of gaps of T . Note that Gap(T ) is naturally totally
ordered by the relation (t, t′) < (s, s′)⇔ t < s.

Definition 3.1. Let C be an ∞-category with finite products. Then an asso-
ciative monoid is a functor

M : ∆op → C
such that for every [n] ∈ ∆ the map

n∏
i=1

gi : M([n])→
n∏
i=1

M([1])

is an equivalence. In particular, by choosing n = 0, we see that M([0]) is con-
tractible.

We will write Mon(C) for the full subcategory of Fun(∆op, C) spanned by the
associative monoids.

An associative monoid in the ∞-category S of spaces is called an E1-space.

Remark 3.2. The forgetful functor Mon(C)→ C sending M to M([1]) is con-
servative.

Proposition 3.3. Let C be a category with finite products. Then the category
of associative monoids is equivalent to the category whose objects are triples (M,η :
1→M,µ : M ×M →M) satisfying

µ ◦ (η, idM ) ∼= µ ◦ (idM , η) ∼= idM µ ◦ (idM , µ) ∼= µ ◦ (µ, idM ) .

and whose morphisms are arrows f : M → M ′ in C such that f ◦ η = η′ and
f ◦ µ = µ′ ◦ (f, f).

Proof. Let us denote the category of triples in the statement as the category
of “classical” monoids Moncl(C). Then for every M ∈ Moncl(C) and every finite
(possibly empty) totally ordered set T we have a map µT : MT → M defined
inductively as

µ∅ = η, µT := µ(idM , µTr{maxT}) .

If C = Set this is the map sending (m1, . . . ,mn) to m1 · · ·mn. If f : T → S is a
map in ∆ and (t, t′) ∈ Gap(T ) then we can define f(t, t′) as the ordered subset of

37
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Gap(S) given by those gaps (s, s′) such that ft ≤ s < s′ ≤ ft′ (this is empty if
ft = ft′). Then we can construct a functor

Moncl(C)→ Mon(C)

sending a triple (M,η, µ) to the functor

T 7→MGap(T )

such that if f : T → S is a map in ∆ the map f∗ : MGap(S) →MGap(T ) is given by

f∗ : MGap(S) ∼=
∏

(t,t′)∈Gap(T )

Mf(t,t′)

∏
µf(t,t′)−−−−−−→MGap(T ) .

It is then an easy exercise to see that this is in fact an associative monoid and that
this construction is functorial.

To construct a functor in the opposite direction

Mon(C)→ Moncl(C)

sending M to the triple(
M([1]), η : ∗

g−1
0−−→M([0])→M([1]), µ : M([1])×M([1])

(g1,g2)−1

−−−−−−→M([2])→M([1])

)
where η is induced by the map [1]→ [0] in ∆ and µ is induced by the map [1]→ [2]
in ∆ sending 0 to 0 and 1 to 2.

It is easy now to check that these two functors are inverse to each other �

Remark 3.4. If F : C → D is a functor preserving finite products, then post-
composition with F induces a functor Mon(C)→ Mon(D). In particular if M is an
E1-space, the set π0M has a canonical associative monoid structure.

Definition 3.5. Let M be an E1-space. We say that M is group-like or an
E1-group if π0M is a group.

Exercise 22. Let Cat be the ∞-category of categories (i.e. the subcategory of
Cat∞ spanned by nerves of categories). Then a monoid in Cat is the same thing
as a monoidal category and the space of maps of monoids is equivalent to the nerve
of the groupoid of monoidal functors.�

Denis: Expand! Use
the functor sending
a mon cat C to the
monoid sending T
to monoidal functors
from Fin/T to C

Example 3.6. Let X ∈ S∗ be a pointed space. We want to put an E1-space
structure on ΩX which is given, informally speaking, by the composition of loops.
To do so let for every T ∈ ∆ T . be the cone on T , that is the poset whose objects
are T q {∞} equipped with the partial order such that x ≥ y iff x = y or y =∞.

Let XT : T . → S∗ the functor sending T to ∗ and ∞ to X. Then we have a
functor

ΩX : ∆op → S∗ T 7→ lim
T.

XT .

It is now easy see that ΩX([1]) = ΩX and that it is an E1-space: for example

(ΩX)([2]) ∼= (ΩX)(0 < 1)×(ΩX)(1) (ΩX)(1 < 2) ∼= ΩX × ΩX

and the map (ΩX)([2]) → (ΩX)([1]) is exactly given by the composition of paths
(in fact one can construct a point-set model of ΩX where (ΩX)([n]) is the space of
maps ∆n → X sending the vertices to the basepoint).

Note that π0ΩX ∼= π1X is a group, therefore ΩX is an E1-group. Our goal in
this section is to show that all E1-groups are of this form.
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Definition 3.7. Let M be an E1-space. Then its classifying space is simply
its colimit seen as a functor

BM := colim
∆op

M .

Note that the canonical map ∗ = M([0]) → BM gives BM a canonical basepoint.
Therefore we have a functor

B : Mon(S )→ S∗

Note that the commutative diagram

M = M([1]) M([0]) = ∗

∗ = M([0]) BM = colimM

d1

d0

induces a natural transformation M → ΩBM . We want to extend it to a natural
transformation of E1-spaces. The definition of colimits induces a functor (∆op). →
S . There is a functor {0, . . . , n}/ → ∆op sending the cone point to [n], all the other
points to [0] and the i-th arrow to di. Therefore we have constructed a diagram,
natural in [n]

M([n])

M([0]) = ∗ ∗ · · · ∗ ∗

colim∆op M = BM

and therefore a natural transformation M([n])→ (ΩBM)([n]).
On the other hand there is a natural transformation of pointed spaces

BΩX → X

induced on colimits by the natural transformation

(ΩX)(T ) ∼= lim
T.

XT → lim
T.

X ∼= X .

where the second limit is the constant diagram at X.

Lemma 3.8. The two natural transformations above satisfy the triangular iden-
tities, and so exhibit B : CMon(S )→ S∗ as a left adjoint of Ω : S∗ → CMon(S ).

Proof. Let us verify only one of them, the other is analogous. We need to
show that the composition

BM = colim
[n]∈∆op

M([n])→ colim
[n]∈∆op

lim
[n].

BM[n]→ colim
[n]∈∆op

lim
[n].

BM

is homotopic to the identity. But this is equivalent to the transformation

colim
[n]∈∆op

M([n])→ colim
[n]∈∆op

BM

induced at every [n] by the inclusion M([n])→ BM into the colimit. Therefore it
is homotopic to the identity. �

Our goal is to prove the following theorem:

Theorem 3.9 (Recognition theorem for loop spaces). Let M be an E1-space
and X be a pointed space.

• The unit M → ΩBM is an equivalence if and only if M is an E1-group.
• The pointed space BM is connected.
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• The counit BΩX → X is equivalent to the inclusion of the connected
component of the basepoint. In particular it is an equivalence if and only
if X is connected.

Therefore the adjunctions B a Ω restricts to an equivalence between the ∞-category
of E1-groups Mon(S )gp and the ∞-category of connected pointed spaces S∗

≥0.

In order to prove the theorem we will need an important property of the ∞-
category of spaces.

Definition 3.10. Let F,G : I → C be two functors and α : F ⇒ G be a natural
transformation. Then α is cartesian if for every arrow i→ j in I the square

Fi Fj

Gi Gj

is cartesian.

Theorem 3.11 (Descent property for colimits). � Let I be a small∞-category,
Denis: Ideally all
properties of colimits
in spaces I left un-
proven in the past
should be deduced
from this, with per-
haps the exception of
compact generation

F,G : I. → S be two diagrams in the ∞-category of spaces and α : F ⇒ G be
a natural transformation such that αI : F |I ⇒ G|I is cartesian. Suppose G is a
colimit diagram. Then F is a colimit diagram if and only if α is cartesian.

Proof. This is [Lur09, Theorem 6.1.3.9]. �

Remark 3.12. Using results about the limits in the ∞-category Cat∞, we can
rephrase the following theorem as stating that for any diagram X : I → S the
natural transformation

S/ colimi∈I X → lim
i∈I

S/Xi

is an equivalence. This is sometimes stated as “colimits in spaces are van Kampen”.
Using the straightening-unstraightening theorem ([Lur09, Theorem 3.2.0.1]) this is
a simple consequence of the fact that the functor Fun(−,S ) preserves limits.

Lemma 3.13 (Extra degeneracy argument). Let X : ∆op → C be a simplicial
object. Then the map

X([0])→ colim
n∈∆op

X([n+ 1])

is an equivalence.

Proof. Let ∆+∞ be the category of finite non-empty totally ordered sets
with maps preserving the maximum. Then ∆+∞ has an initial object given by [0].
Moreover there is a map

∆→ ∆+ T 7→ T+ := T q {∞}
which is a left adjoint. In particular if Y : ∆op

+∞ → C is a functor, it induces an
equivalence

colim
T∈∆op

Y (T+) ∼= colim
∆op

+

Y ∼= Y ([0]) .

The thesis now follows from the fact that the map ∆op → ∆op sending [n] to [n+1]
factors through ∆+. �

Armed with the above result let us prove the first part of theorem 3.9.

Proposition 3.14. Let M : ∆op → S be an associative monoid. The natural
map

M([1])→ ΩBM

is an equivalence if and only if M is group-like.
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Proof. Since π0ΩX ∼= π1X, the E1-space ΩBM is always an E1-group.
Therefore if the map M → ΩBM is an equivalence, then M must be an E1-group.
Let us prove the other direction. Let

PM : ∆op → S [n] 7→M([n+ 1])

we have a natural transformation α : PM ⇒ M whose components are the maps
dn+1 : M([n + 1]) → M([n]). We claim that if M is group-like, α is cartesian.
Indeed for an arrow f : [m]→ [n] we need to check that the square

M([1])m+1 M([1])n+1

M([1])m M([1])n

is cartesian. But, if we let fm = n− d, this is the base change of the square for the
map f : [0]→ [d] sending 0 to 0, and this is cartesian if and only if the map

M([1])d+1 →M([1])d+1 (m1, . . . ,md+1) 7→ (m1, . . . ,md,m1 · · ·md+1)

is an equivalence, which it is since M is an E1-group.
Therefore the square

PM([0]) = M([1]) colimPM ∼= ∗

M([0]) ∼= ∗ colimM ∼= BM

is cartesian by the descent property, which is what we wanted to prove. �

Lemma 3.15. Let M ∈ Mon(S ) be an E1-space. Then BM is connected.

Proof. This follows immediately from the fact that π0 commutes with colimits
and so π0BM is a quotient of π0(M [0]) = ∗. �

Proposition 3.16. Let X be a pointed space. Then the counit

BΩX → X

is equivalent to the inclusion of the connected component of the basepoint.

Proof. Since BΩX is connected, the image of the counit lands in the con-
nected component of the basepoint. Now we need to prove that it induces an
equivalence on πi for i ≥ 1. But this is the same as checking that the map

ΩBΩX → ΩX

is an equivalence. By the triangular identities this follows from the fact that

ΩX → ΩBΩX

is an equivalence since ΩX is an E1-group. �

Corollary 3.17. The adjunction B a Ω restricts to an equivalence between
E1-groups and connected pointed spaces.

Definition 3.18. The functor Mon(S ) → Mon(S )gp sending M to ΩBM
is the left adjoint to the inclusion Mon(S )gp ⊆ Mon(S ). It is called the group
completion and written Mgp := ΩBM .

Exercise 23. Show that π0 : Mon(S )→ Mon(Set) is the left adjoint to the in-
clusion Mon(Set) ⊆ Mon(S ). Deduce that if M is an E1-space, the group π0(Mgp)
is the group obtained by formally inverting all elements of the monoid π0M .
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Remark 3.19. It is not true that if M ∈ Mon(Set), then its group comple-
tion Mgp is necessarily discrete. We will see later that this is true for commuta-
tive monoids or, more generally, when π0M satisfies the so-called Ore conditions.
However every E∞-group can be realized as the group completion of some discrete
monoid M ∈ Mon(Set) (see [McD79]).�

Denis: I should add
at least a reference to
a counterexample 2. Commutative monoids and the recognition principle

Let Fin∗ be the category of finite pointed sets. We will often write I+ for an
element of Fin∗, where I is the set of non-basepoint elements. We will refer to I as
the underlying set of I+. For any i ∈ I there is a map

χi : I+ → {i}+

sending i to i and all other elements to the basepoint. We will call it the charac-
teristic map at i.

For brevity we will often write n+ for the pointed set {1, . . . , n}+.

Definition 3.20. Let C be an ∞-category with finite products. Then a com-
mutative monoid is a functor

M : Fin∗ → C

such that for every pointed finite set I+ the product

M(I+)→
∏
i∈I

M({i}+)

is an equivalence. We write the subcategory of Fun(Fin∗, C) spanned by the com-
mutative monoids as CMon(C).

An E∞-space is a commutative monoid in the ∞-category S of spaces.

Example 3.21. There is a map e : ∆op → Fin∗ sending T ∈ ∆ to the pointed
set of gaps Gap(T )+ = Gap(T ) q {∗}. If f : T → S is a monotone map the map
f∗ : Gap(S)+ → Gap(T )+ is given by

f∗(t, t′) =

{
(sups<ft s, infft′<s′ s

′) if ∃s < ft′, f ′t < s 6= ∅
∞ otherwise

Let M : Fin∗ → C be a commutative monoid. Then the precomposition with the
map ∆op → Fin∗ turns a commutative monoid into an associative monoid.

Proposition 3.22. Let C be a category. Then the functor CMon(C)→ Mon(C) ∼=
Moncl(C) is fully faithful with image those monoids where the multiplication is com-
mutative.

Proof. Note that the map tw : 2+ → 2+ sending 1 to 2 and 2 to 1 have the
property χi ◦ tw = χ1−i. Therefore the diagram

M(1+)2 M(1+)2

M(2+) M(2+)

M(1+) M(1+)

tw

(χ1,χ2)

tw

M(µ)

(χ1,χ2)

M(µ)

id

.

Therefore the multiplication on M(1+) is commutative.
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Let us now construct an inverse. If M is a classical commutative monoid, note
that the multiplication maps µT : MT → M are independent of the order in the
set T . Therefore we can define a functor

I+ 7→M I (f : I+ → J+) 7→
∏
j∈J

Mf−1j

∏
j∈J µf−1j−−−−−−−−→MJ .

This produces an inverse to the previous functor �

Exercise 24. Let Cat be the ∞-category of categories (i.e. the subcategory of
Cat∞ spanned by the nerves of ordinary categories). Then a commutative monoid
in Cat is the same thing as a symmetric monoidal category, and the space of maps of
commutative monoids is the nerve of the groupoid of symmetric monoidal functors.

Lemma 3.23. Let C be an∞-category with finite products. Then the∞-category
CMon(C) has a zero object and direct sums.

Proof. First we claim that the constant functor at the terminal object is the
zero object. It is clear that it is the terminal object (since it is in functors). But

MapCMon(C)(∗,M) ∼= MapC(∗, lim
Fin∗

M) ∼= MapC(∗,M(0+)) ∼= ∗ .

Now to prove that it has direct sums, we need to prove that the two maps
M → M × N and N → M × N exhibit M × N as the coproduct. First we claim
that for every commutative monoid P there’s a natural transformation

µ : P × P → P

such that P × ∗ → P × P → P and ∗ × P → P × P → P are homotopic to the
identity and such that µP×Q is homotopic to µP × µQ. Then we can construct an
inverse to the map

Map(M ×N,P )→ Map(M,P )×Map(N,P )

by sending (f : M → P, g : N → P ) to the composition M × N → P × P → P .
The map µP is constructed by taking the natural transformation

µP : (P × P )(I+) ∼= P (I+)× P (I) ∼= P (I+ ∨ I+)→ P (I+)

induced by precomposing with the fold map I+ ∨ I+ → I+. �

Lemma 3.24. Let M be an E1-space. Then the two E1-spaces ΩM([1]) (with
the E1-space structure of example 3.6) and Ω ◦M coincide.

Proof. We need to prove that the two functors

Ω(M([n])) = lim


M([0])

M([0]) M([1])

 and (ΩM)([n]) = lim
[n].

Ω(M[n])

are naturally equivalent. We will do it by constructing a third functor that is
equivalent to either of them. Let Y : ∆op → S be the functor sending [n] to the
limit of the “staircase diagram”

X([0])

X([0]) X([1])

X([0]) . .
.

X([0]) X([1])

.
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This receive a map from the functor sending [n] to the limit of the diagrams

X([0])

X([n]) X([n])

X([n]) . .
.

X([0]) X([n])

where we send the i-th corner copy of X([n]) to X([1]) via gi. By the Segal condition
this map is an equivalence, and the latter diagram is simply Ω(X([n]).

On the other direction Y ([n]) maps to the limit of X([1])[n]. and this map is
an equivalence. �

There is a functor Ω∞ : Sp→ CMon(S ) sending E to Ω∞(Σ∞(−)⊗ E).

Construction 3.25. Let M be a commutative monoid. Then the classifying
space BM has a canonical structure of commutative monoid as well. Indeed we can
take

BM(I+) := colim
[n]∈∆op

M(I+ ∧Gap([n])+)

Therefore we can iterate this construction obtaining B2M := B(BM), B3M :=
B(B2M) etc. Note that BnM is always group-like, since it is connected.

Lemma 3.26. The functor B : CMon(S )→ CMon(S ) gives the suspension in
CMon(S )

Proof. This follows from the Bousfield-Kan formula (theorem 1.78): we can
compute a pushout B qA C as the geometric realization of

B q C ⇔ B qAq C ⇔ B qAqAq C · · ·

and plugging the characterization of coproduct in CMon(S ) of lemma 3.23 we
obtain the thesis.� �

Denis: expand!

Definition 3.27. Let M be an E∞-space. Then we define its classifying spec-
trum B∞M as the spectrum

B∞M :=
(
{BnM}n≥1, σn : BnM

∼−→ ΩBn+1M
)
.

This indeed defines a spectrum since BnM is a group-like E1-space for n ≥ 1 and
so σn is an equivalence by theorem 3.9. Note that Ω∞B∞M ∼= ΩBM .

Proposition 3.28. There are natural transformations B∞Ω∞ → idSp and
idE∞−S → Ω∞B∞ exhibiting an adjunction B∞ a Ω∞ : Sp � E∞ −S .

Proof. The natural transformation

M → Ω∞B∞M ∼= ΩBM

is just the same as the natural transformation defined levelwise by

M(I+) M(∗)

M(∗) colim[n]M(I+ ∧Gap([n])+)

.

that is the unit of the adjunction B a Ω. In particular as a map of pointed spaces
it coincides with the map M → ΩBM of lemma 3.8.
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The natural transformation

B∞Ω∞E → E

is the one whose n-th component is the map

BnΩ∞E → Ω∞ΣnE

induced by iterating the transformation

BΩ∞E → Ω∞ΣE

given by the fact that B is the suspension in CMon(S ) and Ω∞ preserves the zero
object. The triangular identities now are easy. �

Theorem 3.29 (Recognition principle for connective spectra). • For any
E∞-space M the unit map M → Ω∞B∞M is an equivalence if and only
if M is group-like.

• For every E∞-space M the spectrum B∞M is connective and for every
spectrum E the map B∞Ω∞E → E is an equivalence if and only if E is
connective.

Therefore the adjunction B∞ a Ω∞ restricts to an equivalence between the
∞-category of E∞-groups and the ∞-category of connective spectra.

Proof. The first statement follows from the analogous statement for E1-
spaces.

Now let M be an E∞-space. Then we need to show that the spectrum B∞M
is connective. But we have

π−nB∞M = π0B
nM = 0 ,

since BnM is connected.
Finally we need to show that the map B∞Ω∞E → E is an equivalence if and

only if E is connective. One direction is obvious, now suppose that E is connective.
Then Ω∞E is a group-like E∞-space, therefore the map

Ω∞E → Ω∞B∞Ω∞E

is an equivalence. But then by the triangular identities the map

Ω∞B∞Ω∞E → Ω∞E

is an equivalence and so the map

B∞Ω∞E → E

is an isomorphism on all non-negative homotopy groups. Since all the other homo-
topy groups are 0, it is an equivalence by lemma 2.22. �

Exercise 25. Let Sp(CMon(S )) be the ∞-category

Sp(CMon(S )) ∼= lim
(

CMon(S )
Ω←− CMon(S )

Ω←− · · ·
)

defined as in the definition of spectra but using E∞-spaces instead of spaces. Prove
that Sp(CMon(S )) ∼= Sp and that the left adjoint of

Ω∞ : Sp ∼= Sp(CMon(S ))→ CMon(S )

is exactly B∞.
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3. Group completion of commutative monoids

Most of this section is derived from [Hoy19] and section 3 of [BEH+20]. The
explicit construction of the plus construction follows [Hat02, Proposition 4.40]. An
extremely good reference for the group completion theorem is [Nik17]

Definition 3.30. Let R be a ring. Then the groupoid of projective R-modules
with the direct sum forms an E∞-space. Its group completion is called the algebraic
K-theory spectrum K(R) of R. It contains important arithmetic information
about R.

In this section we fix M be an E∞-space and x ∈ π0M such that for every
y ∈ π0M there’s z ∈ π0M and n ≥ 0 such that y + z = nx.

Example 3.31. In many cases we will have π0M = N and x = 1. More
generally, if π0M is finitely generated as a commutative monoid, with generators
x1, . . . , xn, we can take x = x1 + · · ·+ xn.

In the above situation we can define a map of spaces

x+ : M →M

given as the composition

M ∼= ∗ ×M
(x,idM )−−−−−→M ×M µ−→M

and a space (called the x-telescope of M)

telxM := colim
(
M

x+−−→M
x+−−→ · · ·

)
.

If we denote with x also the image in π0M
gp, the map of E∞-spaces M → Mgp

induces a map

t : telxM → telxM
gp ∼= Mgp

where the last equivalence follows from the fact that x+ : Mgp →Mgp is an equiv-
alence. One could naively expect the map t to be an equivalence, but unfortunately
this is not always the case, due to a fundamental group obstruction.

Example 3.32. Let R be a ring and let ModR be the E∞-space associated to
the symmetric monoidal groupoid of free finitely generated R-modules with monoidal
operation given by the direct sum. Then we have

ModR ∼= qn≥0BGLn(R) .

Then, if we let x = 1 ∈ N = π0 ModR, we have

tel1 ModR ∼= Z×BGL∞(R)

where GL∞(R) is the group of infinite invertible matrices that coincide with the
identity outside of a block in the top left corner. Then

π1(tel1 ModR) ∼= GL∞(R)

is not an abelian group (e.g. it contains GL2(R) as a subgroup). However π1 Modgp
R

must be abelian, since it is the fundamental group of an H-space.

Luckily this is all that can go wrong. The map t is “an equivalence up to
fundamental group issues” in some sense.

Definition 3.33. Let f : X → Y be a map of spaces. We will say that it is
acyclic if for every y ∈ Y the homotopy fiber Xy := X ×Y {y} is non-empty and
has trivial reduced homology.

The main theorem in this section (to be proven in appendix ?? is the following
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Theorem 3.34 (Group completion theorem). Let M be an E∞-space1. Let
x ∈ π0M be such that for every y ∈ π0M there’s z such that y + z = nx. Then let

telxM := colim(M
x·−→M

x·−→M
x·−→ · · · )

Then the canonical map

telxM →Mgp

is an acyclic map.

To make yse of it we will need some results on acyclic maps.

Lemma 3.35. A map f : X → Y is acyclic if and only if the square

X Y

Y Y

is a pushout square.

Proof. Suppose the square is a pushout square. Since in spaces pushout
squares are stable under pullback by descent the square

Xy ∗

∗ ∗

is a pushout square, i.e. ΣXy
∼= ∗. But then its reduced homology is trivial.

Viceversa, suppose all those squares are pushout. Then again by descent X ∼=
colimyXy and we are done since pushout squares are closed under colimits. �

Exercise 26. The pushout condition of lemma 3.35 is equivalent to say that
f is a categorical epimorphism, i.e. that for every Z the map

Map(Y,Z)→ Map(Y,X)

is an inclusion of connected components.

Lemma 3.36. Let f : X → Y be a map. If f is acyclic, then f induces an
isomorphism f∗ : H∗(X)→ H∗(Y ). The viceverse is true if Y is simply connected.

Proof. If f is acyclic, then by taking cofibers of the horizontal arrows in the
square of lemma 3.35 we see that the cofiber of the map f is contractible, therefore
f is an isomorphism in homology by the long exact sequence in homology.

Let us now assume that Y is simply connected and f is an isomorphism in
homology. We need to prove that the square

X Y

Y Y

is a pushout square, that is that the map Y qX Y → Y is an equivalence. A simple
computation with the long exact sequence shows that it is a homology equivalence
and then van Kampen shows that both spaces are simply connected, so we can
conclude by the relative Hurewicz theorem. �

Lemma 3.37. Acyclic maps are closed under pushouts.

1In fact we only need that it is an E1-space such that π0M satisfies the Ore conditions
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Proof. Let us consider a pushout square

X Y

X ′ Y ′

f

f ′

Then we can consider the cube

X Y

Y Y

X ′ Y ′

Y ′ Y ′

f

f ′

since the front and bottom arrows are pushout squares, the whole cube is a pushout
cube. Since f is acyclic, the top square is also a pushout square and so the bottom
square is a pushout square as we wanted to prove. �

The next few results will be to show that acyclic maps behave as equivalences
for spaces with a mild condition on the fundamental groups. Remember that a
group is perfect if it has trivial abelianization (i.e. it is generated by commutators).
Then every group has a maximal perfect subgroup, which is therefore normal (just
take the subgroup generated by all perfect subgroups). We say that a group G is
hypoabelian if the maximal perfect subgroup is trivial. We say that a space X is
hypoabelian if for every x ∈ X the group π1(X,x) is hypoabelian.

Lemma 3.38. Let f : X → Y be an acyclic map. Suppose π1(X,x) is hypoa-
belian for each x ∈ X. Then f is an equivalence.

Proof. First of all, notice that π0f is surjective (since the fibers are all non-
empty). Let y ∈ Y and let us consider the fiber Xy. Pick x ∈ Xy and let us consider
the long exact sequence in homotopy groups

π2(Y, y)→ π1(Xy, x)→ π1(X,x)→ π1(Y, x)

We know that π1(Xy, x) is perfect, hence its image in π1(X,x) is trivial. Therefore
the map π2(Y, y)→ π1(Xy, x) is surjective. But then π1(Xy, x) is abelian and hence
trivial. Therefore Xy is contractible. �

Lemma 3.39. Let X → X ′ be an acyclic map and Y such that π1(Y, y) is
hypoabelian for every y. Then

Map(X ′, Y )→ Map(X,Y )

is an equivalence.

Proof. Let us fix f : X → Y . We want to show that the fiber Map(X ′, Y )×Map(X,Y )

{f} is contractible. Consider the pushout diagram

X Y

X ′ Y ′

Then the map Y → Y ′ is an acyclic map with hypoabelian source, and therefore it
is an equivalence. But then the following square is cartesian

Map(Y, Y ) Map(X ′, Y )

Map(Y, Y ) Map(X,Y )
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In particular the homotopy fiber over f ∈ Map(X,Y ) is contractible. �

Our goal now is to construct for every X a space X+ with hypoabelian π1 and
an acyclic map X → X+. The above result will force it to be the left adjoint of the
inclusion of hypoabelian spaces into spaces.

Theorem 3.40. Let X be any space. Then there exist a space X+ and an
acyclic map X → X+ such that π1(X+) is hypoabelian for every basepoint.

Proof. First by working on each connected component we can assume X is
connected. Let us first assume H1(X) = 0, i.e. π1(X) is perfect. Then let {αi} be
a set of generators for π1(X) and let us consider the cofiber sequence∨

i

S1 → X → X ′

Then if we look at the long exact sequence in homology we deduce

H∗X
′ ∼=

{
H∗X if ∗ 6= 2

H2(X)⊕
⊕

I Z otherwise
.

Moreover by van Kampen we have π1X
′ = 0, so π2X

′ ∼= H2X
′. Therefore we can

choose βi : S2 → X ′ generators corresponding to the summand and taking the
cofiber sequence ∨

i

S2 → X ′ → X+ .

Then X → X+ is a homology isomorphism and X+ is simply connected, so it is
acyclic.

Now let us do the case of a general X. Let P < π1(X) be the maximal perfect

subgroup. Let X̃ → X be the covering space corresponding to P , so that π1X̃ = P .
Then we can apply the previous construction to X̃ and take the pushout

X̃ X̃+

X X+

Then X → X+ is acyclic and π1(X+) = π1(X)/P is hypoabelian, as required. �

Corollary 3.41. The inclusion of hypoabelian spaces into spaces has a left
adjoint which sends X to the space X+ of theorem 3.40. Moreover the unit of the
adjunction is the acyclic map X → X+.

Remark 3.42. The functor X 7→ X+ commutes with products, since both hy-
poabelian spaces and acyclic maps are closed under products.

Corollary 3.43. Let M be an E∞-space and x as in the hypothesis of theo-
rem 3.34. Then the map

(telxM)+ →Mgp

is an equivalence. In particular if telxM is already hypoabelian, the map telxM →
Mgp is an equivalence.

A1. The proof of the group completion theorem

Lemma 3.44. Let M be an E1-space such that π0M
gp is hypoabelian (for ex-

ample if M is an E∞-space). Then the map Mgp → (M+)gp is an equivalence.

Proof. It is enough to show that BM → B(M+) is an equivalence of pointed
spaces. But since it is a colimit of acyclic maps, it is an acyclic map. Moreover
π1BM = π0M

gp, and so it is hypoabelian. Then the thesis follows from ... �
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In this section we will prove the group completion theorem, following [MS76].

Definition 3.45. Let C be an ∞-category with finite products and let M :
∆op → C be an associative monoid. Then a left M -action is a simplicial object
X : ∆op → C together with a map X →M of simplicial objects such that for every
T ∈ ∆ the map

X(T )→M(T )×X([0])

induced by the arrow [0]→ T picking the maximum of T is an equivalence. We will
often say that M acts on X([0]).

Example 3.46. For any monoid M and object X ∈ C we can define X(T ) :=
M(T )×X. We call this the trivial action of M on X.

Example 3.47. For any monoid M , there’s an action of M on its underlying
space M([1]) given by the simplicial object ∆op → C sending T to M(T q {∞})
(this is the left multiplication action).

Example 3.48. Suppose that C = S is the ∞-category of spaces and let M be
an E1-space acting on a space X. Then for any point m ∈M([1]) of the underlying
space of M we can find a map m· : X([0])→ X([0]) as follows:

X([0]) = {m} ×X([0])→M([1])×X([0]) ∼= X([1])→ X([0])

where the last map is induced by [0]→ [1] picking 0.

Definition 3.49. Let M be a monoid acting on X. Then the homotopy
orbits of the action XhM are just the colimit of the simplicial object X : ∆op → C
(if it exists).

Example 3.50. If M acts trivially on X we have XhM
∼= X ×BM .

Example 3.51. If M acts on itself by left multiplication MhM is contractible
by lemma 3.13.

To continue we will need the following generalization of ..

Lemma 3.52. Let X be a space with an M -action such that every m ∈M acts
invertibly on X. Then the sequence

X → XhM → BM

is a fiber sequence.

Proof. This is a generalization of the proof of ... Indeed by ... it is enough to
prove that the natural transformation X → M is cartesian. Proceeding as in the
proof of .. it suffices to see that

X([1]) X([0])

M([1]) M([0])

is cartesian. But if we take m ∈ M([1]) the induced map on the fibers over m is
exactly m : X([0])→ X([0]), which is an equivalence by hypothesis. �

Note that x+ : M →M is a map of spaces with an M -action by ...

Lemma 3.53. The map

telxM →Mgp

is an equivalence if and only if x acts invertibly on telxM .
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Proof. One direction is obvious. Let us prove the other. Suppose x acts
invertibly on telxM . Then every element of M acts invertibly on telxM , by the
defining property of y. Therefore by lemma 3.52 we have a fiber sequence

telxM → (telxM)hM → BM

But (telxM)hM ∼= telx(MhM ) ∼= telx(∗) = ∗ by example ??, so telxM ∼= ΩBM =
Mgp. �

Now let M be an E∞-space and x ∈M be a point. Then we will construct for
every n ≥ 1 a group homomorphism

Σn → π1(M,nx)

UNFINISHED





CHAPTER 4

Vector bundles and K-theory

1. Vector bundles

Definition 4.1. Let X be a topological space. A complex vector bundle over
X is a map of topological spaces p : E → X equipped with maps s : E×XE → X and
µ : C×E → E over X such that for every point x ∈ X there is a neighborhood U of
x, a finite dimensional complex vector space V and an isomorphism p−1U ∼= U ×V
over U such that under this isomorphism

s(y, v, w) = (y, v + w) µ(λ, y, v) = (y, λv) .

Note that this implies that for every x ∈ X the fiber Ex := p−1x is endowed with
a canonical structure of finite dimensional complex vector space. The rank of a
vector bundle is the locally constant function X → N sending x to dimCEx.

A map of vector bundles is just a continuous map f : E → E′ over X that
respects the sum and the scalar multiplication.

We will write the isomorphism classes of vector bundles over X as π0 Vect(X).

Lemma 4.2. Let X be a paracompact Hausdorff space and {Ui} be an open
cover. Then we can find a locally finite countable cover {Vn}n≥0 such that every
Vn is the disjoint union of open subsets contained in one of the Ui’s.

Proof. Let {ψi} be a partition of unity subordinated to our cover. For any
finite subset S ⊆ I let

VS = {x ∈ X | ∀i ∈ S, j 6∈ S ψi(x) > ψj(x)}
Since in the neighborhood of any point only finitely many of the ψi are non-zero,
the subset VS is open. Moreover for every x ∈ X we have x ∈ VS where S = {i ∈
I | ψi(x) > 0}, so the VS are an open cover. Furthermore if i ∈ I we have VS ⊆ Ui
(because for all x 6∈ Ui ψi(x) = 0). Finally let

Vn :=
⋃

#S=n

VS

and to prove the thesis we only need to check that VS ∩ VT = ∅ if S, T are distinct
sets with the same cardinality. But this is obvious from the definition, since we can
find i ∈ S r T and j ∈ T r S and so for every x ∈ VS ∩ VT we would need to have
ψi(x) > ψj(x) and ψj(x) > ψi(x) simultaneously. �

In particular notice that every vector bundle over a paracompact Hausdorff
space can be trivialized over an open cover.

Lemma 4.3. Let X be a paracompact Hausdorff space and p : E → X × |∆1|
be a vector bundle. Let E′ be the restriction of E to X × {0} ∼= X. Then there is
an isomorphism of vector bundles E ∼= E′ × |∆1|.

Proof. First we will show that there is an open cover {Ui}i∈I such that E
is trivial over Ui × |∆1|. Indeed by the compactness of |∆1|, for every x ∈ X we
can find open neighborhoods Ux,1, . . . , Ux,n and t1, . . . , tn−1 ∈ [0, 1] such that E is
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trivial over Ux,i×[ti−1, ti]. But then we can glue the trivializations on Ux :=
⋂
i Ux,i

and find a trivialization over Ux× |∆1|. Moreover by lemma 4.2 we can find such a
countable cover {Un}n≥0. Then pick a partition of unity {ψn} subordinate to the
cover and let Ψn :=

∑
i≤n ψn. Then if we let

Xn := {(x, t) ∈ X × |∆1| | t ≤ Ψn(x)}

we will construct a map pn : E|Xn → E′ over X that is an iso on every fiber
inductively. Since Ψ−1 = 0 we have X−1 = X ×{0} and we can take p−1 to be the
identity. Now let us construct pn from pn−1. Now there is a retraction Xn → Xn−1

sending (x, t) to (x,max(t,Ψn−1x)). We want to construct a map En → En−1 over
this projection that is an isomorphism on every fiber. By construction we have
Xn r Xn−1 ⊆ Un × |∆1|, and therefore we can construct such a projection over
Xn ∩ Un × |∆1|, since En is trivial there. But then we can just take the identity
over Xn−1. Therefore we get pn as the composition En → En−1 → E′. Finally we
get a continuous map E → E′ by sending e to pne if x ∈ En (this is continuous
because {En} is a locally finite closed cover). �

Lemma 4.4. Let p : E → X be a vector bundle over a paracompact Hausdorff
space X. Then there exists a map f : E → C∞ which is a C-linear embedding on
each fiber. Moreover if X is compact we can find such a map E → CN for N finite.

Proof. Let us find a countable open cover {Ui}i≥0 such that E is trivialized
on each Ui, that is there is fi : E|Ui → Cdi inducing E|Ui ∼= Ui×Cdi . Moreover let
{ψi}i≥0 be a partition of unit subordinate to this cover. Then we can let

f(e) = (ψ0f0, ψ1f1, . . . ) ∈ Cd0 × Cd1 × · · · ∼= C∞ .

Then f is the required map. Moreover it is clear that if X is compact we can choose
a finite subcover. �

Exercise 27. In the situation of lemma 4.4 suppose there is a closed cofibration
Z → X and a map f0 : E|Z → C∞ which is an injection on every fiber. Then we
can choose f that coincides with f0 over Z.

Let M∞(C) ⊆
∏

N×N C be the space of C-linear maps C∞ → C∞.

Definition 4.5. Let d ≥ 0 be a non-negative integer. Then the Grassmannian
of d-planes Grd is the space

Grd := {P ∈M∞(C) | P 2 = P, P = PH , rkP = d}

of orthogonal projection matrices of rank d. Note that such matrices are in bijection
with the subspaces of C∞ they are projecting to, so we are going to think about it
as the space of subspaces of C∞ of rank d.

Exercise 28. Let V ⊆ C∞ be a d-dimensional subspace and PV . Then, if
V ⊥ ⊆ C∞ is the orthogonal complement of V we have a map

HomC(V, V ⊥)→ Grd

sending f to the graph subspace of f , i.e. the subspace of all elements {(v, fv) ∈ V ⊕
V ⊥ ∼= C∞ | v ∈ V }. Show that this is an open embedding, identifying HomC(V, V ⊥)
with the subspace of those W ⊆ C∞ such that the orthogonal projection W → V is
an isomorphism.

There is a vector bundle ξd → Grd where ξd = {(v, P ) | Pv = v}, called the
tautological vector bundle over Grd. This is a vector bundle because it can be
trivialized by the charts of exercise 28.
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Theorem 4.6. Let X be a paracompact Hausdorff space. Then the map

[X,Grd]→ π0 Vectd(X) f 7→ f∗ξd

is a bijection.

Proof. First of all let us notice that this is well defined. Indeed if H : X ×
|∆1| → Grd is a homotopy, lemma 4.3 we have that the restrictions of H∗ξd to
X × {0} and X × {1} are isomorphic, so the map is in fact well defined.

Now notice that there is a bijection between pairs of a map f : X → Grd and
an isomorphism ϕ : E ∼= f∗ξd, and maps E → C∞ that are linear embeddings on
each fiber. In fact in one direction, if we have a fiberwise embedding g : E → C∞
we can send it to the pairs f(x) = PgEx and the induced map E → ξd ⊆ C∞×Grd.
Viceversa if we have such a pair (f, ϕ) we can send it to the composition E → ξd →
C∞.

Therefore by lemma 4.4 the map in the statement is surjective. Let us prove
that it is injective.

Suppose that f, g : E → C∞ are two different fiberwise embeddings. We need
to construct a homotopy of them through fiberwise embeddings. First of all by
postcomposing through the homotopy

(t, (x0, x1, . . . )) 7→ (1− t)(x0, x1, . . . ) + t(x0, 0, x1, . . . )

we can move f and g to maps that land in the even (resp. odd) numbered coordi-
nates. But then we can just do a straight-line homotopy between them. �

Exercise 29. Let p : E → X be a vector bundle. Then Ωp Map(X,Grd) is
equivalent to the space of automorphisms of the vector bundle p (hint: use exer-
cise 27.

Our next goal is to show that the space Grd is a model for BUd. We will do so
by using a criterion that will be useful also in the following.

Lemma 4.7. Let p : E → B be a fibration of topological spaces and G be a
topological group acting on E over B such that the map G×E → E ×B E sending
(g, e) to (ge, e) is a homeomorphism. Then if E is contractible there’s an equivalence
of E1-spaces G ∼= ΩB.

Proof. Note that the E1-group ΩB is the simplicial space sending

[n] 7→ ∗ ×B ∗ ×B · · · ×B ∗ ∼= E ×B E ×B · · · ×B E

since E is contractible. But since E → B is a fibration we can compute the
homotopy pullbacks as pullbacks of topological spaces. Note that there is a home-
omorphism

G× E ∼= E ×B E (g, e) 7→ (ge, e)

over E, and so the group ΩB can be realized as the simplicial space

[n] 7→ G× · · ·G× E

But since E is contractible this is just the simplicial space representing the group
G. �

Let the infinite Stiefel manifold be Vd := Emb(Cd,C∞) be the space of isometric
embeddings of Cd into C∞. Equivalently, this is the space of d-uples (v1, . . . , vd)
of pairwise orthogonal elements in C∞ such that |vi|2 = 1. For example we can
identify V1 with the infinite sphere S∞. There is an obvious map Vd → Grd sending
every embedding to its image.

Proposition 4.8. The space Vd is contractible.
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Proof. Let us consider Ṽd the space of all embeddings Cd → C∞, not necessar-
ily isometric. There’s an obvious inclusion Vd ⊆ Ṽd. We claim that it is a homotopy

equivalence. In fact we can write a sequence Vd := Ṽ
(d)
d ⊆ Ṽ (d−1)

d ⊆ · · · Ṽ (0)
d where

Ṽ
(i)
d is the subspace of those embeddings f : Cd → C∞ such that f |Ci is isomet-

ric. Then we claim that the inclusion V
(i)
d ⊆ V

(i−1)
d is a homotopy equivalence.

Indeed we can retract first Ṽ
(i−1)
d onto Ṽ

(i−1)′

d , spanned by the subspace of those
embeddings such that fei is orhtogonal to f(Ci−1) via the homotopy

(t, f) 7→ f(Pi−) + (1− tPi)f ◦ (1− Pi)(−)

where Pi is the projection onto f(Ci). Finally we can retract Ṽ
(i−1)′

d onto Ṽ
(i)
d by

rescaling.
So it suffices to show that Ṽd is contractible. To do so let us consider Wd ⊆ Ṽd

be the subspace of those embeddings f such that f(Cd) ⊥ Cd. We claim that this
inclusion has a deformation retraction given by

(t, f) 7→ (1− t+ tT d) ◦ f

where T d : C∞ → C∞ is the linear map sending x to (T dx)i = xi−d (where we
assume xi = 0 for i < 1). It is easy to see that 1− t+ tT d : C∞ → C∞ is injective
for every t, and so the map is indeed a deformation retraction. On the other hand
we want to show that the inclusion Wd → Ṽd is nullhomotopic. This is because if
f0 : Cd → C∞ is the standard embedding we can do a straight-line homotopy for
every map f ∈Wd

(t, f) 7→ tf0 + (1− t)f
which is obviously injective for every t. �

Let Ud be the group of d× d unitary matrices, that is the group of isometries
from Cd to Cd.

Corollary 4.9. The space Grd is equivalent to BUd.

Proof. The space Vd has an action of the group Ud by precomposition and
the projection p : Vd → Grd is equivariant, when we give Grd the trivial action.
We claim that this projection satisfies the hypotheses of lemma 4.7. Indeed for
V ∈ Grd let HV := Hom(V, V ⊥) ⊆ Grd be the open neighborhood of exercise 28.
Then for every isometry f : Cd ∼= V , the map Ud ×HV → p−1HV sending (A,W )
to is a Ud-equivariant homeomorphism. �

Let now Gr :=
∐
d Grd ∼=

∐
dBUd

Definition 4.10. The E∞-space of vector spaces is the functor Fin∗ → Top

Vect : I+ 7→ {(Vi)i∈I | Vi ⊥ Vj ∀i 6= j} ⊆ GrI

where a map f : I+ → J+ sends (Vi)i∈I to
(⊕

fi=j Vj

)
j∈J

.

Lemma 4.11. Vect is an E∞-space. Moreover for any space X we have that
π0 Map(X,Vect) is the monoid of isomorphism classes of vector bundles on X under
direct sum.

Proof. Let I+ ∈ Fin∗ and d = (d1, . . . , dn). Then we can write Vectd(n+) as
the subspace of Vect(n+) given by those Vi such that dimC Vi = di. Then we have
a decomposition

Vect(n+) =
∐

d1,...,dn

Vectd(n+)
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Therefore to prove that Vect is an E∞-space it suffices to prove that the map

Vectd(n+)→
n∏
i=1

Vectdi

is an equivalence. But not that there is a fiber bundle

Vd1+···+dn → Vectd(n+)

sending f : Cd1+···dn → C∞ to (f(Cdi))i=1,...,n. Working as in the proof of corol-
lary 4.9 we see that Vectd(n+) ∼= B(

∏n
i=1 Ui)

∼=
∏n
i=1BUdi . Moreover the projec-

tion Vectd(n+)→ Vectdi corresponds to the projection to the i-th factor under this
isomorphism.

To prove the second statement, it is enough to reduce to the case where X is
connected (since both functors send coproducts to products). But then

π0 Map(X,Vect) ∼= π0 Map(X,
∐
n≥0

BUn) ∼=
∐
n≥0

Map(X,BUn) ∼=
∐
n≥0

Vectn(X) .

�

Recall that a space X is called finite if it can be obtained by the contractible
space ∗ and the empty space ∅ via pushouts. In particular the homotopy type of
every finite CW-complex if finite.

Exercise 30. Prove that if X is a finite space, it is the homotopy type of a finite
CW complex (hint: first prove that all its homotopy groups are finitely generated,
then construct a cell structure inductively by attaching cells).

Lemma 4.12. For any finite space X the underlying space of Map(X,Vect)gp

is Map(X,BU × Z). In particular we have an equivalence Vectgp ∼= BU × Z.

Proof. First of all we let 1 ∈ π0 Vect = N, so we know that the underlying
space of Vectgp is tel1 Vect+. Note that

tel1 Vect = colim

∐
n≥0

BUn
+1−−→

∐
n≥0

BUn
+1−−→ · · ·


and so we have

tel1 Vect ∼=
∐
n∈Z

colim
m→∞

BUm ∼= BU × Z .

Since the right hand side is simply connected, the plus construction does not do
anything.

Now when X is finite, the functor Map(X,−) commutes with filtered colimits,
therefore we have an equivalence

tel1 Map(X,Vect) ∼= Map(X, tel1 Vect) ∼= Map(X,Vectgp)

Now the π0 of the right hand side is a group, so 1 satisfies the hypothesis of the
group completion theorem. Therefore

Map(X,Vect)gp ∼= tel1 Map(X,Vect) ∼= Map(X,Vectgp)+ ∼= Map(X,Vectgp) .

�

Remark 4.13. The finiteness of X is necessary (it can be slightly weakened
to finitely dominated spaces but no more), one can construct counterexamples oth-
erwise. However one can give an interpretation of Map(X,BU × Z) in terms of
vector bundles by using the theory of Fredholm complexes.

Definition 4.14. The connective (complex) topological K-theory spectrum ku
is the spectrum B∞Vect. It has the property that Ω∞ ku ∼= BU × Z.
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Proposition 4.15. BVect ∼= U

Proof. Our goal is then to show that

colim
n

Vect([n]) ∼= U

We will show that it is actually homeomorphic to the model of example 1.75. In
fact there is a map∐
n

Vect([n])×|∆n| → U (V1, . . . , Vn, (t0, . . . , tn)) 7→
n∑
i=1

e2πi
∑
j≤i tjPVi+P(

⊕
Vi)
⊥

where PV : C∞ → C∞ is the orthogonal projection onto the subspace V ⊆ C∞.
Said it differently, this sends (V1, . . . , Vn, (t0, . . . , tn)) to the matrix A ∈ U such
that Vi is an eigenspace of A with eigenvalue e2πti and A restricts to the identity
on the orthogonal complement of

⊕
i Vi. It is easy to see that this is compatible

with the simplicial relations.
The spectral theorem then says that this map is a homeomorphism. �

This proof of Bott periodicity is due to Bruno Harris [Har80]

Corollary 4.16 (Bott periodicity). There is a homotopy equivalence ΩU ∼=
BU × Z. In particular we have Ω2U ∼= U .

Proof. From the proposition 4.15 it follows that

ΩU ∼= ΩBVect ∼= Vectgp

Note that π0 Vect ∼= N≥0, since complex vector spaces are determined up to iso-
morphism by their dimension. �

Definition 4.17. The (complex) topological K-theory spectrum KU is the spec-
trum with spaces (BU × Z, U,BU × Z, . . . ) with the connecting maps given by the
Bott periodicity theorem.

Remark 4.18. The Bott periodicity theorem implies that U ∼= Ω∞Σ KU is an
E∞-space, even if its underlying E1-space comes from a non-commutative topolog-
ical group.

Remark 4.19. Using the same ideas one can prove half of the real Bott peri-
odicity theorem: ΩU/O ∼= BO × Z and ΩU/Sp ∼= BSp × Z. There are four more
equivalences that need to be proven to deduce the complete theorem. To do so a new
idea is required (the Wood fiber sequence).

2. Computations in topological K-theory

Let us choose an isometry ϕ : C∞ ⊗ C∞ ∼= C∞ (for example by choosing a
bijection ϕ : N × N ∼= N and sending ei ⊗ ej to eϕ(i,j)). Then we can define a
natural transformation

V (I+) ∧ V (J+)→ V (I+ ∧ J+)

sending (Vi), (Wj) to ϕ(Vi ⊗Wj). Therefore we can get by induction maps

BnV (I+) ∧BmV (J+)→ Bn+mV (I+ ∧ J+)

and thus a map
µ : ku⊗ ku→ ku

where ku = B∞V is the classifying spectrum. Moreover we have a map η : S→ ku
corresponding to the point 1 ∈ Z = π0 ku (i.e. to the selection of C ⊆ C∞. If
we choose the isometry so that it sends C ⊗ C to C then we see that µ(η ◦ 1) =
µ(1 ◦ η) = idku.
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Lemma 4.20. The pair η and µ turn ku into a homotopy ring spectrum, i.e.
an algebra object in hSp.

Proof. It boils down to proving that any two isometries C∞⊗C∞⊗C∞ ∼= C∞
are homotopic, i.e. that any two isometries C∞ ∼= C∞ are homotopic. But the
contractibility of the space of isometries is proven in a similar way to proposition 4.8.

�

Construction 4.21. Let E be a homotopy ring spectrum. Then the cohomol-
ogy theory E∗X is multiplicative, i.e. there’s a natural multiplication map

E∗X ⊗ E∗Y → E∗(X ∧ Y )

turning E∗(X+) into a ring. Moreover the ring is graded commutative if E is
homotopy commutative.

Moreover we have a class β ∈ π2 ku ∼= π0B
2V ∼= π0BU , such that the cor-

responding map Ω∞Σ−1 ku → Ω∞Σ ku is exactly the identification of proposi-
tion 4.15. Therefore we can write

KU = colim(ku
β−→ Σ−2 ku

β−→ Σ−4 ku→ · · · )
If p : E → X is a vector bundle, we let PE := (E r 0)/C× with the obvious

projection to X inherited by E. This corresponds on a local trivialization to replace
U × V by U × PV . It is called the projective bundle associated to E. There is a
canonical line bundle ηE on PE given by

ηE := {(x, L) ∈ E ×X PE | x ∈ L}

Proposition 4.22 (Projective line bundle formula). Let L → X be a line
bundle (i.e. a vector bundle of rank 1). Then there is a canonical decomposition

KU∗(P(1⊕ L)) ∼= KU∗X ⊕KU∗X · [ηL] .

of KU∗X-modules.

Proof. There’s a map p∗ : KU∗X → KU∗(P(1⊕L)) induced by the projection
P(1⊕ L)→ X. Therefore we get a natural transformation

KU∗X ⊕KU∗X → KU∗(P(1⊕ L)) (a, b) 7→ a+ b[ηL]

corresponding to a map of spectra

map(Σ∞+ X,KU)⊕map(Σ∞+ X,KU)→ map(P(1⊕ L),KU) .

We want to claim it is an equivalence. We can consider the poset P of open subsets
U ⊆ X where this map is an isomorphism. Note that if U, V, U ∩ V ∈ P then
U ∪ V ∈ P by the Mayer-Vietoris sequence. Moreover if we have a chain of open
subsets {Ui}i∈I in P, then their union is in P. Therefore by Zorn’s lemma we can
conclude if we can show that any trivialinzing open subset is in P, that is if we can
show the case when L is trivial. But then �

UNFINISHED





CHAPTER 5

Localizations and completions

In this section we will study the concept of Bousfield localization of spectra.
Pursuing the analogy between spectra and abelian groups, we would like to study
a spectrum by concentrating in its simpler parts, e.g. its “p-torsion” for a prime p,
or its “torsion-free” part. It turns out that the∞-category of spectra is much more
complicated than the category of abelian groups, and it contains many interesting
phenomena of arithmetic nature. In this section we will follow Bousfield’s original
articles [Bou79a] and [Bou79b]. For a modern introduction to the notion of
Bousfield localization in a more general context, see [Law20].

1. Smallness conditions in spectra

Let κ be a regular cardinal. We will say that a simplicial set T is κ-small if it
has at most κ non-degenerate simplices. Equivalently it can be constructed from
simplices by sequential colimits, pushouts and coproducts of cardinality at most κ.

Definition 5.1. A simplicial set S is κ-filtered if for every κ-small simplicial
set K and every map f : K → S there exists an extension f̄ : K. → S.

Example 5.2. If C is an ∞-category with all κ-small colimits, C is κ-filtered.

Exercise 31. Let κ be a cardinal which is not regular. Then a simplicial set
S is κ-filtered if and only if S is κ+-filtered, where κ+ is the successor cardinal.

Proposition 5.3. Let S be a κ-filtered simplicial set. Then the functor

colim : Fun(S,S )→ S

commutes with κ-small limits.

Proof. [Lur09, Proposition 5.3.3.3] � �
Denis: There should
be a more direct proof
using the fact that
S → SK is cofinal and
descent

Definition 5.4. Let Spκ be the full subcategory of Sp generated by desuspen-
sions ΣnS of the sphere under κ-small colimits.

Remark 5.5. Let E ∈ Spκ. Then the functor MapSp(E,−) : Sp → S com-
mutes with κ-filtered colimits. Indeed by proposition 5.3 the collection of spectra E
such that MapSp(E,−) commutes with κ-filtered colimits is closed under κ-small
limits, and it contains all spheres.

Lemma 5.6. There are only a set of equivalence classes of elements in Spκ.

Proof. We will construct Spκ as the union of κ subcategories {Cα}α<κ of
Sp, each of which is small, defined by transfinite recursion. Let C0 be the full
subcategory spanned by ΣnS for n ∈ Z. Then for α < κ ordinal number suppose
we have defined Cα. Then we let Cα+1 the full subcategory spanned by all colimits
of all diagrams K → Cα for K κ-small simplicial set. Since the set of all possible K
is small, then the set of all possible diagrams K → Cα is small as well, and therefore
Cα+1 is also small. Finally for λ < κ limit ordinal we define

Cλ =
⋃
α<λ

Cα .

61
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Clearly Cα ⊆ Spκ for all α ≤ κ. It is enough to show that Cκ is closed under κ-small
colimits, so that Spκ = Cκ. Let now K be a κ-small simplicial set and f : K → Cκ
be a diagram. Then for every k ∈ K, there is αk < κ such that fk ∈ Cα. But then
we can let β = supk∈K αk, which is still less than κ. So f factors through Cβ , and
therefore colimK f lies in Cβ+1 ⊆ Cκ. �

Proposition 5.7. Let E ∈ Sp be a spectrum. Then one can write E as a
κ-filtered colimit of elements of Spκ.

Proof. Let J = Spκ×Sp Sp/E be the∞-category of spectra with a map to E.
Then J has κ-small colimits, and therefore it is κ-filtered. Then let us consider the
map

colim
X∈J

X → E .

We want to prove that this map is an equivalence. Since J is filtered, it commutes
with taking homotopy groups, so it is enough to prove that the map

colim
X∈J

π∗X → π∗E

is an isomorphism. It is surjective because if we have a map α : ΣnS → E, then
we can interpret it as an element of J and then α Is the image of 1 ∈ πnΣnS →
colimX∈J π∗X.

Now let us show it is injective. Suppose we have [f : X → E] ∈ J and α ∈ πnX
such that fα = 0. Then if we interpret α as a map ΣnS→ X, then f factors through
the cofiber Y of X, Therefore we have

α ∈ πnX → πnY → colim
Z∈J

Z

is zero. �

Exercise 32. Let κ be a regular cardinal. Then a spectrum E has the property
that MapSp(E,−) commutes with κ-filtered colimits if and only if E is a retract of
an element of Spκ.

Exercise 33. Let κ be a regular cardinal. Then a spectrum E has the property
that MapSp(E,−) commutes with κ-filtered colimits if and only if E is in Spκ.
(Hint: if κ is uncountable, retract can be computed via a sequential colimit. If κ is
countable work by induction on the degree of the lowest homology group of E).

To prove the following theorem we need a result by Serre.

Theorem 5.8 (Serre). For i > n the homotopy group πiS
n is finite, unless

i = 2n− 1 and n is even. In particular πiS = π2i+2S
i+2 is a finite group for every

positive i.

Lemma 5.9. Let κ be an uncountable regular cardinal. Then a spectrum E is
in Spκ if and only if π∗E < κ. In particular every spectrum lies in Spκ for some κ.

Proof. First let us show that the collection of spectra with π∗E < κ is closed
under cofibers and κ-small coproducts. For the coproducts it follows immediately
from the fact that κ-small groups are closed under κ-small direct sums. For the
cofibers, if f : E → E′ is a map of spectra and #π∗E,#π∗E

′ < κ, we have that if
E′′ is the cofiber of f we can write the short exact sequence

0→ coker f∗ → π∗E
′′ → ker f∗−1 → 0

and # coker f∗,# ker f∗ < κ, therefore #π∗E
′′ < κ. Since all κ-small colimits can

be built out of cofibers and κ-small coproducts, and Serre’s theorem proves that
#π∗S < κ, we have that all κ-small spectra have #π∗E < κ.
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Let us suppose #π∗E < κ. We will construct a sequence

E0 → E1 → E2 → · · · → E

such that for every n ≥ 0 we have #π∗En < κ, En is obtained by En−1 by κ-small
coproducts and cofibers, and the map Fn → Fn+1 is zero on homotopy, where Fn is
the fiber of En → E. The second condition implies that π∗ (Fn) = colimn π∗(Fn) =
0, so that colimnEn ∼= E. Since sequential colimits are κ-small this implies the
thesis.

We start by letting E0 :=
⊕

α∈π∗E Σ|α|S with the tautological map E0 → E.
Suppose now we have constructed En, we want to construct En+1. By the previous
argument we have #π∗Fn < κ, so we can write a map

gn :
⊕

α∈π∗Fn

Σ|α|S→ Fn → En

such that the first map in the composition is tautologically surjective on homotopy.
Then note that the composition fngn is canonically nullhomotopic (since it factors
through Fn → En → E, and so fn factors through the cofiber En+1 of gn. Moreover,
if we let Fn+1 the fiber of fn+1 : En+1 → E we have that the induced map Fn →
Fn+1 is zero in homotopy by the long exact sequence of the fiber sequence⊕

α∈π∗Fn

Σ|α|S→ Fn → Fn+1

This proves all the properties we wanted, therefore proving the thesis. �

2. Bousfield localizations

Throughout this section, we will assume that κ is an uncountable regular car-
dinal.

Recall that for a spectrum E, the E-homology of a spectrum X is the graded
abelian group E∗X := π∗(E ⊗X).

Definition 5.10. Let E be a spectrum. We say that a map f : X → Y of
spectra is an E-equivalence if the induced map E ⊗ f : E ⊗ X → E ⊗ Y is an
equivalence. Equivalently, a map if an E-equivalence if and only if it induces an
equivalence in E-homology. We say that a spectrum X is E-acyclic if the map
0→ X is an E-equivalence, that is if E ⊗X = 0.

A spectrum Z is E-local if for every E-equivalence f : X → Y the map f∗ :
map(Y,E) → map(X,E) is an equivalence. We will denote the full subcategory of
E-local spectra with SpE.

Example 5.11. Let n ∈ Z. We will write S[1/n] for the spectrum obtained by
the colimit

colim
(
S n−→ S n−→ S n−→ · · ·

)
.

Then we will see that a spectrum is S[1/n]-local if and only if n acts invertibly on
it or, equivalently, if the homotopy groups are modules over Z[1/n].

Example 5.12. Let S/n be the cofiber of the multiplication by n map S → S.
Then a spectrum X is S/n-acyclic if and only if the map n : X → X multiplication
by n acts invertibly. If n = p is a prime an §/p-local spectrum is called p-complete.

The following lemma is the crucial smallness condition that will be necessary
to make the theory of localizations work.

Lemma 5.13. Let E be a spectrum and κ be a regular cardinal such that #π∗E <
κ. Then the subcategory of Sp generated under colimit by κ-small E-acyclic spectra
is the full subcategory of E-acyclic spectra.
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To prove the lemma we will need to auxiliary results first.

Lemma 5.14. If #π∗E < κ, then for every κ-small spectrum W , we have
#E∗W < κ.

Proof. It’s enough to prove that the collection of spectra W with #E∗W <
κ is closed under κ-small colimits, that is cofibers and κ-small coproducts. For
coproducts it’s obvious, for cofibers if we have X → Y → Z cofiber sequence with
X and Y satisfying the required condition, we have an exact sequence

E∗Y → E∗Z → E∗−1X

and so #E∗Z ≤ #E∗Y + #E∗X < κ. �

Lemma 5.15. Let E be a spectrum with #π∗E < κ. Then for every E-acyclic
spectrum X and every α ∈ π∗E there is a κ-small E-acyclic spectrum W and a
map f : W → X such that α is in the image of π∗f : π∗W → π∗X.

Proof. Let α : ΣnS→ X We will construct a sequence

ΣnS = W0 →W1 →W2 → · · · → X

of κ-small spectra with maps fi : Wi → X such that f0 = α, Wn is κ-small and
#E∗Wn < κ and the map Wi → Wi−1 is trivial in E-homology. Therefore, if we
let W = colimnWn we have that

E∗W = colim
n

E∗Wn = 0

and so W is E-acyclic, as required. Moreover it is κ-small because κ is uncountable.
The pair (W0, f0) = (Σn§, α) is determined by our conditions. Suppose we have

Wn, let us construct Wn+1. We can write the fiber sequence

Wn
fn−→ X → W̄n

Using the long exact sequence in E-homology and the fact that E∗X = 0 we have
that the map E∗+1W̄n → E∗Wn is an isomorphism. In particular #E∗W̄n < κ.
Now we can write

E∗W̄n
∼= colim

F∈J
E∗F

where J is the category of finite spectra mapping to W̄n. Therefore for every
β ∈ E∗W̄n we can find Fβ finite spectrum with a map to W̄n and β̃ lift of β to
E∗Fβ . That is the map

K :=
⊕

β∈E∗W̄n

Fβ → W̄n

is surjective in E-homology. Hence the composite ΩK → ΩW̄n →Wn is surjective
on E-homology as well. Moreover the composte ΩK → Wn → X is the zero map,
so if we let Wn+1 be the cofiber of ΩK → Wn we have that Wn → X factors
(perhaps not uniquely) to Wn+1. It is easy now to verify that Wn+1 has all the
properties we required of it. �

Corollary 5.16. There exists an E-acyclic spectrum A such that X is E-local
if and only if map(A,X) = 0.

Proof. Let κ be a sufficiently big regular cardinal. Then let A be the di-
rect sum of all κ-small E-acyclic spectra. Then map(A,X) = 0 if and only if
map(W,X) = 0 for every κ-small E-acyclic spectrum W . But since by lemma 5.13
every E-acyclic spectrum is a colimit of κ-small E-acyclic spectra, this implies that
map(A,X) = 0 if and only if map(W,X) = 0 for every E-acyclic spectrum W ,
which was what we needed to prove. �

We can finally conclude the proof of our crucial lemma.
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Proof of lemma 5.13. Let X be an E-acyclic spectrum and J be the subcat-
egory of Sp/X spanned by κ-small E-acyclic spectra. Since it has κ-small colimits

it is κ-filtered (therefore filtered). Then we claim that

colim
W∈J

W → X

is an equivalence. It is enough to verify that

colim
W∈J

π∗W → π∗X

is an isomorphism. The lemma 5.15 tells us that it is surjective. Let us prove now
that it is injective. Let f : W → X be an element of J and α ∈ πnW such that
fα = 0. Then, if g : Y → W is the fiber of f , we can find a lift β ∈ πnY of α.
But Y is E-acyclic, and so by lemma ... we can find V κ-small acyclic spectrum
and h : V → Y such that β is in the image of h, hence α is in the image of gh.
In particular, if we let p : W → W ′ be the cofiber of gh : V → W we have that
pβ = 0. Moreover, since fgh = 0, the map f factors through f ′ : W ′ → X and W ′

is κ-small and E-acyclic. Therefore the class of α dies in the colimit. �

Proposition 5.17. Let X be a spectrum. Then there exists an E-local spectrum
LEX and an E-equivalence l : X → LEX. In particular the inclusion SpE ⊆ Sp
has a left adjoint LE : Sp→ SpE, which we call the E-localization functor.

Proof. Let A be the spectrum of corollary 5.16. Then by lemma 5.9 we know
that A is κ-small for some regular cardinal κ (which could be bigger than the one we
chose earlier). Then we construct a sequence {Xα}α≤κ as follows: we let X0 = X.
Given Xα we define Xα+1 to be the cofiber of⊕

n∈Z,f :ΣnA→Xα

ΣnA→ Xα

and if λ is a limit ordinal we let Xλ = colimα<λXα. Then we claim that Xκ is the
spectrum we want. First notice that the map Xα → Xα+1 is an E-equivalence for
every α (since its fiber is E-acyclic) and so the map X → Xκ is an E-equivalence.
Then it remains to prove that Xκ is E-local or, equivalently, that

map(A,Xκ) = 0

It is enough to prove that for every n ∈ Z

π0 Map(ΣnA,Xκ) = 0

that is that every map ΣnA → Xκ is nullhomotopic. So suppose we have a map
ΣnA → Xκ. Since ΣnA is κ-small, this factors through some Xα for α < κ. But
then it factors through the composite

ΣnA→ Xα → Xα+1

which is zero, by the definition of Xα+1. �

3. Inverting primes

Let p be a prime number. Then we can let

S[1/p] = colim
(
S p−→ S p−→ · · ·

)
Note that for every spectrum X we have

π∗(S[1/p]⊗X) = colim
(
π∗X

p−→ π∗X
p−→ · · ·

)
∼= π∗X[1/p]

In particular a spectrum X is S[1/p]-acyclic iff π∗X is locally p-power torsion, that
is if every element of π∗X is p-power torsion.
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Lemma 5.18. A spectrum X is S[1/p]-local if and only if p acts invertibly on
π∗X.

Proof. If p : X → X is an equivalence and Y is a S[1/p]-acyclic spectrum we
have

0 ∼= map(Y [1/p], X) ∼= lim
(

map(Y,X)
p−→ map(Y,X)

p−→ · · ·
)
∼= map(Y,X) .

Where we have used that p : map(Y,X)→ map(Y,X) acts invertibly (since it does
so on X). �

Theorem 5.19. Let X be a spectrum. The Bousfield localization of X at S[1/p]
is LS[1/p]X ∼= S[1/p]⊗X =: X[1/p].

Proof. Note that the cofiber of X → S[1/p]⊗X is the colimit of the cofibers

of the maps X
pn−→ X, so it is X/pn. Since X/pn is S[1/p]-acyclic for every n we

have that the cofiber of X → S[p−1] is �

More generally, if S = {p1, p2, . . . } is a set of primes, we can let S[S−1] to be
the spectrum

S[S−1] ∼= colim
(
S p1−→ S p1p2−−−→ S p1p2p3−−−−→ · · ·

)
where the products gain more factors as long as there are more primes in S (so that
if S is infinite, they gain more and more factors). As before we have

π∗(S[S−1]⊗X) ∼= π∗X[S−1] .

Lemma 5.20. A spectrum X is S[S−1]-local if and only if every prime p ∈ S
acts invertibly on X, that is if X is S[1/p]-local for every p ∈ S.

Proof. Note that for every p ∈ S we have S/p ⊗ S[S−1] = 0, since p acts
invertibly on S[S−1]. Therefore for any spectrum X p : X → X is an S[S−1]-
equivalence. In particular if X is S[S−1]-local, it is an equivalence. Let us prove
the viceversa. Suppose that p acts invertibly on X. Then we have

X ∼= map(S[S−1], X) ∼= lim(X
p1←− X p1p2←−−− · · · ) .

So if A is S[S−1]-acyclic we have

map(A,X) ∼= map(A,map(S[S−1], X)) ∼= map(A⊗ S[S−1], X) ∼= 0 .

�

Theorem 5.21. Let X be a spectrum. The Bousfield localization of X at S[S−1]
is LS[S−1]X ∼= S[S−1]⊗X =: X[S−1].

Proof. Note that the mapX → S[S−1]⊗X is an S[S−1]-equivalence, for exam-
ple by checking on homotopy groups. Therefore it suffices to show that S[S−1]⊗X
is S[S−1]-local. But it is clear that every p acts invertibly on it. �

Remark 5.22. These kind of Bousfield localizations, given by LEX ∼= LES⊗X
are called smashing localizations.

When S is the set of all primes, we call this localization rationalization and
we write it as LS[S−1]X =: XQ. Note that

π∗SQ =

{
Q if ∗ = 0

0 otherwise.

So SQ ∼= HQ. It turns out that rational spectra are very easy.
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Proposition 5.23. Let X be a rational spectrum. Then there is an equivalence

X ∼=
⊕
n∈Z

ΣnHπnX .

Proof. Since X is rational, for every n the group πnX is a rational vector

space. Let (e
(n)
i ) be a basis. Then we have a map⊕

i∈I
ΣnS

e
(n)
i−−→ X

which factors through the rationalization of the left hand side

in : HπnX ∼=
⊕
i∈I

ΣnHQ
e
(n)
i−−→ X .

This map is an isomorphism on πn and zero everywhere else. But then
⊕

n in is an
isomorphism on homotopy and therefore an equivalence. �

Corollary 5.24 (Chern character). Let X be a finite space. Then there’s an
equivalence

KU0(X)Q ∼=
⊕
n∈Z

H2n(X;Q) .

Proof. Since map(Σ∞X+,−) commutes with filtered colimits we have

KU0(X)Q = π0 map(Σ∞X+,KU)Q ∼= π0 map(Σ∞X+,KUQ) ∼=

∼= π0 map

(
Σ∞X+,

⊕
n∈Z

Σ2nHQ

)
∼=
⊕
n∈Z

π−2n map(Σ∞X+, HQ) .

�

In fact we have the following theorem (which follows more generally from the
Schwede-Shipley Morita theory):

Theorem 5.25. The ∞-category SpQ of rational spectra is equivalent to the
derived ∞-category D(Q) of the rational numbers.

Exercise 34. Let E be a spectrum. Show that there is a natural equivalence
π∗EQ ∼= H∗(E;Q).

4. Completion at a prime

Let p be a prime number. Then we say that a spectrum is p-complete if it is
local for the Moore spectrum S/p. We will write E∧p := LS/pE for the Bousfield
localization at S/p, which we call p-completion.

Our first job is to justify this name. Let S/pn be the cofiber of the map
S→ S[1/p]. This is a connective spectrum whose integral homology is given by

H∗S/p∞ ∼=

{
Z/p∞ if ∗ = 0

0 otherwise

where Z/p∞ ∼= Z[1/p]/Z ∼= colimn(Z/p p−→ Z/p2 p−→ Z/p3 p−→ · · · ). Note that we can
write, with the same proof

S/p∞ ∼= colim
(
S→ S/p→ S/p2 → S/p3 → · · ·

)
Proposition 5.26. There is a natural equivalence

map(Σ−1S[1/p]/S, E) ∼= E∧p
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Proof. It suffices to show that the map E → map(Σ−1S[1/p]/S, E) induced
by Σ−1S/S[1/p] → S is an S/p-equivalence with p-complete target. Its fiber is
map(S[1/p], E), so and so it is S/p-acyclic. �

Corollary 5.27. A spectrum E is p-complete if and only if the spectrum

map(S[1/p], E) ∼= lim(E
p←− E p←− · · · )

is contractible.

Corollary 5.28. There is a natural equivalence

E∧p
∼= lim

n
E/pn .

Proof. We can write

S/p∞ ∼= colim
n

S/pn

so that

E∧p
∼= map(Σ−1S/p∞, E) ∼= lim

n
map(Σ−1S/pn, E) ∼= E/pn .

�

Lemma 5.29. Let E be a spectrum. Then there is a natural short exact sequence
of abelian groups

0→ Ext(Z/p∞, π∗E)→ π∗(E
∧
p )→ Hom(Z/p∞, π∗−1E)→ 0

Proof. We will need a presentation of S/p∞. Let us consider the diagram of
fiber sequences

0 S S⊕ S · · ·

S S⊕ S S⊕ S⊕ S · · ·

S S S · · ·

−1

p

 (−1 0
p −1
0 p

)

1 (p,1) (p2,p,1)

p p p

Taking the colimit this gives a fiber sequence⊕
n≥1

S→
⊕
n≥0

S→ S[1/p]

and taking the cofiber from the first row we get a fiber sequence⊕
n≥1

S→
⊕
n≥1

S→ S/p∞ .

where the first map has n-th component the map S→
⊕

n≥1 S given by −1 on the

n-th coordinate and p on the (n+ 1)-th coordinate. Plugging this fiber sequence in
map(−, X) we obtain a fiber sequence∏

n≥1

X →
∏
n≥1

X → X∧p .

where the first map has n-th coordinate the map
∏
n≥1X → X sending the n-

th factor to X via the opposite of the identity, the second factor to X via the
multiplication by p map and all the other factors to 0. Therefore the long exact
sequence in homotopy yields

· · · → π∗+1(X∧p )→
∏
n

π∗X →
∏
n

π∗X → π∗(X
∧
p )→ · · ·
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so our thesis follows from the identification of the kernel of the cokernel of this map.
But if we consider the corresponding short exact sequence of abelian groups

0→
⊕
n≥1

Z→
⊕
n≥1

Z→ Z/p∞ → 0

constructed in a similar fashion, and we consider the long exact sequence induced
by Hom(−, π∗X), we obtain a long exact sequence

0→ Hom(Z/p∞, π∗X)→
∏
n≥1

π∗X →
∏
n≥1

π∗X → Ext(Z/p∞, π∗X)→ 0

so the kernel and cokernel are identified as promised. �

If A is an abelian group, the group Ext(Z/p∞, A) is called the derived p-
completion of A (in fact it is the 0-th derived functor of the p-completion functor
Ab → Ab). An abelian group A is called derived p-complete if the map A →
Ext(Z/p∞, A) induced by the long exact sequence

0→ Hom(Z/p∞, A)→ Hom(Z[1/p], A)→ Hom(Z, A) = A→ Ext(Z/p∞, A)→ Ext(Z[1/p], A)→ Ext(Z, A) = 0

is an isomorphism. Note that by the proof of the previous lemma the map πnA→
πn(A∧p ) factors through the inclusion of Ext(Z/p∞, A). This is equivalent to Hom(Z[1/p], A) =
Ext(Z[1/p], A) = 0, therefore it follows immediately that derived p-complete groups
are closed under kernels, cokernel, extensions and direct sums. Moreover the inclu-
sion of derived p-complete groups into all abelian groups has a left adjoint sending
A to Ext(Z/p∞, A).

Corollary 5.30. If a group A is derived p-complete, then Hom(Z/p∞, A) = 0.
Therefore a spectrum E is p-complete if and only if all its homotopy groups are
derived p-complete.

Proof. If A is derived p-complete, then the map

Hom(Z/p∞, A)→ Hom(Z[1/p], A)

is an isomorphism. Therefore p acts invertibly on the group Hom(Z/p∞, A), and
so

Hom(Z/p∞, A) ∼= Hom(Z[1/p],Hom(Z/p∞, A)) ∼= Hom(Z[1/p]⊗ Z/p∞, A) = 0 .

Now let a spectrum E. If all its homotopy groups are derived p-complete,
then we have π∗E → π∗(E

∧
p ) is an isomorphism for all ∗, and so E is p-complete.

Viceversa we need to prove that for a spectrum E the homotopy groups of E∧p are
derived p-complete. By the previous lemma it suffices to show that Hom(Z/p∞, A)
is derived p-complete, which is left as an exercise for the reader. �

Exercise 35. An abelian group A is derived p-complete if and only if the
spectrum HA is p-complete.

Recall (or take it as a definition) that if A0
p0←− A1

p1←− A2 ← · · · is a tower of
groups, then lim1An is defined as the cokernel of the map∏

n

An →
∏
n

An (an)n 7→ (an − pnan+1) .

This is indeed the derived functor of the limit. Note that if all the maps in the
tower are surjective, lim1An = 0.

Lemma 5.31. Let A an abelian group. Then there is a short exact sequence

0→
1

lim Hom(Z/pn, A)→ Ext(Z/p∞, A)→ lim
n
A/pn → 0 .
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In particular for an abelian group with bounded p-torsion the derived p-completion
and the classical p-completion coincide.

Proof. Let us consider the short exact sequence

0→
⊕
n

Z/pn →
⊕
n

Z/pn → Z/p∞ → 0

where the first map sends (an) to (an − pan−1) and the second map is (an) to∑
n an/p

n. This induces a long exact sequence

0→ Hom(Z/p∞, A)→
∏
n

Hom(Z/pn, A)→
∏
n

Hom(Z/pn, A)→

→ Ext(Z/p∞, A)→
∏
n

Ext(Z/pn, A)→
∏
n

Ext(Z/pn, A)

and therefore a short exact sequence

0→
1

lim Hom(Z/pn, A)→ Ext(Z/p∞, A)→ lim
n

Ext(Z/pn, A)

Now it is enough to check that Ext(Z/pn, A) ∼= A/pn canonically and that the maps
induced by the inclusion Z/pn → Z/pn+1 are exactly the projections A/pn+1 →
A/pn. �

The following theorem proves that any spectrum can be reconstructed from
E[1/p], E∧p plus some gluing data

Theorem 5.32 (Arithmetic fracture square). There is a natural cartesian
square

E E∧p

E[1/p] (E∧p )[1/p]

.

Proof. Let us consider F to be the fiber of E → E∧p ×(E∧p )[1/p] E
∧
p (the so-

called “total fiber” of the square. First we observe that its p-completion F∧p is the
total fiber of the square

E∧p E∧p

E[1/p]∧p = 0 (E∧p [1/p])∧p = 0

and so it is trivial. Therefore F is S/p-acylic, so p acts invertibly on F . Thus
F = F [1/p]. But F [1/p] can be computed as the total fiber of the square

E[1/p] E∧p [1/p]

E[1/p] E∧p [1/p]

and so it is zero. Therefore F = 0, which was the thesis. �

The spectrum E∧p is sometimes denoted by EZp and E∧p [1/p] by EQp .

Exercise 36. For any spectrum E the homotopy groups of EQp have a canon-
ical Qp-module structure.
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We can also consider a kind of completion “at all primes at once”. We say
that a spectrum is profinitely complete if it is local for

⊕
p S/p where p ranges

through all primes. In particular a spectrum A is profinitely acyclic if and only if
A/p = 0 for every p, that is if p is rational.

Proposition 5.33. A spectrum X is profinitely complete if and only if XQ = 0.
Moreover for every spectrum X the map

X →
∏
p

X∧p

exhibits the right hand side as the profinite completion of X

Proof. First let us prove that the target is profinitely complete. In fact if A
is a rational spectrum, it is S[1/p]-local for every p. Therefore

map(A,
∏
p

X∧p ) ∼=
∏
p

map(A,X∧p ) = 0 .

Now we need to show that the map is a profinite equivalence. This is equivalent
to say that the map is an equivalence after tensoring by S/p for every p. But if
q 6= p prime we have that p : X/q → X/q is an equivalence (as π∗X/q is q2-torsion),
and so (X∧q )/p = (X/p)∧q = 0. But then

X/p→

(∏
q

X∧q

)
/p ∼=

∏
q

X∧q /p = X∧p /p

is an equivalence are required. �

Theorem 5.34 (Arithmetic fracture square). Let X be a spectrum. Then the
following square is cartesian

X
∏
pX
∧
p

XQ

(∏
pX
∧
p

)
Q

.

Proof. As before it is enough to show that the map is an equivalence ra-
tionally and after tensoring with S/p for every prime p, and in both cases it is
straightforward. �

The bottom left corner of the square is the rational part, the top right corner
is the profinite part and the bottom right corner is the “adelic” part (so-called by

analogy with the ring of finite adeles
(∏

p Z∧p
)
⊗Q).

5. Localization at topological K-theory

Our next goal is to study KU-localization, where KU is topological K-theory.
We will use the arithmetic fracture square to reduce it a study of (LKUX)Q and
(LKUX)∧p for every p.

Lemma 5.35. Let X be a spectrum and E be a spectrum such that EQ 6= 0.
Then the map

X → LEX

is a rational equivalence. In particular we have (LEX)Q ∼= XQ and every rational
spectrum is KU-local.
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Proof. It suffices to show that every E-acyclic spectrum is rationally trivial
(since the fiber of X → LEX is E-acyclic). But if A is a spectrum such that
A⊗ E = 0 then we have by ..

0 = (A⊗ E)Q = A⊗ EQ ∼=
⊕
n

Hπn(EQ)⊗A

and the right hand side is a direct sum of shifted copies of HQ⊗A ∼= AQ. Therefore
AQ = 0, which is what we wanted to prove. �

Lemma 5.36. Let E be a spectrum and X be a spectrum. Then X∧p is E-local
if and only if X/p is E-local

Proof. Since X∧p /p
∼= X/p, if X∧p is E-local, so is X/p. Viceversa note that

if X/p is E-local we can use the fiber sequence

X/p→ X/pn → X/pn−1

to prove that X/pn is E-local for every n by induction on n. Therefore

X∧p
∼= lim

n
X/pn

is E-local. �

Therefore we have a good understanding of (LKUX)Q = XQ. To understand
the p-complete parts we will need the following statement as input, that in fact
comes from combining several non-trivial theorems

Proposition 5.37. Let p be an odd prime. There exists a map of spectra
v1 : Σ2(p−1)S/p→ S/p and a map of rings ψr : KU∧p → KU∧p such that

• v1 is a KU-equivalence.
• The mapping telescope

S/p[v−1
1 ] := colim(S/p v1−→ Σ−2(p−1)S/p v1−→ Σ−4(p−1)S/p v1−→ · · · )

is equivalent to the fiber of the map

ψr − 1 : KU /p→ KU /p .

For p = 2 a similar statement holds, where we replace v1 with a map v4
1 :

Σ8S/2→ S/2 such that S/2[v−4
1 ] is the fiber of a map KO /2→ KO /2.

Corollary 5.38. Let X be a spectrum. Then X/p is KU-local if and only if
the map v1 : Σ2(p−1)X/p → X/p is an equivalence. Moreover for any spectrum X
we have

LKUX/p ∼= X/p[v−1
1 ]

Proof. For simplicity let us work only in the case p odd.
Since the map v1 is a KU-equivalence, if X/p is KU-local then multiplication

by v1 is necessarily an equivalence. Let us prove the other direction. If v1 is an
equivalence we have an equivalence

X/p ∼= X/p[v−1
1 ] = X ⊗ S/p[v−1

1 ]

but by the proposition we can identify the right hand side with the fiber of a map

X ⊗KU /p→ X ⊗KU /p

So it is enough to prove that X⊗KU /p is KU-local. But that is a KU-module,
and so it is necessarily KU-local.

Finally the map X/p→ X/p[v−1
1 ] is a KU-equivalence since it is a composition

of KU-equivalences and therefore it is a KU-localization map since the target is
KU-local. �
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Theorem 5.39. The KU-localization is smashing, that is the map

LKUX → LKUS⊗X
is an equivalence. Moreover we can write a pullback square

LKUS
∏
p Jp

HQ
(∏

p Jp

)
Q

where Jp is the fiber of the map ψr− 1 : KU∧p → KU∧p for p odd, and the same with
KU replaced by KO for p = 2.

Proof. Remember� that the map X → LKUS⊗X is always a KU-equivalence,
Denis: Insert ref!

so it’s enough to show that the target is KU-local. By the arithmetic square and
since every rational spectrum is KU-local, it is enough to show that (LKUS⊗X)∧p is
KU-local for every prime, that is that LKUS/p⊗X is KU-local. But by corollary..
we have

LKUS/p⊗X ∼= S/p[v−1
1 ]⊗X ∼= X/p[v−1

1 ] ∼= LKU(X/p)

and therefore the left hand side is KU-local.
Finally we just need to prove that (LKUS)∧p

∼= Jp. Let η : S → KU be the

unit. Since ψr : KU∧p → KU∧p is a map of rings, we have ψrη ∼= η, therefore we can
choose a nullhomotopy of (ψr − 1) ◦ η. So we have a map S→ Jp. Moreover Jp is
obviously KU-local and p-complete so we get a map

(LKUS)∧p → Jp .

Then proposition .. and corollary ... tells us this is an equivalence after tensoring
by S/p, and so it is an equivalence. �

The spectrum Jp is called the p-complete image of J spectrum, and the spec-
trum LKUS is also sometimes called the image of J spectrum. That’s because the
map π∗S → π∗LKUS is a split surjection for ∗ > 0 and it identifies π∗LKUS with
the image of the J-homomorphism J : π∗O → π∗S.





CHAPTER 6

Manifolds and duality

In this chapter we will cover some applications of stable homotopy theory to the
study of smooth manifolds, culminating on the Pontryagin-Thom theorem (Theo-
rem 6.39). In the course of this chapter we will need a few basic facts of differential
topology. We will use [Kos07] as our main source for those.

1. Thom spectra and the Thom isomorphism

Definition 6.1. Let X be a space and p : V → X be a vector bundle over
X. Then the Thom space of V Th(V ) is the pointed space given by the cofiber of
V r {0} → V .

The following lemma will be useful during the construction of the Pontryagin-
Thom map.

Lemma 6.2. Let X be a compact topological space and p : V → X be a vector
bundle over X. Then the Thom space Th(V ) is also equivalent to the one-point
compactification of V .

Proof. Put a metric on V . Then we can replace the map V r {0} → V with
the homotopy equivalent map S(V ) → X where S(V ){v ∈ V | |v| = 1} is the unit
sphere. The the cofiber is given by

Th(V ) ∼= ∗ ∪S(V )×{0} S(V )× [0, 1] ∪S(V )×{1} X .

We get then a map from the right hand side of the above equivalence to SV , the
one-point compactification of V by sending

S(V )× (0, 1]→ V (v, t) 7→ tv

and notice that this induces a homeomorphism of S(V ) × (0, 1] ∪S(V )×{1} X ∼= V .
Since both are locally compact Hausdorff spaces, they have equivalent one point
compactifications. �

If p : V → X is a vector bundle classified by a map f : X → BOn, we notice
that V r {0} is the colimit of the composition X → BOn → S where the second
functor is the functor induced by On acting on Rn r {0}.

Lemma 6.3. Let p : V → X be a vector bundle classified by f : X → BOn.
Then Th(V ) is equivalent to the colimit of the composite

X → BOn → S∗

where the second map is the map BOn → S∗ inducing the action of On on the
pointed space Sn, seen as the one point compactification of Rn.�

Denis: I forgot
to explain at some
point why BG is
the groupoid with
one object and G
automorphisms – add
it somewhere!

Proof. We note that V r {0} → X is a fiber bundle (and therefore a Serre
fibration), and so V r{0} is the colimit of the functor X → S sending x to Vxr{0}.
But then, using that cof : Fun([1],S )→ S∗ commutes with colimits, we have

Th(V ) ∼= cof(V r {0} → V ) ∼= colim
x∈X

cof(Vx r {0} → Vx) ∼= colim
x∈X

SVx .

�

75
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Definition 6.4. The Thom spectrum XV of p : V → X is the suspension
spectrum of Th(V ). It is equivalent to the colimit of the composition

X → BOn → BO → Sp .

More generally, if f : X → BO × Z is a virtual vector bundle, we can define the
Thom spectrum of f Xf as the colimit of the composition

X → BO × Z→ Sp

where the second functor is induced by the map of E1-groups

J : O = colimOn → colim Aut∗(S
n) ∼= AutSp(S) .

Finally sometimes we will write XV for the colimit of a functor S : X → Sp
such that S(x) has value ΣnxS for every x ∈ X. These are called stable spherical
fibrations.

Lemma 6.5. Let V : X → Sp and W : Y → Sp be two stable spherical fibrations.
Then if we write V ⊗W for the composite

V ⊗W : X ×W → Sp× Sp
⊗−→ Sp

we have (X ×W )V⊗W ∼= XV ⊗ YW . In particular we have XΣV ∼= ΣXV .

Proof. Follows from the fact that the tensor product commutes with colimits
in each variable. �

In some sense Thom spectra are the easiest type of spectra that there is: homol-
ogy and cohomology of Thom spectra are easy to compute in terms of the homology
and cohomology of the base.

Definition 6.6. If V is a virtual vector bundle over X of rank n (or more
generally a stable spherical fibration), and E is a homotopy ring spectrum a Thom
class is a map θ : XV → ΣnE such that for every x ∈ X the map ΣnS ∼= {x}Vx →
X → ΣnE is an invertible element of the ring π0E. A Thom class is sometimes
also called an E-orientation of V , and a vector bundle that admits a Thom class is
called E-orientable.

Remark 6.7. A Thom class is the same datum as a natural transformation
SVx → ΣnE such that for every x ∈ X the composite

E ⊗ SVx → E ⊗ ΣnE → ΣnE

is an equivalence. That is, it is equivalent to an equivalence of the local system
E ⊗ SVx with the constant local system at E.

Example 6.8. If E = HF2 every stable spherical fibration is E-orientable.
Indeed the functor X → Sp sending x to HF2 ⊗ SVx takes values in the full sub-
groupoid of spectra spanned by ΣnHF2. But this is contractible, and so it is a
constant functor.

Example 6.9. If E = HZ an orientation of a vector bundle V : X → BOn is
equivalent to a nullhomotopy of the composite

X → BOn → BC2 .

Indeed BC2 × Z is the subgroupoid of Sp spanned by spectra of the form ΣnHZ.
But this is the same thing as a lift of V to the fiber BSOn of BOn → BC2. It is
left as an exercise to the reader to see that this is the same thing as a trivialization
of the determinant line bundle (that is that homotopy classes of maps X → BSOn
correspond to pairs of a vector bundle of rank n together with a trivialization of the
determinant line bundle).
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Theorem 6.10 (Thom isomorphism). Let X be a space, V be a stable spherical
fibration of rank n over X and θ : XV → ΣnE a Thom class. Then there are
equivalences

E ⊗XV ∼= E ⊗ ΣnΣ∞+ X and map(XV , E) ∼= map(ΣnΣ∞+ X,E) .

Proof. We have that

E ⊗XV ∼= colim
X

E ⊗ SVx ∼= colim
X

ΣnE ∼= E ⊗ ΣnΣ∞+ X .

Moreover

map(XV , E) ∼= lim
X

map(SVx , E) .

Now we need to prove that an orientation induces a natural equivalence

map(SVx , E) ∼= Σ−nE .

But note that we have a map

Σ−nE → Σ−n map(E,E) ∼= map(ΣnE,E)→ map(SVx , E)

that is an equivalence for every x ∈ X, and therefore it is an equivalence after
taking the limit. �

2. Spanier-Whitehead duality

Definition 6.11. Let X ∈ Sp. A spectrum Y is called the dual of X if there
are maps

ev : X ⊗ Y → S coev : S→ Y ⊗X
and commutative diagrams

X X ⊗ Y ⊗X

X

ev⊗1X

1X
1X⊗coev and

Y Y ⊗X ⊗ Y

Y

1Y ⊗ev

1Y
coev⊗1Y

If X has a dual we write it with DX and call it the Spanier-Whitehead dual
of X. In this case we say that X is dualizable�.

Denis: strongly?

Lemma 6.12. Let X be a spectrum. Then X is dualizable if and only if there
is a spectrum DX and a natural equivalence

DX ⊗− ∼= map(X,−) .

In particular if X is dualizable, its dual is necessarily of the form DX ∼= map(X,S).

Proof. If X is dualizable, the functor DX ⊗ − is the right adjoint of the
functor X ⊗ − because we can use ev and coev to build the triangular identities.
Therefore we have an equivalence

map(X,Z) ∼= DX ⊗ Z

for every Z ∈ Sp.
Viceversa, suppose that there is a spectrum DX with the above property. Then

it is necessarily of the form DX ∼= map(X,S). In particular there is a map

ev : X ⊗ DX ∼= X ⊗map(X,S)⊗X → S .

But there is also a map

S→ map(X,X) ∼= DX ⊗X ,

adjoint to the identity map X → X. It is then an exercise to see that these two
maps satisfy the defining identities for a dual object. �
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Exercise 37. Show that every functor F : Sp→ Sp commuting with all colimits
is of the form F (X) ∼= F (S)⊗X. Therefore X is dualizable if and only if map(X,−)
commutes with all colimits.

Remark 6.13. Suppose X is a dualizable spectrum with dual DX. Then for
any spectra Z, T there is a natural equivalence

map(X ⊗ Z, T ) ∼= map(Z,DX ⊗ T )

In particular, by choosing Z = T = S we have

DX ∼= map(S,DX ⊗ S) ∼= map(X,S) .

Therefore X 7→ DX is a functor from dualizable spectra to spectra (given by the
restriction of map(−,S)).

Lemma 6.14. Let f : X → Y be a map of dualizable spectra, then the cofiber is
still dualizable with dual given by the fiber of Df .

Proof. We have for any spectrum Z an equivalence

map(cof f, Z) ∼= fib(map(Y,Z)→ map(X,Z)) ∼=
∼= fib(DY ⊗ Z → DX ⊗ Z) ∼= fib(DY → DX)⊗ Z .

�

Proposition 6.15. A spectrum is dualizable if and only if it is finite.

Proof. Since S is obviously dualizable, all finite spectra are dualizable (add
details!). Now let X be a dualizable spectrum. Note that map(X,−) := DX ⊗ −
commutes with all colimits, therefore X is compact. We conclude that X is finite
by exercise ... �

Remark 6.16. Let X be a dualizable spectrum and E a spectrum. Then we
have a natural equivalence

E∗DX ∼= π∗(DX ⊗ E) ∼= π∗map(X,E) ∼= E−∗X .

Theorem 6.17 (Adams’ homological Brown representability). Let E∗ : hS∗ →
grAb be a homology theory. Then there is a spectrum E and a natural equivalence

E∗(X) ∼= π∗(E ⊗X) .

3. Atiyah duality

In this section we will identify the dual of a closed manifold (or more generally a
compact manifold with boundary) as a certain Thom spectrum. This combined with
the Thom isomorphism (Theorem 6.10) will allow us to deduce Poincaré duality
as a corollary. The theorem is usually attributed to Atiyah, which proved it in
the present version as [Ati61, Proposition 3.2], although the first version of the
theorem appears as [MS60, Lemma 2]. In this section we will broadly follow the
exposition in [Rez13], although without using the language of Frobenius algebras.

Lemma 6.18. Let M be a closed manifold and N be an embedded closed sub-
manifold with normal bundle ν. Then there is a well-defined homotopy equivalence

M/M rN ∼= Th(ν)

depending only on the isotopy class of the embedding. In particular we have a map
M → Th(ν) which is called the Pontryagin-Thom collapse map.
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Proof. By the tubular neighborhood theorem, we can find an embedding
ν ⊆ E that is unique up to isotopy. Then the open cover {M rN, ν} of M yields
a homotopy cocartesian square

ν r 0 ν

M rN M

and this induces an equivalence of horizontal cofibers, as required. �

Remark 6.19. More generally, in the situation of lemma ?? if V is a vector
bundle on M we obtain a map

Th(V )→ Th(V ⊕ ν)

by considering the embedding of M into the disc bundle of V . Finally, if V is a
virtual vector bundle on M we obtain a map

MV → NV⊕ν

whose homotopy class depends only on the isotopy class of the embedding. We will
write the map as PT (j, V ) or simply PT (j) where j : N →M is the embedding.

Example 6.20. Let M,N be two closed manifolds. Then for every m ∈M the
Pontryagin-Thom map induced by the embedding N →M ×N sending x to (m,x)
is the map

Σ∞(M ×N)+
∼= Σ∞M+ ⊗ Σ∞N+ → Σ∞+S

TxMΣ∞N+

where M → STxM is the Pontyagin-Thom collapse map for M . In particular if
M ∼= Sn this is homotopic to the identity on the nontrivial summand.

Theorem 6.21 (Whitney’s embedding theorem). Let M be a closed smooth
manifold. Then the space

colim
n

Emb(M,Rn)

is contractible. In particular M can always be embedded in some Rn and for n
sufficiently big any two embeddings are isotopic.

Proof. It suffices to show that every continuous map ∂∆m ×M → Rn which
is an embedding on {t} ×M can be extended to a continuous map ∆m ×M → Rn
if n is sufficiently big. �

Definition 6.22. Let us choose an embedding of M into Rn. Since M is com-
pact, we can extend it to an embedding of M into Sn. Then we have a Pontryagin-
Thom collapse map

S⊕ Σ−nS = Σ−nΣ∞Sn+ →Mn−ν ∼= M−TM .

Note that the component on Σ−nS is nullhomotopic, and so we can safely discard
it. Since all embeddings of M into Rn are isotopic for n sufficiently large, this
map is well defined up to homotopy. We call the resulting element of π0M

−TM the
fundamental class of M .

Equipped with this structure we define the evaluation and coevaluation maps

ev : Σ∞+ M ⊗M−TM → Σ∞+ M → S

where the first map is the Pontryagin-Thom collapse map for the diagonal M →
M ×M and the second induced by the canonical map M → ∗. The coevaluation
map instead is the composite

coev : S→M−TM → Σ∞+ M ⊗M−TM
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where the first map is the fundamental map and the second is induced by the
diagonal map M →M ×M , twisted by the virtual vector bundle (−TM, 0).

Our goal is to prove the following result

Theorem 6.23 (Atiyah duality). The evaluation and coevaluation maps de-
scribed above exhibit M−TM as the Spanier-Whitehead dual of Σ∞+ M .

Corollary 6.24 (Poincaré duality). Let E be a homotopy ring spectrum and
M a manifold equipped with an E-orientation of the tangent bundle. Then there is
a natural isomorphism

EdimM−∗M ∼= E∗M .

Proof. Combining Atiyah duality and the Thom isomorphism we have

E∗M ∼= π−∗map(Σ∞+ M,E) ∼= π−∗(M
−TM⊗E) ∼= π−∗(Σ

− dimMΣ∞+ M⊗E) ∼= EdimM−∗M .

�

To prove this result we will need to introduce for the first time the notion of
transversality.

Definition 6.25. Let f : M →M ′ be a map of smooth manifolds and N ′ ⊆M ′
be a submanifolds. We say that f is transversal to N ′ if for every point x ∈ f−1N ′

we have that TfxN
′ and df(TxM) generate TfxN

′.

Lemma 6.26. Let f : M → M ′ be a map of smooth manifolds transverse to
some submanifold N ′ ⊆ M ′. Then f−1N ′ is a submanifold of M and df restricts
to an isomorphism of the normal bundle of N in M with the pullback of the normal
bundle of N ′ in M ′.

Proof. This is basically the implicit function theorem after choosing a neigh-
borhood of fx such that the pair (M ′, N ′) is isomorphic to (Rm,Rn). �

Lemma 6.27. Let f : M1 → M2 be a map of smooth manifolds transverse to
some submanifold N2 ⊆ M2 and let N1 = f−1N2. Moreover let V be a vector
bundle over M2. Then there is a commutative diagram

Mf∗V
1 MV

2

N
f∗(V⊕ν)
1 NV⊕ν

2

Proof. We can find a tubular neighborhood j : ν ⊆ M2 for N2 such that
f−1ν is a tubular neighborhood for N1 (e.g. by picking any tubular neighborhood
for N2 and isotopying it so that it lands in trivializing charts for N2). Then the
commutativity of the diagram follows immediately from the construction of the
Pontryagin-Thom map. �

Proof of Atiyah duality. We need to prove that ev and coev satisfy the
relations in definition ... Let us do the first. Consider the diagram

(M ×M)(−TM,−TM) ∼= M−TM ⊗M−TM M−TM ⊗ Σ∞M+ ⊗M−TM M−TM ⊗ Σ∞M+

M−TM M−TM

f∗ PT (g)

1⊗ev (pr1)∗coev⊗1

where f : M × M → M × M × M is the map sending (x, y) to (x, x, y) and
g : M ×M →M ×M ×M is the closed embedding sending (x, y) to (x, y, y). Note
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that f and g are transverse and fit into a pullback diagram

M M ×M

M ×M M ×M ×M

∆

∆ g

f

and so by lemma 6.27 we have that the top row can be also written as the compo-
sition

(M ×M)−TM
PT (∆)−−−−→M

∆∗−−→M−TM ⊗ Σ∞M+

and therefore the whole composition is homotopic to

M−TM
PT (∆(j×1)−−−−−−−→M−TM

(pr1∆)∗−−−−−→M−TM

and we claim that both arrows in this composition are identities. Indeed pr1∆ =
idM and the embedding (j, idM ) : M → SN × M is isotopic to (0, idM ) whose
Pontryagin-Thom collapse map is the identity.

Similarly for the other composition we have a diagram

Σ∞M+ ⊗M−TM Σ∞M+ ⊗M−TM ⊗ Σ∞M+ Σ∞M+ ⊗ Σ∞M+

Σ∞M+ Σ∞M+

g∗ PT (f)

ev⊗id
(pr2)∗1⊗PT (j)

id⊗coev

and we can use the transversality of f and g again to replace the composition with
the composition

Σ∞M+
PT (id,j)−−−−−→ Σ∞M+

(pr2∆)∗−−−−−→ Σ∞+ M

and finally use the fact that the embedding (id, j) is isotopic to (id, 0) to conclude.
�

In fact one can do prove an analogous theorem for manifolds with boundary,
although this requires some more care with the embeddings. Let say that an embed-
ding of manifolds with boundary N ⊆M is calle neat if ∂M ∩N = ∂N and locally
near the points of ∂N it is diffeomorphic to [0,∞)×Rk ⊆ [0,∞)×Rn. Then one can,
similarly as before, construct Pontryagin-Thom collapse maps MV → Th(V ⊕ ν)
where V is a vector bundle over M and ν is the normal bundle of N in M .

Let M be a manifold with boundary and embed it neatly into Dn (such an
embedding always exists for n sufficiently large by ??). Then we can find a tubular
neighborhood ν ⊆ Dn of M such that ν ∩ ∂Dn is a tubular neighborhood of ∂M
in ∂Dn ([Kos07, Theorem III.4.2]). Therefore we can construct a commutative
square

Sn−1 ∼= ∂Dn Th(ν|∂M )

Dn Th(ν)

and therefore after stabilizing a commutative diagram

Σ−1S (∂M)−1−T∂M Σ∞∂M+ ⊗M−TM

0 M−TM Σ∞M+ ⊗M−TM

where the top right arrow is the Pontryagin-Thom collapse map induced by the
diagonal embedding ∂M ⊆ ∂M ×M . Therefore we get a map between vertical



82 6. MANIFOLDS AND DUALITY

cofibers
coev : S→ Σ∞M/∂M ⊗M−TM .

Viceversa, to construct the evaluation map we need to consider map on vertical
cofibers in the diagram

M−TM ⊗ Σ∞∂M+ Σ−1Σ∞∂M+ Σ−1S

M−TM ⊗ Σ∞M+ 0 0

where the top horizontal map is the Pontryagin-Thom collapse map. Once we have
this construction the proof proceeds in a similar fashion as before.

Theorem 6.28 (Atiyah duality for manifolds with boundary). Let (M,∂M) be
a compact manifold with boundary. Then there is an equivalence of spectra

DΣ∞M/∂M ∼= M−TM .

Corollary 6.29. Let M be a closed manifold and V be a virtual vector bundle.
Then there is an equivalence of spectra

DMV ∼= M−V−TM .

Proof. By adding enough copies of the trivial bundle to both sides we can
assume that V is a vector bundle. Then put a metric on V and let D(V ) be the
unit disc bundle. This is a manifold with boundary such that MV ∼= D(V )/∂D(V )
and so we have

DMV ∼= DD(V )/∂D(V ) ∼= D(V )−T (D(V )) ∼= M−V−TM ,

where in the last passage we have used that the projection D(V ) → M is an
equivalence that identifies T (D(V )) with V + TM . �

Exercise 38. If M is a manifold with boundary, the Spanier-Whitehead dual
of the boundary map M/∂M → ΣM+ is the map M−TM → (∂M)−1−T∂M (hint:
ΣM+ = W/∂W where W = M×[0, 1]. In particular the composite S→ (∂M)−T∂M →
M1−TM is nullhomotopic (since it is a shift of the dual to the composite M/∂M →
Σ∂M+ → S0).

4. Thom spectra and bordism

In this section we will use Thom spectra to study the bordism groups of man-
ifolds. This section is essentially a modern retelling of Chapter II of [Sto68].

For the rest of the section we fix a map ξ : B → BO. We will denote with Mξ
the Thom spectrum of the corresponding rank 0 stable vector bundle.

Definition 6.30. Let V : X → BO a virtual vector bundle of rank 0. Then
a ξ-structure on V is the datum of a factorization Vξ of V through ξ. When a
virtual vector bundle has rank different than 0, a ξ-structure on V is the same as a
ξ-structure on V − rkV .

Example 6.31. (1) When B = BSO = fib(BO → BC2) a ξ-structure is
just an orientation.

(2) When B = BU a ξ-structure is called a stable complex structure.
(3) When B = ∗ a ξ-structure is called a stable framing.

Exercise 39. Show that the datum of a stable framing on a vector bundle V is
equivalent to an equivalence class of pairs (n, ϕ) where ϕ : V ⊕ Rn ∼= RrkV+n is a
trivialization of V ⊕Rn and two such pairs are equivalent when they are isomorphic
after adding a trivial vector bundle.
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Definition 6.32. Let M be an n-dimensional manifold (possibly with bound-
ary). Then a ξ-structure on M is a ξ-structure on its stable normal bundle −TM .
That is, it is a lift of n− TM : M → BO along ξ.

Construction 6.33. Let W be a manifold with boundary M . Then notice
that there are essentially two isomorphisms TW |M ∼= R ⊕ TM , given by taking
the “inward” or the “outward” normal. We choose always the inward pointing
normal, so that we have a consistent isomorphism of stable vector bundles (dimW−
TW )|M ∼= dimM − TM . In particular any ξ-structure on W induces a ξ-structure
on M .

Definition 6.34. Let us fix a non-negative integer n ≥ 0. Then the n-
dimensional cobordism group Ωξn is the quotient of the commutative monoid
of n-manifolds with ξ-structure under disjoint union by the submonoid of those that
are boundaries of (n+ 1)-manifolds with ξ-structure.

Lemma 6.35. The commutative monoid Ωξn is a group.

Proof. Let (M,ϕ) be a closed n-manifold with ξ-structure. Then let us con-
sider the manifold with boundary M × [0, 1]. Its tangent bundle is just equivalent
to TM ×T [0, 1] ∼= TM ×R, where we identify it with the “left-to-right” orientation
(i.e. the one induced by the canonical embedding [0, 1] ⊆ R). Then the inclusion
M ⊆M × [0, 1] is a homotopy equivalence, and so the ξ-structure on M induces a
ξ-structure ϕ̃ on M × [0, 1] such that its restriction to M × {0} is ϕ. Therefore we
have that

∂(M × [0, 1], ϕ̃) ∼= (M,ϕ)q (M,−ϕ)

for some other ξ-structure −ϕ. But then [M,ϕ] + [M,−ϕ] = 0 in Ωξn. �

Remark 6.36. The ξ-structure −ϕ is given by the same lift ϕ : M → B but
the homotopy of the composite M → B → BO with dimM − TM is twisted by the
generator of π1BO = Z/2.

Construction 6.37. Let Mξ be the Thom spectrum of the virtual vector bun-
dle ξ : B → BO. Let (M,ϕ) be a closed n-manifold with ξ-structure. Then the
class [M,ϕ] ∈ πnMξ is given by the composite

ΣnS→Mn−TM ϕ∗−−→Mξ

where the first map is the n-th suspension of the fundamental class of M and ϕ∗ is
the map induced on Thom spectra.

Lemma 6.38. Let (M,ϕ) and (M ′, ϕ′) be two closed n-manifolds with ξ-structure.
Then [M qM ′, ϕq ϕ′] = [M,ϕ] + [M ′, ϕ′].

Moreover if (M,ϕ) is the boundary of a compact manifold with ξ-structure
(W,ψ), we have [M,ϕ] = 0. Therefore the assignment (M,ϕ) 7→ [M,ϕ] induces a
map of groups

Ωξn → πnMξ .

Proof. The first statement follows since the fundamental class of a disjoint
union is the direct sum of the fundamental classes, because it is the dual of the
map (M qM ′)+ → S0. To prove the second statement we use exercise 38. Suppose
(M,ϕ) is the boundary of (W,ψ). Then we can factor [M ] as

ΣnS→Mn−TM →Wn+1−TW →Mξ

due to the similar factorization of virtual vector bundles. But the composition of
the first two maps is nullhomotopic. �
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Theorem 6.39 (Pontryagin-Thom). The map

Ωξn → πnMξ

is an isomorphism of groups.

Example 6.40. This means for example that framed cobordism groups are
equivalent to the stable homotopy groups of spheres. You can use this fact to com-
pute low degree homotopy groups, in particular π0S and π1S are not hard to do by
hand.

Corollary 6.41. Let X be a space. Then πn(Mξ⊗Σ∞+ X) is equivalent to the
group of cobordism classes of triples (M,ϕ, f) where M is a closed n-manifold, ϕ
is a ξ-structure on M and f : M → X is a continuous map.

Proof. Note that Mξ ⊗ Σ∞+ X
∼= MξX where ξX : B × X → B → BO.

Therefore πn(Mξ ⊗ Σ∞+ X) is equivalent to ΩξXn . But it is immediate to verify
that a ξX class on a manifold is equivalent to the pair of a ξ-structure and a map
f : M → X.� �

Denis: Elaborate on
how we can reduce
to taking homotopy
classes of maps using
cylinders.

In order to prove the Pontryagin-Thom theorem, we need a couple of results
from differential topology.

Lemma 6.42. Let f : M → N be a proper continuous map of smooth mani-
folds. Then f is proper homotopic two a smooth map, that is there exists a proper
continuous map H : M×[0, 1]→ N such that H0 = f and H1 is proper and smooth.

Proof. This is an immediate consequence of [Kos07, Theorem III.2.5.(2)].
�

Theorem 6.43 (Transversality theorem). Let f : M → M ′ be smooth map
of smooth manifolds and N be a compact submanifold of M ′. Then there is a
smooth homotopy H : M × [0, 1] → M ′ such that H0 = f , H is the constant
homotopy outside of a relatively compact neighborhood of N and H1 is transverse
to N . Moreover if f is already transverse to N when restricted to a closed subset
A, we can choose the homotopy to be relative to A.

Proof. This is an immediate consequence of [Kos07, Corollary IV.2.4]. �

Then we can prove the Pontryagin-Thom theorem. The proof will be divided
in two parts: surjectivity and injectivity, which will be similar. Let us first prove
surjectivity. So suppose we are given a map f : ΣnS→Mξ. We need to show that
it comes from a manifold. First let Bn = B ×BO BOn and ξn be the rank n vector
bundle on Bn coming from Bn → BOn. Then we have

Mξ ∼= colim
k

Σ−kΣ∞ Th(ξk) .

Therefore we can find some k ≥ 0 such that f factors through a map Σn+kS →
Σ∞ Th(ξk). Moreover note that Th(ξk) is k-connected (since it is a colimit of Sk,
and k-connected spaces are closed under colimits). Therefore up to increasing k we
can assume that n + k is in the stable range for Σ∞ Th(ξk), and so f comes from
a map f : Sn+k → Th(ξk). Now let us recall that BOk = Grk, the Grassmannian
of k-planes in R∞. We can write

Grk =
⋃
m

Grk(Rm)

where Grk(Rm) is the subspace of those k-dimensional subspaces lying in Rm.
Equivalently, it is the space of {P ∈ Mm(R) | P = TP, PTP = I, rkP = m},
and therefore Grk(Rm) is a compact Hausdorff space. In fact using the charts
of ... it is a compact smooth manifold. Therefore there exist some m such that
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f comes from a map Sn+k → Th(ξk,m) where ξk,m is the restriction of ξk to
Bk,m = B ×BO Grk(Rm). Therefore we can assume that f is a continuous pointed
map Sn+k → Th(ξk,m).

Let ηk,m be the universal bundle over Grk(Rm), so that ξk,m = ξ∗ηk,m. Now
recall that Th(ηk,m) is the one point compactification of ηk,m by lemma 6.2. Let
U = f−1ξk,m. Then U is a open subset of Sk+m, in particular it is a smooth
manifold. Moreover the restriction to U of the map

Sn+k → Th(ξk,m)→ Th(ηk,m)

is a proper continuous map U → ηk,m and both objects are smooth manifolds.
Therefore by lemma 6.42 we can assume up to homotopy that f |U is smooth.
Moreover by the transversality theorem 6.43 we can also assume that it is transverse
to the zero section Grk(Rm) ⊆ ηk,m, which is a compact submanifold. Then we let
M = f−1 Grk(Rm), which therefore is a compact submanifold of Sn+k. Moreover
its normal bundle is identified with the pullback of ηk,m and so it has a canonical
ξ-structure ϕ given by the restriction of f to M . Unwrapping the definitions we
see that (M,ϕ) indeed is a closed manifold with ξ-structure such that [M,ϕ] = [f ].

Now to prove that it is injective. Let (M,ϕ) be an n-manifold such that its
class in πnMξ is trivial. This means that the composite

ΣnS→Mn−TM →Mξ

is nullhomotopic. Now we claim that we can find k � 0, an embedding M ⊆ Rn+k

with normal bundle ν and a smooth map g : M → Grn,k classifying ν such that
the map Mn−TM →Mξ is homotopic to the composite

Mn−TM ∼= Σ−kΣ∞ Th(ν)
Th(g)−−−−→ Σ−kΣ∞ Th(ξk,m)→Mξ

and the composite

f : Sn+k → Th(ν)
Th(g)−−−−→ Th(ξk,m)

is nullhomotopic. Indeed, M is a finite CW complex, in particular a finite space,
and so the map

g : M → BO = colim
k,m

Grk,m

classifying n− TM factors through some finite Grk,m. Write ν for the pullback of
ξk,m under g (this is a vector bundle whose K-theory class is n+k−TM). Moreover
we can, after possibly enlarging kchoose an embedding M ⊆ Rn+k such that the
normal bundle is isomorphic to ν. This is because if two vector bundles V, V ′ have
the same K-theory class, there’s some m� 0 such that V ⊕ 1m ∼= V ′ ⊕ 1m

′
.

Finally we need to show that, up to possibly enlarging k, the composite

Sn+k → Th(ν)→ Th(ξk,m)

But this follows as before from the Freudenthal suspension theorem and the com-
pactness of S.

Note that the preimage of ξk,m under f is exactly ν ⊆ Sn+k, in particular
f |ν is smooth. Therefore there is some continuous map H : Dn+k+1 → Th(ξk,m)
restricting to f on the boundary. Without loss of generality we can take some ε > 0
such that H(tx) = f(x) for all t ∈ [1 − ε, 1]. By applying again the transversality
theorem 6.43 we can changeH up to homotopy relative to {x ∈ Dn+k | |x| ≥ 1−ε/2}
so that pH is smooth in a neighborhood of Grk,m and transverse to it (where
p : Th(ξk,m) → Th(ηk,m) is the canonical projection. Finally this shows that
H−1 Grk,m is a manifold with boundary exactly M = H−1 Grk,m ∩∂Dn+k+1 and
whose normal bundle can be given a ξ structure (since its normal bundle is some
subspace of Dn+k+1 and the whole map Dn+k+1 → Grk,m → BO has a lift to B).
This concludes our thesis.
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Remark 6.44. The Pontryagin-Thom theorem 6.39 can in fact be strengthened.

There exists an ∞-category Cobξd whose objects are (d− 1)-dimensional manifolds
with ξ-structure and morphisms are bordisms between them. Then the Galatius-
Madsen-Tillman-Weiss theorem ([?, ]) says that its realization (i.e. the∞-groupoid
obtained by inverting all arrows) has homotopy type

|Cobξd | ∼= Ω∞ΣMTξd

where Tξd is the composite

Tξd : B ×BO BOd
η∗dξ−−→ BOd

d−ηd−−−→ BO

and BOd → BO is the map classifying the virtual vector bundle −ηd (so the op-
posite of the tautological bundle), while in the pullback we take the usual inclusion
BOd → BO. This E∞-space can be thought of as a categorification of the (d−1)-st
bordism group as we have defined it. Using the Galatius-Madsen-Tillman-Weiss,
the Pontryagin-Thom theorem can be deduced from the fact that the map

ΣdMTξd ∼= M(d+ Tξd)→Mξ

is d-connected, which follows from connectedness of the map d− ηd : BOd → BO.

5. The Steenrod problem

The Steenrod problem is a classical topological problem, which was the main
motivation for Thom to develop this machinery. It comes in two flavours: oriented
and unoriented. Recall that every closed smooth d-manifold M has a fundamental
class [M ] ∈ Hd(M ;Z/2). Moreover, if M is oriented the class can be lifted to a
class [M ] ∈ Hd(M ;Z).

• Unoriented: Let X be a topological space. For which classes α ∈
Hd(X;Z/2) there exists a closed d-manifold M and a continuous map
f : M → X such that α = f∗[M ]?

• Oriented: Let X be a topological space. For which classes α ∈ Hd(X;Z)
there exists a closed oriented d-manifold M and a continuous map f :
M → X such that α = f∗[M ]?

Notice that there are Thom classes MO → HZ/2 and MSO → HZ representing the
fact that MO (resp. MSO) are the Thom spectra of the universal (oriented) vector
bundle. It is easy to see that these classes are an isomorphism on π0. Therefore we
can rephrase the Steenrod problem as asking what are the images of the maps

π∗(MO⊗Σ∞X+)→ π∗(HZ/2⊗Σ∞X+) and π∗(MSO⊗Σ∞+ X)→ π∗(HZ⊗Σ∞+ X) .

It turns out that MO is equivalent to a sum of Eilenberg-MacLane spaces. In
particular the projection MO → HZ/2 has a section. Therefore the map

π∗(MO ⊗ Σ∞X+)→ π∗(HZ/2⊗ Σ∞X+)

is always surjective, and the answer to the unoriented Steenrod problems is “al-
ways”. For the oriented case the situation is trickier, but we can already with what
we have done so far give a partial answer. In fact note that the map

MSO ⊗HQ→ HQ

has always a section (since every rational spectrum is a sum of Eilenberg-MacLane
spectra by lemma ..) and so it has a section. In particular the map

π∗(MSO ⊗ Σ∞X+)Q → H∗(X,Q)

is always surjective, so for every α ∈ Hd(X,Z) there exists n ∈ Z, and an oriented
d-manifold f : M → X with a map to X such that nα = f∗[M ].



A1. THE TRANSVERSALITY THEOREM 87

To study the integral problem one can try something more subtle. Using the
long exact sequence of the fiber sequence

t≥1MSO →MSO → HZ
we obtain that the subgroup we want to analyze is the kernel of the map

π∗(HZ⊗ Σ∞X+)→ π∗+1(t≥1MSO ⊗ Σ∞X+)

In particular one can compute the low degree homotopy groups of MSO (for ex-
ample, in dimension 1 and 2 noting that all oriented manifolds are boundaries,
and doing something more refined in dimension 3) and see that there is a map
t≥1MSO → Σ4HZ. Therefore we obtain an obstruction

H∗(X;Z)→ H∗+5(X;Z)

showing that all representable classes must be in the kernel. Thom computes ex-
plicitly this homology operation, and used it to prove the existence of a homology
class that cannot be represented.

6. Computing bordism spectra

Definition 6.45. Let p be a prime. Then the mod p Steenrod algebra is graded
abelian group

A∗ := H∗(HFp;Fp) = π−∗(HFp, HFp) .
It is given an algebra structure by composition.

Throghout the following, let p = 2.

Theorem 6.46. The Steenrod algebra is the graded associative algebra gener-
ated by elements {Sqi}i≥0 in degree i under the relations

Sq0 = 1, Sqi Sqj =

bi/2c∑
k=0

(
j − k − 1

i− 2k

)
Sqi+j−k Sqk ∀i < 2j .

Say that a sequence of positive integers I = (i0, i1, i2, . . . , ir) is admissible if

ij ≤ 2ij+1. If I is an admissible sequence write SqI = Sqi0 · · · Sqir . By convention

we set Sq∅ = 1.

Corollary 6.47. The elements SqI as I runs through the admissible sequences
form an additive basis for A∗.

Proposition 6.48. Let X,Y be two spectra. Then the endomorphism Sqn of
H∗(X ⊗ Y ) ∼= H∗X ⊗H∗Y can be written as

∑
i+j=n Sqi⊗ Sqj.

Proposition 6.49. Let X be a space. Then Sqi x = 0 if |x| > i and Sqi x = x2

if i = |x|.

Example 6.50. Let X = R¶∞. Then H∗X ∼= F2[x] for |x| = 1. Therefore we
have Sq0 x = x, Sq1 x = x2 and Sqi x = 0 for i > 2. Using this one can prove by
induction

Sqi xn =

(
n

i

)
xn+1 .

UNFINISHED

�
Denis: We need to
finish writing the
proof of Thom’s
theorem!

A1. The transversality theorem

INCLUDE A PROOF OF THE TRANSVERSALITY THEOREM FROM SARD’S
THEOREM FOLLOWING [Kos07, IV.2].
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A2. Atiyah duality for topological manifolds

SKETCH OF HOW TO USE MICROBUNDLES TO WIN!



CHAPTER 7

The Adams spectral sequences

In this chapter we will construct the Adams spectral sequence and do some ex-
ample computations, mainly following Adams’ blue book [Ada74]. Mark Behrens’
minicourse at MSRI in 2013 ([Beh]) is a good introduction for computations with
the Adams spectral sequence. The canonical reference for all the most important
computations is [Rav03].

Contrary to most expositions, we will use the action on the Steenrod algebra
on cohomology instead of the coaction of the dual Steenrod algebra on homology.
This will force us to impose some unnecessary finiteness hypothesis.�

Denis: After the
course is done I will
have to rewrite this
section using homol-
ogy

1. Exact couples and spectral sequences

Definition 7.1. A filtered spectrum is a functor X• : Z→ Sp where Z is the
poset of integers with the decreasing order. That is a filtered spectrum is a diagram
of the form

· · · → Xs+1 → Xs+1 → Xs → Xs−1 → · · · .
We will write X∞ := limX• and X−∞ := colimX•.

The associated graded of a filtered spectrum X• is the spectrum

gr(X•) :=
⊕
s∈Z

grs(X•)

where grs(X•) is the cofiber of the map Xs+1 → Xs.

The goal in this chapter is to find a way to recover information about X∞ and
X−∞ from gr(X•).

Example 7.2. Let X be any spectrum. Then the Postnikov tower of X is the
filtered spectrum

t≤•X : · · · t≤s+1X → t≤sX → t≤s−1X → · · · .
We have grs(t≤•X) = ΣsHπsX, X∞ = X and X−∞ = 0.

Dually the Whitehead tower of X is the filtered spectrum

t≥•X : · · · t≥−s−1X → t≥−sX → t≥−s+1X → · · · .
We have grs(t≥•X) = Σ−sHπ−sX, X∞ = 0 and X−∞ = X.

One can also tensor t≤•X and t≥•X by another spectrum Y . If Y is bounded
below we have (t≥•X ⊗ Y )∞ = 0 and (t≥•X ⊗ Y )−∞ = X ⊗ Y .

Example 7.3. We can do a parametrized version of the previous example.
Let p : X → B be a map of spaces and F be a spectrum. Then we can write
X = colimb∈B Xb where Xb := X ×B {b}. Consider now the filtered spectrum
colimb∈B t≥•(F ⊗Σ∞+ Xb). It has associated graded colimb∈B Hπs(F ⊗Xb) (what’s
called the cohomology with local coefficients of the local system πs(F ⊗Xb)).

Lemma 7.4 (Milnor exact sequence). We have π∗X
−∞ ∼= colims π∗X

s and
there is a short exact sequence

0→ lim
s

1π∗+1X
s → π∗X

∞ → lim
s
π∗X

s → 0 .

89
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Proof. This follows from the fiber sequence

X∞ →
∏
s

Xs →
∏
s

Xs

�

Definition 7.5. An (unrolled) exact couple is a diagram

· · · As+2 As+1 As As−1 · · ·

Es+2 Es+1 Es Es−1 · · ·

i

j

i

j

i

j

i

j
k k k k k

where the triangles are exact (that is ker i = im k, ker j = im i and ker k = im j.
Here we let As be Es are elements of some abelian category (typically graded R-
modules for some ring R, but more general objects sometimes appear).

Example 7.6. If X• is a filtered spectrum we have an exact couple of the form

· · · π∗X
s+2 π∗X

s+1 π∗X
s π∗X

s−1 · · ·

π∗ grs+2(X) π∗ grs+1(X) π∗ grs(X) π∗ grs−1(X) · · ·

i

j

i

j

i

j

i

j
k k k k k

where the maps i and j have degree 0 and the map k has degree -1. All exact couples
appearing in these notes will be of this form.

Given an exact couple we will set A−∞ := colimsA
s, A∞ := limsA

s and
RA∞ := lims

1As. Our goal is often going to be to reconstruct A∞ or A−∞ using
information contained in Es. We define increasing filtrations on A∞ and A−∞ by

F sA−∞ := =(As → A−∞) and F sA∞ = ker(A∞ → As) .

The first step

Lemma 7.7. Let Â−∞ := limsA
−∞/F sA−∞ and iA∞ = ker(A∞ → A−∞).

Then we have

Â−∞ ∼= lim
m≥n

colim
n

FnA−∞/FmA−∞ and iA∞ ∼= lim
m≥n

colim
n

FnA∞/FmA∞ .

In particular if A−∞ = 0 we have

A∞ ∼= lim
m≥n

colim
n

FnA∞/FmA∞ ,

while if As = 0 for s� 0 (or more generally if A∞ = 0 and the maps we have

A−∞ ∼= lim
m≥n

colim
n

FnA−∞/FmA−∞ .

The goal of spectral sequences is to give a description of the groups Fn+1A±∞/FnA±∞

in terms of the groups Es. From that one can hope to reconstruct A±∞ using the
above lemma and solving “extension problems”

0→ FnA±∞/FmA±∞ → Fn+1A±∞/FmA±∞ → Fn+1A±∞/FnA±∞ → 0

Definition 7.8. A spectral sequence is an object E (typically a bigraded abelian
group) together with correspondences dr : E → E such that ker dr = dom dr+1 and
im dr = ind dr+1. We let Zr = ker dr and Br = im dr.
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Definition 7.9. We let

Zsr = {x ∈ Es | kx ∈ im ir−1}, Zs∞ =
⋂
r

Zsr .

Bsr = {x ∈ Es | ∃y ∈ ker ir−1 jy = x}, Bs∞ =
⋃
Bsr

Esr = Zsr/B
s
r

Note that there is a map dr : Esr → Es+rr sending x to jy where y ∈ As+r is
such that iry = kx. This has the property that (dr)2 = 0, ker dr = Zsr+1/B

s
r and

im dr = Bsr+1/B
s
r , so that the homology of dr is Esr+1.

The collection ({Esr}, {dr}) is called the spectral sequence associated to the
exact couple. The group Esr is called the r-th page of the spectral sequence.

We can define Zs∞ :=
⋂
r Z

s
r , Bs∞ :=

⋃
r B

s
r and Es∞ := Zs∞/B

s
∞. The elements

of Zs∞ are called the permanent cycles of the spectral sequence

Let us define REs := limr
1Zsr = limr

1Zsr/B
s
∞. This group is the main (of-

ten the only) difference between the E∞ page of the spectral sequence and the
associated graded.

Lemma 7.10. Suppose REs = 0 for every s. Then there is a short exact
sequence

0→ F sA−∞/F s+1A−∞ → Es∞ → F sA∞/F s+1A∞ → 0 .

Proof. If we have x ∈ F sA−∞ we want to send it to the image jx̃ of a lift
x̃ ∈ As. This is well defined since any two lifts differ by an element of ker ir for
r sufficiently big. Moreover im j = ker k ⊆ Zs∞ so this map lands in Es∞. Its
kernel is exactly those elements such that jx̃ ∈ Bs∞ or equivalently such that there
is y ∈ ker j = im i such that x̃ − y ∈ ker i∞. But these are exactly the elements
coming from F s+1A−∞. So we have obtained the first half of our exact sequence
and we have shown that the cokernel is Zs∞/ ker k.

0→ F sA−∞/F s+1A−∞ → Es∞ → Zs∞/ ker k → 0 .

To prove the thesis we need to show Zs∞/ ker k ∼= F sA∞/F s+1A∞. We have
a map F sA∞ → ker i ⊆ As+1 whose kernel is exactly F s+1A∞. On the other
hand Zs∞/ ker k ∼= k(Zs∞) ⊆ ker i and the image of F sA∞ lies in this subgroup by
definition of Zs∞. Therefore it is enough to show that the map F sA∞ → k(Zs∞) is
surjective. Note that

k(Zs∞) = ker i ∩
⋂
n

im(As+n → As+1)

Write

Qs :=
⋂
n

im(As+n → As)

We claim that i(Qs+1) = Qs. Indeed we have a short exact sequence

0→ Zsr/ ker k → im(As+n → As+1)→ im(As+n → As)→ 0

and so by passing at the limit and using REs = 0 we get a short exact sequence

0→ Zs∞/ ker k → Qs+1 → Qs → 0

Finally, since Qs+1 → Qs is surjective, we obtain that Qs = im(A∞ → As) (one
inclusion is obvious, the other follows by constructing by induction a compatible
system of lifts), thus proving the thesis. �
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Example 7.11. Let us consider the filtration of example 7.2. This produces the
Atiyah-Hirzebruch spectral sequence

Hp(X;πqE)⇒ Ep+qX .

Doing the parametrized version we obtain the Serre spectral sequence

Hp(B;EqF )⇒ Ep+qX

where the left hand side is the homology of the base with local coeffients given by
the E-homology of the fiber with the obvious π1-action.

Remark 7.12. When X is a ring spectrum one can ask the filtration to be
a filtration of rings. In that case the spectral sequence becomes multiplicative: all
pages Esr have a ring structure and the differentials dr become derivations.�

Denis: Find the mas-
ter thesis of the per-
son working out this
example explicitly and
cite it...

2. The Adams spectral sequence

From now on let p be a prime number (2 in every example we will consider).

Definition 7.13. Let X be a spectrum. The Adams filtration on its homo-
topy groups π∗X is the decreasing filtration where F≥sπ∗X is the subgroup spanned
by those maps that can be written as the composition of s-maps that are trivial on
HFp-homology. One can define similarly a filtration on π∗map(Y,X) for any Y .

Lemma 7.14. Let X be a spectrum. Then there is an equivalence of spectra

HFp ⊗X ∼=
⊕
n∈Z

ΣnH(Hn(X;Fp)) .

Proof. Let {αi : ΣniS → HFp ⊗X} be a basis of H∗(X;Fp) over Fp. Then
for every i we can construct a map

ΣniHFp → HFp ⊗HFp ⊗X → HFp ⊗X
such that on the ni-th homotopy group it is the inclusion of the summanda Fpαi ⊆
Hi(X;Fp). Then summing all of them we obtain⊕

i

ΣniHFp → HFp ⊗X ,

which is an isomorphism on homotopy groups. �

Lemma 7.15. A map f : X → Y is nullhomotopic after being tensored by HFp
if and only if the composition X → Y

η⊗idY−−−−→ HFp ⊗ Y is nullhomotopic.

Proof. The lemma follows by looking at the two commutative diagrams

X HFp ⊗X

Y HFp ⊗ Y

η⊗idX

f HFp⊗f
η⊗idY

and

HFp ⊗X HFp ⊗HFp ⊗X HFp ⊗HFp ⊗ Y

HFp ⊗ Y

id⊗η⊗id

HFp⊗f

id⊗f

µ⊗id .

�

Proposition 7.16. Let HFp → S be the fiber of η : S→ HFp. The s-th layer

of the Adams filtration F≥sπ∗X is the image of the map π∗(HFp
⊗s ⊗X)→ π∗X,

and similarly for the filtration on π∗map(Y,X).

Proof. Induction using the previous lemma. �

Definition 7.17. Let X be any spectrum. We write Xs = HFp
⊗s ⊗ X and

then X∞ := limsX
s. Then the Adams spectral sequence is the spectral sequence

associated with the filtered spectrum map(Y,Xs). Its abutment is map(Y,X).
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Proposition 7.18. Suppose X is p-complete and connective. Then X∞ = 0,
that is the spectral Adams filtration is exhaustive.

The proof of the proposition will need a lemma

Lemma 7.19. Let {Yi} be a collection of connective spectra. Then the natural
map

HFp →
∏
i

Yi →
∏
i

(HFp ⊗ Yi)

is an equivalence.

Proof. Let us first assume Yi = HAi for Ai abelian groups. Then we need to
prove that the map

H∗(HFp;
∏
i

Ai)→
∏
i

H∗(HFp, Ai)

is an isomorphism. But we can use the universal coefficient theorem and write a
diagram

0 Hn(HFp,Z)⊗
∏
iAi Hn(HFp,

∏
iAi) Tor1(Hn−1(HFp;Z),

∏
iAi) 0

0
∏
i (Hn(HFp,Z)⊗Ai)

∏
iHn(HFp, Ai)

∏
i Tor1(Hn−1(HFp;Z), Ai) 0

and the left and right vertical arrows are isomorphisms sinceHn(HFp;Z) is a finitely
generated abelian group.

Now to prove it for general Yi it’s enough to prove it for t≤nYi for every n and
take the limit. But this follows by the case concentrated in one degree. �

Proof of proposition 7.18. First of all, note thatHFp⊗X is p-complete for
every spectrumX, since its homotopy groups are p-torsion. Therefore, by induction,
we see that Xs is p-complete for every s if X is. Moreover it is connective, since the
tensor product of connective spectra is connective. Therefore it follows that X∞ is
p-complete and bounded below (Milnor exact sequence). So it suffices to show that
HFp ⊗X∞ = 0. But we have a fiber sequence

X∞ →
∏
s

Xs →
∏
s

Xs

and therefore, using lemma 7.19 we have HFp ⊗X∞ ∼= lims(HFp ⊗Xs). However
the map HFp ⊗Xs+1 → HFp ⊗Xs is nullhomotopic and so at the limit we have
HFp ⊗X∞ = 0. �

Now let us identify the E2-term of the spectral sequence. Let us fix some

notation for brevity: let F s = HFp ⊗HFp
⊗s ⊗X. Then by lemma... F s is a sum

of copies of HFp. In particular its mod p cohomology is free over the Steenrod
algebra. Note that we have a map

F s → ΣXs+1 → ΣF s+1 .

Lemma 7.20. The complex

0→ H∗(X;Fp)→ H∗(F 0;Fp)→ H∗−1(F 1;Fp)→ H∗−2(F 2;Fp)→ · · ·

is exact. In particular if H∗(X;Fp) is finitely generated in each degree, H∗(F s;Fp)
gives a free resolution of H∗(X;Fp) as a module over the Steenrod algebra.
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Proof. Note that the map Xs+1 → Xs is trivial in mod p homology (and
therefore cohomology). Thus we have short exact sequences

0→ H∗−1(Xs+1;Fp)→ H∗(F s;Fp)→ H∗(Xs;Fp)→ 0 .

Splicing them together we obtain the required exact complex. �

Lemma 7.21. Let F be a sum of HFp, finitely many in each degree. Then for
any spectrum Y there is a natural equivalence

π∗map(Y, F ) ∼= HomA(H∗F,H∗Y ) .

Proof. Exercise (H∗F is free as a A-module). �

Proposition 7.22. Let X be a spectrum such that H∗(X;Fp) is finitely gen-
erated in each degree1. The E2-page of the Adams spectral sequence is given by

Es,t2 = Exts,tA (H∗X,H∗Y )⇒ πt−s map(Y,X∧p ) .

Moreover this spectral sequence converges conditionally if X is connective and con-
verges strongly if Y is finite.

Proof. Since HFp ⊗X ∼= HFp ⊗X∧p we can replace X with its p-completion
without altering the spectral sequence. The only missing part� is the identification

Denis: We need to
say something about
strong convergence,
how does Adams do it
in his book?

of the associated graded. But we know this is the homology of the complex

0→ π∗map(Y, F 0)→ π∗+1 map(Y, F 1)→ π∗+2 map(Y, F 2)→ · · ·
By lemma 7.21 this is exactly the complex

0→ HomA(H∗F 0, H∗Y )→ HomA(H∗−1F 1, H∗Y )→ HomA(H∗−2F 2, H∗Y )→ · · ·
and the thesis follows from lemma and the definition of Ext. �

This spectral sequence allows us to translate algebraic properties of H∗X as
A-module to topological properties of the spectrum X (or rather X∧p ).

Theorem 7.23 (Margolis). Let Y be a spectrum of finite type. Then

π∗map(HFp, Y ) ∼= Hom∗A(H∗(Y,Fp),A)

Proof. This is an immediate consequence of a theorem by Adams and Mar-
golis that shows that A is injective as a module over itself. �

1This hypothesis is due to the fact that we’re working with cohomology. If we worked with
homology and the dual Steenrod algebra we wouldn’t need it.
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