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1 THE QUARK MODEL 1

1 The Quark Model

1.1 Historic overview
Known before 1932:
e Photon v m, =0
e Electron e~ m, ~ 0.5 MeV
e Proton p mp ~ 938 MeV
Then:
e 1932: Discovery of the neutron (Chadwick) m,, ~ 940 MeV

e 1932: Isospin formalism (Heisenberg)

1935: Prediction of the m-meson as carrier (mediator) of strong forces (Yukawa)

1938: Extension of the isospin formalism to 7-mesons, prediction of the 7° (Kemmer)
e 1947: Discovery of charged 7t and 7~ (Lattes),  m = ~ 140 MeV
e 1950: Discovery of the neutral 7° m_ o ~ 135 MeV
The picture seemed to be converging, however
e 1947(7): Observation of new long-living particles in cosmic rays (V-particles); first signatures

of new “strange” particles in accelerator experiments (K-mesons, A-hyperons)

1.1.1 Isospin formalism

0

One observes that p,n and also 77, 7", 7~ have almost the same masses, why?

Recall the Hydrogen atom: the states |n, ¢, m) with m = —¢,..., ¢ have the same energies (are
degenerate) because of the rotational symmetry of the Hamiltonian

? Hidden Symmetry ‘Internal Symmetry

Analogy with spin:
p); In) < [ 1), 1)
Spin-rotations:
[ 1) = a1+ 8L
[ = A1) +46) (1.1)
Isospin-rotations:
lp) = alp) + b|n)
|ny — c|p) + d|n) (1.2)
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Symmetry group SU(2):

U= (") o v=(%"). wvut=1, detU=1.
v 6 cd

! Isospin: Abstract transformation in Hilbert space of the quantum states
Following this line of reasoning we introduce

Nucleon = <p>
n

is a particle with isospin 1/2; It has two states with isospin projection +1/2 and —1/2.

For small isospin transformations

3
U=1+1 Z 5(]5@% , 7o = Pauli matrices
a=1

Isospin operators:

R 1 . 1

1, = 37 (cf.: S, = iaa)

P=R+E+1 (cf.: §% =57+ 82 +52)
Then
Plp(n)) = IT+Dp(n)),  I=1/2
. 1 A 1
I3lp) = +§|p>, Isin) = —§|n>

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

The operator I?is fully equivalent (mathematically) to the operator of angular momentum; possible

eigenvalues are therefore (follows from group theory)
1=0,1/2,1,3/2,...

Kemmer postulated that m-mesons form a system with isospin I = 1:

at 13:+1
7= | =" I3= 0
™ I3 =—-1

< This was a prediction for 7% !

Isospin summation (cf. spin-summation):
N N-states:

isospin 1/2 ® isospin 1/2 = isospin 1 + isospin 0

(1.10)
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Is=+1 pp
I=1: Is3= 0 %(pn + np) triplet
I3y =-1 nn
I=0: Is= 0 %(pn — np) singlet (deuteron) (1.11)
mN-states:
isospin 1 ® isospin 1/2 = isospin 1/2 + isospin 3/2 (1.12)

+ predictions for 7N — 7N scattering etc.

1.1.2 Strange particles and the “8-fold way”

Before 1953 “strange” V-particles were only seen in cosmic rays but eventually could be observed
in also in accelerator experiments that allowed for their detailed study. For example

T +p— K4 A (1.13)
for B, ~ 1.5 GeV one has measured, e.g.
o(m"p— K°A) ~ 1mb =10 cm?,
oot (M~ p — hadrons) ~ 40mb (1.14)
These cross sections correspond (roughly) to geometric cross sections of hadrons
R? ~ (1fm)? = 1072 cm? (1.15)

hence K and A are produced via strong interaction.
“Strange” particles decay, e.g.

A—=p+n, n+n (1.16)
A natural life time for decays induced by strong interaction would be
Tetrong ~ R/c ~ 1072 em/3- 101 cms™ ~ 107% s (1.17)
The experimentally measured life time is, however
A ~2.63-1071%% (1.18)

hence this is a weak decay, similar to n — pe~v.
It seems that strong and electromagnetic decays of these particles are forbidden, why?

< New quantum number — “strangeness”
pon,at, 70 7 S=0
AT 20 8- S =-1
=08 S=-2
K% K+ S =+1

K% K~ =1 (1.19)
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assume that strangeness is conserved in strong and electromagnetic interactions, e.g.

7 +p— K+ A 0+0—+4+1—1 (allowed)

K 4+p— K'4+2° ~140— +1—-2 (allowed) (1.20)
In addition we have a conserved electric charge ) and baryon number B:

Baryons: B = +1
Antibaryons: B = —1
Mesons: B= 0 (1.21)

Gell-Mann and Nishijima observed that for all observed particles the following relation holds:
1
Q = I3+§(S+B)7
Y=5+8B: Hypercharge (1.22)

The breakthrough: Gell-Mann, Neeman 1961,1964: The “8-fold way” (< Mahajana-Buddhismus)

‘S’U(Q) (isospin) = SU(3) (isospin—l—hypercharge)‘ (1.23)
Mesons:
k¢ 1Y gt
Y;=+1
— 0 + —~ +
T T T T Oi\n
— VAR L. Y;=0
K K’
Baryons:
++
0.94 GeV 1.23 GeV
Y
119 Gev I, 1.39GeV
1.12 GeV
1.32 GeV 1.53 GeV
1.67 GeV

e > Prediction for Q~ with mass ca. 1670 MeV and J* = %Jr!
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e Symmetry is approximate: different states are not exactly degenerate: splitting appr. 150
MeV

ma —m

Hypercharge symmetry breaking : P~ 20% (1.24)

mp

It was possible to classify all known hadrons in irreducible representations of the SU(3) group
(later) and predict the existence of Q~. However, no hadrons could be matched with the represen-
tation of the lowest dimension — the fundamental representation of SU(3).

Example: isospin group SU(2) I=0,1/2,1,3/2,...

Fundamenental representation

N = <p> . I=1/2 I3=+£1/2 (1.25)
n
Adjoint representation
T
= a0, I=1 I3=-1,0,1 (1.26)
-

etc.
For the case of the SU(3) classification the analogue of p and n was missing.

Gell-Mann, Zweig 1964

Quarks [ I3 Y S B Q

1
u 1/2 +4+1/2 1/3 0 1/3 2/3 Q=1Is+-Y
d 12 -1/2 1/3 0 1/3 -1/3 2
s 0 0 -2/3 -1 1/3 -1/3
The SU(3) transformations:
u Uin Uiz Uiz [u
qgq=|d| = | Uy Uy Usg d] , UUJr =1, detU=1 (1.27)
s Us1 Usz Usg/ \s
Mesons are built from a quark and antiquark. We identify:
at = ud, = du,
Kt = us, K° = ds, K° = sd, K™ = su,
1 - 1 -
0 — 0 _
= —(ut —dd), = —(uu +dd),
ﬂ( ) U \/5( )
/ 1 _
n? = %(uﬂ + dd + s5) (singlet under SU(3)) (1.28)

Three different quarks u, d, s are usually called “flavors”.
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Baryons, in turn, are built of three quarks: The quark model

N= My ~ Mg ~ 300 MeV

mg ~ 450 MeV
1.1.3 Quarks have color!
e Problem 1:
There exist apparently no free quarks in nature — no particles with electric charge +2/3 or
-1/3
< Quark confinement
e Problem 2:

Q7 (s =3/2,s3 = 3/2) is built of three strange quarks:
Q" =sTslst (1.29)

For the ground state, one expects that the wave function describing space distribution of the
three quarks in the nucleon is symmetric, ¥(x1, 9, x3) = ¥(x9, 21, x3), etc.

Hence a totally symmetric wave function for a spin-3/2 particle — contradiction with Pauli
principle?

Gell-Mann (1972), Fritzsch (1973): a new degree of freedom:

— Each quark exists in three versions (states), called “colors”

(5} d1 S1
u=|ug |, d=[ds |, s=|s2], (1.30)
us3 ds S3

I' A totally antisymmetric wave function can be built as
07(3/2,3/2) = sl ss! P (21, 79, 3) (1.31)
! This state is invariant under rotations in the color space:

3
qa%ZUaﬁQﬁ; 0421,2,3 q:(u,d,s)]
B=1

UUT =1, detU=1 (1.32)

— again a SU(3)-group.
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color-SU(3) # flavor-SU(3)

The color-SU(3) symmetry plays a fundamental role in QCD; the flavor-SU(3) is (as we know
now) rather accidental.
Postulate:

Only SU (3)-invariant (“colorless”) states exist in nature.
e Baryons:
10959,€*"" = UperUsgr Uy e quqp gy = det U eo‘,ﬁlvlqa/q/g/q.y/ (1.33)
e Mesons:
Gado = QUL Uagr@s = Gorqor (1.34)

Confinement: only colorless particles exist.

A big question: are quarks mathematical constructs only, or they indeed exist materially inside
hadrons?

e 1969: Crucial evidence:
Scattering of electrons from protons with large momentum transfer (at large angle)  (Bjorken)

e (k1) + N — e (k2) + X (< any hadron state) (1.35)

I Nucleons contain quasi-free point-like particles inside them (“partons”)

e 1973: Gross, Wilczek, Politzer: “Asymptotic freedom”
— Theory of quark-gluon interactions

Quantum Chromodynamics

— a “nonabelian gauge theory”:

QED gauge transformations U(1) e — e®@e <« photons
QCD gauge transformations SU(3) ¢ — Uq < gluons

QCD (color) charge (coupling constant) is small at small distances and becomes large at hadronic
scales.
World summary, see [S. Bethke, arXiv:1210.0325]
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0.5

April 2012
a{Q) v T decaysnsLo)
® Lattice QCD(NNLO)
04l a DIS jets(NLO)
o Heavy QuarkoniauLo)
o €'e jets & shapeges. NNLO)
e Z pole fit(N3LO)
pp —> jetINLO)
0.3+
02+t
01t
= QCD as(Mz)=0.1184 + 0.0007
1 100

Y o[Gev]

1.2 Elements of group theory: The SU(3) group
Consider a three-dimensional abstract Hilbert space with orthonormal basis vectors
1), 12), 13 (i|k) = 0ix

these could be e.g. [1,2,3) = |u), |d), |d) or |1,2,3) = |u1), |u2), |us)
The SU(3) group:

Uliy=|))U;;  UU =1, detU=1

Infinitesimal transformations
U=1+1id¢H, dpeR
Then
(I+id¢p H)I—idp H) = 1
det (1+i6¢p H) = T InIH00H) — 1 4 j5¢Tr H = 1
yields
H=H"', TrH =0

i.e. H is a hermitian 3 x 3 matrix with Tr= 0.
A suitable basis (Gell-Mann matrices)

010 020 100 001
AM=(100 A=1700 A3=10-10 AM=1000

000 000 000 100

00 —¢ 000 000 1 100
A5=100 0 =001 A7=100 —¢ Add=—7=(010

10 0 010 07 0 \/300—2

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)
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Normalization convention

Tr (AaXs) = 20p, ab=1,2,...

Each infinitesimal SU(3) transformation can be written as
A
U=1I+ i5¢>a?a

The matrices 1
4= -\
2

are called generators of the SU(3) transformations.
They satisfy the following (canonical) commutation relations:

‘ [tm tb} = Z‘fobbctc ‘

The fupe symbols are called structure constants of the SU(3).
Multiply by t¢ and take the trace; since Tr (t.tg) = (1/2)60q ©

ifabc =2Tr ([tm tb]tc)

From this representation one can easily see that f,;. are totally antisymmetric and real.

An anticommutator of two t* matrices:
{tm tb} = Cab I+ dabctc

Taking the trace:

1
Tr ({ta, tb}) =2 5(5,11, = capIr (H) =3cep =

also

dape = 2Tr ({ta, tp}te)

Hence dgp. symbols are real and totally symmetric in indices.

,8

btain

Cab = 5

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

Using trace folmulas and explicit expressions for A, matrices one can calculate fup. and dgpe

explicitly; these expressions are, however, rarely needed (cf.: Dirac matrices)

Useful identities:

fabrf?“cs + fbcrfras + fcarfrbs =0
fabrdrcs + fcbrdras = dacrfrbs
farsfbrs = 35ab

doap = 0 < summation over ”a

5
dars dbrs = géab

implied

(1.50)
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Very useful identities:

3
fapet®t® = §itc

4
%% = _ 1
3
1
bt = —gtb (1.51)

A very powerful identity:
1

1
(ta)aﬁ(ta)a’ﬁ’ = 55046’60/6 - géaﬂ(sa’ﬁ’ (1.52)

1.2.1 Representations of the SU(3) group
e A unitary representation of the SU(3) group is a homomorphism
U— D(U)
of the 3 x 3 matrices U onto unitary n x n matrices D,
DWU)D'(U) =1

(in general of other dimension), which respects the group multiplication:

DWU)D(V)=D{UV) (1.53)
D(U) can also be viewed (more generally) as linear operators acting on the representation
space

D)

R — R R=C" |a) € R n-dimensional vectors (1.54)

e A representation is called reducible if it is block-diagonal in a certain basis

D(u) = <D1(()U) Dz(zU)> : %Z; n+ne=n (1.55)

Otherwise it is called irreducible

A necessary and sufficient condition:
Represention D(U) is irreducible if and only if

V|a) € R linear combinations of D(U)|a) span the whole space (1.56)
e Two representations D and Dy are called equivalent if

35S YU  S7'Dy(U)S = Dy(U) (1.57)

e Simplest representations:

-U—>I [1] <+ trivial representation
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-U—-U [3] «— fundamental representation
- U—U* 3]
e Adjoint representation [8]:

Representation space:

R=C8 c=A{cy,...cs} ca€C a=1,...,8

Let
C = ¢,t° +— a complex 3 x 3 matrix with Tr =0
Define
c 2% yeut

or, equivalently
1
Tr (Ct*) —» Tr (UCUT) = 50 = caTr (Ut
Infinitesimal transformations:
U=1+1id¢pt* — DU)=1+1id¢,T"

Lie algebra:
[tay tb] = ifabctc — [Tay Tb] = ZbfabcTc

(The generators in all representations obey the same commutation relations)

In our case (adjoint representation)
cp — 2T [(1 + i6¢et)t* (1 — i8¢t )] cq
= 2Tr [t")e, + 2i0¢p{ Tr (t°t°t") — Tr (t¢°t") }cq
= [0ab + 160t feab) Ca
= [(@Mpa +i06e(T%)ba) ca

It follows

‘ (Tc)ba - _ifcba

< generators in the adjoint representation

Example: Classification of the gq states under SU(3)-flavor

n=u @=d gg=s

11

(1.58)

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

(1.64)
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and assume
3] ) — 1a;)Ujis U e SU(3)
3] @) —  1a)Uj;
Now consider quark-antiquark states. Representation space is 9-dimensional R :
D(U)(lg:)1a;)) = lai)a; ) Uil
This representation is reducible:

e SU(3)-invariant state:

1) = Jla)la) = =(wl) + 1) +13)19)
Check
) = DY = —lae)a)Ueils = —=lala Vel
= =l = 1)

e An arbitrary orthogonal state
1C) = Cijla:)|G;) Ci; = 3 x 3 matrix with TrC' =0
Check SU(3) transformation:
C") = D(U)|C) = Cyjlan)|a; ) UsiUs; = (UCU )iy |ai)lay)

Thus
' =vucut

! This is precisely the transformation rule of the adjoint representation

Result:

Start with the first pair:

€ijk|qi)lar) \9i)ak) + lak)]gi)

12

(1.65)
|4:)1a5)

(1.66)

(1.67)

(1.68)

(1.69)

(1.70)

(1.71)

(1.72)

(1.73)
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Add the third quark:
Bl @ [3] = [1] +[8]
[6] @ [3] = [8] + [10]
N\

lgi) |Qj> |gk) + permutations

Symmetry in quantum mechanics:

[H,T*] =0 (1.74)
Example: Angular momentum
a” o A oA 1 o
[H, L] = 0, [LZ, LJ] = 5 €ijk Lk (175)
2~
+

structure constants of SU(2) ~ SO(3)
Hence one additive quantum number:
L.|¥) =m|¥), [Ls, L]0 [Ly, L;]#0 (1.76)

< S0O(3) group has rank one.
For SU(3):
[13,73] =0 < group has rank two (1.77)

therefore can require that simultaneously
T|0) = t3| W),  Tx|¥) = t5|P) (1.78)

< two quantum numbers, ¥ = U(t3, t3).
Following Gell-Mann we identify (for SU(3)-flavor)

Iy =ty, I = t, I3 = t3, (isospin)

2
Y = —tg hypercharge 1.79
7 (hyp ge) (1.79)
The eigenvalues of I3 and Y that occur in a given representation can be shown as points in the
isospin-hypercharge plane. Quarks u,d,s and antiquarks @, d, 5 transform according the three-
dimensional fundamental representations of the SU(3), called [3] and [3]:
Mesons are built from a quark and antiquark:

Bl © [3] = [1] + [8] (1.80)
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Y S Y=2/3
d u

Y=1/3 Tﬁ
-1/2 +1/2 -1/2 %1/2
1 I, o I3 vy=-113
d

Y=-2/3 S

2 Nonabelian quantum field theories

2.1 Geometry of gauge invariance

Weil (1923): gauge invariance

Y(@) — Y (z) = Wy(a)

Ay(x) — Al (2) = Au(z) — 19,0(x) } = Lawn(¥, 4) = Laen (¥, 4) (2.1)

[A, transformations introduced by Maxwell; Weil added )]
Modern interpretation:

Let ¥(z) — ¢ (z) = @) (x) and require L(¥) = L(v))

What is the most general form of Lagrange density consistent with this symmetry?

e Simple:

map )2, ... all allowed (2.2)
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e Complicated: derivatives

n*0,p(x) == lim 1 [1/1(:17 +en) —P(x)

e—0 €

— lim E [eia(‘v+€”)z/)(x +en) — ew(@qb(:n)] bad

e—0 €

General solution (differential geometry)

15

(2.3)

In addition to ¥ (z), consider a function of two variables U (y, z) with transformation property

Uly,x) — U'(y,2) = WUy, x)e
U(z,z) = 1
Its utility is that ¢(y) and U(y, )y (z) have the same transformation laws.

Define covariant derivative:
1

D yp(z) = lg% - Y(z+en) — U(x + en, x)y(z)
Simplest choice:
vvu*r =1, Uy, z) = ')
Then
U(x +en,z) =1+ ien” iqb(y,ac) +...
oy y=z
=1 —ieent|eAy(x) e = arbitrary constant

I A new vector function A,(x) — a vector field

Math termonology: U is called a comparator of local symmetry transformations
A, is called a connection, it appears in a local limit of U *

Thus

Dyip(x) := (O +iedu)()

From the transformation law
1 —iented,(v) — 1 —ient'ed) (x) = TN [1 —iente A, (x)]e )
follows

Au(x) — A (@) = Ay(x) = —Oua(z)

so that

*Remark: One can choose

1
Uy,z) = Pexp{ / du(y — x)*Au(uz + (1 — u)y)} + additional vector fields
0

(2.4)

(2.5)

(2.6)
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Dyip(x) — Dy (x)

- [@ +ie (AM —~ %aua)}em%(m

_ eia(w)Du¢(x)

Thus we are allowed to have in £ terms like

VY, YD, D", ete.
What else?
T + €€y x + €(€1 + €2)
T T+ €é}

W(z) =U(z,x + ee2)U(x + €éa, x + €€1 + e€2)U(x + €€ + €€a, x + €€y )U(x + €€, x)

A straightforward calculation for e — 0

W) =1— ieQe[alAg(:n) — 9 A1 (2)] + O()

W(z) = invariant =  F,, = 0,4, — 0, A, = invariant

(W'(z) =W(z) = F, = Fu

Alternatively, consider

Dy DJto = [0y 0010+ i ([0, A = 002 4, ) = P14y, ALY

The first and the last terms obviously vanish. The other two:

[8;u Ay = 8M(AV¢) - Aua;ﬂ/J = (8uAu(x)) P(z)
———

derivative only acts on Al

Hence

(D, D]t = ie <8MAV(1') _ BVAM(x)>1p(:U)

Dy, D] = ieF),

Summing up, the QED Lagrangian

Lqep = (D) — my) — %F,WF*“’

16

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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e need a real function with mass dimension four

e could add
= cewaﬁF“”F“B parity conservation = ¢ =10
e could add
o+ s D2+ (YY) + .. e not renormalizable
1 1
® (5~ Aoy ,C5 ~ AQUV

QED Lagrangian is defined (almost) uniquely by the requirements
e relativistic (Lorentz) invariance
e local gauge symmetry U(1)

! Photon exists “because” we require local gauge symmetry !

17

(2.20)

(2.21)

A very powerful idea: construct physical theories starting with geometric symmetry principles.

2.2 The Yang-Mills Lagrangian
Let

Global SU(2) transformations:
Y — Y = ew‘k%kzb; o1 = Pauli matrices

for example isospin — original motivation for YM

Local SU(2) transformations (YM):
Y(z) — ¢ (z) = emk(w)%kw(x); o, = Pauli matrices

Y&M asked: how to built a theory (Lagrangian) invariant under these trafos?

Main difference to QED: the symmetry is nonabelian:

el . giB — b | gla but eia" S . B * (B giah
Comparator of local SU(2) transformations
U(y,z) = 2 X 2 matrix, vUut =1

Uly,z) — V(y)U(y,z)V'(z)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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with
V(z) = @)% V(z)Viz) =1 (2.27)
It follows
k
U(x+en,z) =1+ igen"Aﬁ% + O(é%) (2.28)
where g (arbitrary constant) will be called “coupling”.
Covariant derivative
k k
. L0 . L0
D,=0,—- ng“? =0, -1—- ng#? (2.29)
Transformation rule for AZ" follows from
oF oF oF
I+ igen“Aﬁ? — I+ igen”(Aﬁ)'? =V(r+en) (]I + igen“Aﬁ?) Vi(z) (2.30)
where we have to expand everything to O(e).
First term:
V(z+en)Vi(z) = <[1 + en“% + 0(62)} V(CC)) Vi)
=1+ ent iV(av) Vi(z) + O(e?)
OxH
=1—en”V(x) iVT(a:) + O(e%) (2.31)
Ozt
Therefore, comparing terms in ~ igen*
Lo Lot $
A#? — V(x) Au? + gau Vi(x) (2.32)
For small transformations
k
V(z) =1+ iak(z)—= + (2.33)
this becomes
k k k k j
L0 L0 1 PN ok o
A#? Au?—l—;(aua )74-1 {a 7’Ai7
new ! (2.34)

Check transformation for the covariant derivative:
k
. o
Du¢ — D:Lw/ = <(9“ — Zg(A,)l’j2> w/
k k k j k
= (@L — ngu? — (O )7 +yg [a 2,Ai2}> <1 + i 2) Y

k k
— (1 + mk‘;) (au — igAﬁGQ) ¢+ 0(a?) = V(z)D,p + O(a?)

(2:35)
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As a consequence

[Dy, D))Y(x) — V(2)[ Dy, Dy (z) = V(2)[Dp, DV () V(x)(x) (2.36)

Define a nonabelian field strength tensor (Feldstérke) as

k k

k
. g o
[DI»MDV] - _ZgF/,]fV?7 Fk -5 V(.’L’)F;’fV?VT(.T) (237>

Inserting explicit expression for the covariant derivative this becomes

k g . ]CU k:O' . kU - g
FHV? = a,U«AV? - GVAM? — 19 |:A“2,A‘17/2:| (238)
Use
k J l
— - 2.
[2 , 2] e (2.39)

multiply by o” and take the trace:

Fh, = 0,4k —0,AF + gehi' Al Al (2.40)

! F;lfu is not yet SU(2) invariant, but this is easy to repair:

ok

Tr | (F* 2l = le FHk — invariant 2.41
g

= 5 Fuw

Thus, a possible Lagrangian invariant under local SU(2) is (Yang-Mills)

Lyae = 6D —m)y — L) (2.42)

! Very simple and very similar to QED

Euler-Lagrange equations:

e “Dirac”:
(i) —m)Y =0 ! field hidden inside D (2.43)
e “Maxwell”:
. . _ O-k
8#F5u + QGWAJ’”FL, = —gy,—1 = j*¥, [« the SU(2)-charge curent]
— 2

I non-linear equation: terms ~ A%, A3 (2.44)
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Generalization to SU(3), [and SU(4), ...SU(N)] is trivial:

¥1()
Y = | Ya2(x)
Y3()
Local SU(3) transformations:
Y(z) — V(z)p(x)
V(z) =1+ ia%(2)t* + O(a?), a=1,2,...,8
so that
o® A\ .
> — %= > Gell-Mann matrices
ok i i o
T T ) kil a 1b) _ - rabcyc
[2’2] i€ 2 —>[tvt] Zf t
It follows

v — (1 +ia%*)yY
AL — A%+ ;8“04“ + freAbaf
and further
[Dy, D] = —igFy, t*
Ff, = 0,A% — 0,A% + gf* A A
D, = 0, —igAjt*
Remark: Sign of ¢ is a convention, differs in various textbooks

and finally

1 -,
Lqcep = Lsy@) = —Z(FSV)Q + Z Y(id) — my)y
P=u,d,s,...

2.3 Quantization and Feynman rules

Assume that QCD can be quantized in the same way as QED (will have some surprises).

Generic Green functions:

20

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

OIT{($1)} (@) (D)) ()] () .. €] 2 E1Y o)

<Q]T{@Eé($1)AZ(m2)@%($3) ) = <0‘T{eifd4m£1(x)}‘0>

Here

(2.51)
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e ¢ ...on the Lh.s. are Heisenberg operators

|2) on the Lh.s. is the exact vacuum (ground state)

All operators on the r.h.s. are written in the interaction representation

21

e |0) on the r.h.s. is the “perturbative” vacuum (ground state if interactions are switched off)

Then:
Propagators:
O (@0 =07 [ L2 (L
oABTEWIE =07 | o€ m—p—ic),,
d*k A 1 k,k
T{A® Ab _ ab/ —ik(z—y) L — [adbid
OIT A5 AL} 0) = 6 | G ™ g — €757
Interaction:
L=Ly+ L
" aqa aoc a o C 1 ea a €EC C 12
Lr = gpAutiaty — gf***(Da AL AT AR — - g? (f AL AY) (F00 AP A1)
Vertices:
a, |
= igy,t”
a, u
k|, )
. q = gf (g™ (k =)’ + 9" (p — Q)" + g (¢ — k)"]
7 X
b,V c,p
au b,v : abe rcde vo o LV
= —ig?[f@ (g9 — g"7g™")
% + facefbde(g;wgpo _ g,uaglzp)
& o + fadefbce(g,uugpo _ g,upgua)]

(2.52)

(2.53)

(2.54)



2 NONABELIAN QUANTUM FIELD THEORIES 22

For example:

(QUT{AL(2)AG(y) AL (=)} =
.y / d4w(O|T{T{ A (2) A5 (y) AL (=) L1 (1) } 0)

= i/d4w<0lT{A§(x)AE(y)A§(2)[—gf“bc(apAZ(w))A”’b(UJ)A“’C(w)]}\0>

X

k|
w
Py A\ nd
y VA
d*p d*q Ak g ipy—iqe
- / @n) / (2n)t / T CO KR R
X ggg‘l g][jfl g;‘;l . (Vertex)gé?v (2.55)

Note 0, — —ik, if the momentum points into the diagram (Einlaufender Impuls).

Set of Feynman rules defines a quantum theory, but is it selfconsistent?

2.4 Faddeev-Popov ghost fields

e In QED, selfconsistency requires that the amplitudes satisfy Ward identities

k p.
kH "1 =0 (2.56)

for arbitrary photon momenta and for electrons on mass shell p? = m?.

—> electromagnetic charge is conserved in quantum theory
= photon remains massless
— results of calculations do not depend on gauge parameter, etc.

e In QCD, gluons are charged, so maybe we have to impose a condition k? = 0 but otherwise
we expect that Ward identities must hold true.

2.4.1 Reminder: Photon polarization vectors

Consider a real photon k% = 0. Let

k, = {k,0,0,k} (2.57)
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The four-vector A, (k) of a real photon can be decomposed in the basis

6;(11) == {03 17 07 0} 61(3) = {07 07 17 0}

e = 12{1,0,0, 1} )= 12{1,0,0, -1} (2.58)

7 V2 [ V2
Only first two possibilities (transverse polarizations) are physical because the other two can be
disposed of by the choice of gauge:

e Lorentz gauge
OMA, () =0 = k'A,(k)=0

= Au(k) = e[ )A_(k) not allowed [k"e(~) = 2] (2.59)
e For the special case k2 = 0 Lorentz condition does not specify the gauge uniquely

0 = kP A, (k) = kAL (k) = k(A + kA (k)

= Au(k) = e/(f)AJr(k:) ~ k,, can be gauged away (2.60)

Thus, emission of “plus” or “minus” photons cannot influence any observable quantities
Note: it does not mean that we always take Lorentz gauge.
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2.4.2 Reminder: Current conservation and Ward Identity in QED

e U(1) gauge symmetry = conserved current (Noether theorem)

3 (@) = —ep(x)y"P(z),  Ouj*(z) =0

1 =/ . .
Lopp = = Fuw B + (i — m)p — ju(z) A () (2.61)
e Photon emission in QED:
ke iM (k) = iM"(k)e, (k)
o . ~
) = [atset i@l (26
e Ward Identity = Current conservation in quantum theory:
4 > . 0 ikx - 4,. ikx > -
0=k M (k) = [ &'z (flj"(@)0) | —ig 7 |e™ =i [ dwe™ (f|0u"(2)]i) (2.63)
e Unitarity (conservation of probability) in quantum mechanics:
d 3 2 e o
o7 A’z |V (z,t)]* =0 <= Hamiltonian is a hermitian operator (2.64)

e Unitarity in QED: unphysical photons cannot be produced in collisions of “physical” particles

Total cross section for photon emission:

o~ D MP =Y e e MEM = M+ | MR (2.65)
phys. phys.
polar. polar.
However
kyMF =0 = koM —ksM® =0 = M°=M? (2.66)

Therefore can write also

Z 68),* ,(j)\)MuMV,* _ ‘M1’2 + ’M2‘2 + |M3‘2 - ‘M0’2 _ —QWM“M”* _ Z 6/(LA)7*€1(/A)MMMV7*

phys. all
polar. polar.

(2.67)

i.e. the sum over transverse polarizations is equal to the sum over all polarizations.
Accepted terminology: The QED S-matrix is unitary
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2.4.3 Quark-antiquark annihilation into a pair of gluons

Let us check what happens in QCD on a simple example:

(1 2) 3)

qa(p) +a(0') = g* (k1) + g"(k2) (2.68)
e The first two diagrams together:
iM{'ye, (k1)e, (k2) = e (k1)e; (ko)
x (ig)*v(p') {’Y“ta b 4 ’y”tbi'y“ta} u(p)  (2.69)
fy—p —m
Replace
€, (k2) — kay (2.70)
Obtain
ML ), = 6 ) i o) {1

_ki_m;éztb + frat” ’Y“ta} u(p)  (2.71)

y g —

Thanks to Dirac equation can replace
(p — mu(p) =0, in the first term byu(p) = (ky — p+ m)u(p)
6(p')(p’ +m) =0, in the second term o(pVky = 0(p") (e — p' —m) (2.72)
The propagators cancel and we get
iMYS e (= i) (i9)*0(){ = i [t%, '] bu(p)
= —g e (k0)o(p )" ulp) f4¢ (2.73)
e The third diagram:

iMé‘”eZ(kl)ei(k‘g) =¢,,(k1)e, (k2) (2.74)

s\ = c —i abc v 1%
x (ig)v(p')ypt U(p)?gf b [g“ (k2 — k1)? + g"P (k3 — ko)l 4 g"" (k1 — k‘:«z)}
3
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now replace €, (k2) — kay
and use k1 +kys+ks=0—ky=—k; — ks
Then
€ (ko) [* * %] — Koy [ * %]

= kb (kg — k1) + k5 (ks — ko) + ¢" (k1 — k3) - ko

= (—k1 — k3)"(—=2k1 — k3)? + (=K1 — k3)?(2ks + k)" + g™ (k1 — k3) - (k1 —

= 0PI — KK — g A
Hence

. v ox * © N = c —1 abe
MY e (ko = €, (k) (i9)0(0 )7t w(p) 7 0. | 97K5 — KRS — g™kt + K{kY
3

Assume k? = 0 (on-shell) and e (k1)kY' = 0 (physical polarization). Then:

e the last two terms vanish
e the second term vanishes as well:

(=k) (P )vpulp) = o(p)[(p +m) + (p — m)]u(p) = 0

e the first term gives:
iMEY e, (k1)kay :EZ(kl)g%(p’)fy“u(p)fabctc

and exactly cancels the contribution of the first two diagrams!

Happy end? — No! — a disaster in loop diagrams (true quantum effects)

N\, all polarizations in intermediate state

Gluons with unphysical polarizations can be produced — unitarity is broken:

/ / d (phase space) >-m€i

2

2.4.4 Faddeev-Popov ghosts

Solution: Faddeev, Popov (1967):
Modify QCD Lagrangian

Locp — Locp + Ea(x)< - aﬂpg’;)cb(x)

Dzb =0, + fabCAZ covariant derivative in adjoint representation

26

(2.75)

ks)
(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)
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ghost field  ¢%(x): e spin-0 field (scalar)
e a=12..8
(adjoint representation, like gluon)
e Fermi-statistics (!7)

{e(@,t),e(g,1)} = 0
(new) Feynman rules:

a b _ﬂ
""" < Cp? e
b, L
p § :_gfabcpy
v&‘ ‘v«
a c

Derivation uses path integral formalism = QFT lectures in SS

relation

Ward identities are modified by terms including ghosts = Slavnov-Taylor identities

We will see how this works in practical calculations (exercises)

3 Renormalization and Regularization in QED

Two big issues in quantum field theories:
e Make all expressions mathematically well defined — Regularization

e Make sense of the theory that contains infinities — Renormalization

3.1 Vacuum polarization

p p 4
< - d*k 1 1
M, =—¢ [ 25 1y ’
2 60/<27r)42‘ {Wﬂm_%"y m_%‘i‘?}

2/ d'k T [yu(m+ By (m + k- p)]
(

T ) nr m2 — k2 i) (m2 — (k—p)® —ie)
The trace:

Tr = m’Tr [y v ] + Tt [vukv (F — p)]
= 4m29/“, + 4[]43“(/6' — )y + (kv (k — p)u - g,uuk - (k —p)]

27

(2.82)

The role of ghosts is to subtract “wrong” gluon polarizations, hence “wrong” spin-statistics

(3.1)

(3.2)
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Main trick (Feynman):

A-B B [aA + 1—04)3]2

[aA + (1 — a)B]*T

1
- [

) I'(a+0b) .
Z 11—t (3.4)

Use for A =m? — k? —ie and B =m? — (k — p)? — ic
The denominator:
a(m® = k) + (1 —a)[m® = (k=p)°] = m® —ak® = (1 = a)k® +2(1 — a)(kp) — (1 — a)p’
=m?—[k—(1—a)p]’ + (1 - a)’p’ — (1 - a)p?
— o~ [k~ (1 - a)p? — a(l - a)p? (35)

Useful notation for future:

50

Thus we obtain

d'k  gu[m® — k(k — p)] + ku(k — p)y + (kv (k — p)
v =—4 d = s — = 3.7
L eo/ Oé/ 2m)4i [m? — [k — ap]? — aap? — ie)? (37)
Change of integration variable: k— kK =k—ap; d*k = d*k

The main advantage: denominator only depends on k'%; in the numerator k — k’ + ap:
g [m? — (K +ap) (k' — ap)] + (K" + ap) u(K' — ap), + (K + ap), (k' — ap), (3.8)
! Can delete all linear terms in k&’ because

k/
/ d*k m =0 no preferred direction in space (3.9)

Thus, changing notation back to ¥ — k

4 / / d*k  gu[m? — k* + aap?)] + 2k,k, — 20ap,p,
€0

N
2m)4i [m? — k2 — aap? — ie]? (3:10)

The integral with two powers k,k, can only be ~ g,,:
k,k
d4k puhv - T 2
® g :

/d‘%kz = 41(p%) (3.11)
[k* + X]? '
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Therefore

k. k 1 k2
e —— ,,/d4k
/ K2+ x2 4% [

4 k2 4+ X2
1
or effectively [k:ukz,, = Zgu,,k:Q] under the integral (3.12)
Thus, finally
! d*k —2aa
M, = —4e3 | d v v v 1
K 60/0 a/ (2m)% [pup [m2 — k2 — aap? — ie]? +O(9w) (3:13)
Time has come to calculate the integral. Analytic continuation (Wick rotation):
\ki
ko = iky
X N\ X (3.14)
{ X H X
In this case
d'k = dkod®k = idkidkodksdky = id'kp
K=k -k = — (B + k4 + k) =k (3.15)
! Space and euclidian time coordinates build a usual Euclidian space (in 4 dim.)
! All factors “i” cancel
1 d4kE —2aa
1T, = —4e} d/ v O (g 3.16
122 €0/0 « (27_[_)4 |:p/1«p [m2 +k'2E — OéC_kp2 —i6]2 + (g/Jf ):| ( )
Euler:
/def(k:2) - /dQN/kN_ldkf(k:Q) _ 1/dk2 EN=2 £ (k) (3.17)
I'(N/2) 2 '
0 ~—— 0
[ dy
In our case (N=4)
1 1 7 aap,p
I, =8 | d 2/dk:2k2 - O(guw 3.18
® 60/0 a(27r)4 T [m? + k? — aap? — i€]? +O(gw) ( )
0

?! The integral is divergent at k? — oo (UV divergence)

e The simplest regularization is to introduce a cutoff

0 M?
/ dk? — / dk?
0 0

(3.19)
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We assume that M? > p?,m?, in this case

M? 2 2 2 2 ~02
k M M —
/ dk?— = — it aap
0 [k2 + m? — aap?|? M? + m? — aap? m?2 — aap?
2
~ —1+1 3.20
+o m2 — aap? (3.20)
and
2 1 2 _ 9 .
g i m® — aap” — i€
I, = 8p“pl/167r2/0 do ao [1 +1In e + O(9w) (3.21)
Gauge invariance = Ward identity implies
pHHuV = pVHuV =0 — Huu = (g;u/ - pupu)ﬂ(p2) (3'22)
If this property holds, the calculation of O(g,,) contribution is not necessary. One obtains
9 1 2_ =2
H@%—E?Odmmb+mm L Zj
2 2 2
o m 12m? 2m J+1 4m
= 243In— — 1 —J In—— )|, J=4/1——
9 [ - p? < " J—1 p?
m2
I1(0) = 1+In— 3.23
0 =50 i+ M2] (3.23)

We will discuss how to make sense of the dependence on M? in great detail. Before that, there is
still another issue to address:

Introducing a cutoff we have solved our mathematical problem to make integrals well defined, but
at a high cost: It is easy to see that this procedure actually breaks gauge invariance.

Indeed, the complete expression for II,, is

1 d4k:E
I, =—4¢ | do | —=
a / a/ (7)1

Contribution of /{% > p?, m? is therefore of the form
1 4 _
d*kg —2aa 1 1
2
I, = —4@0/0 da/ o) [p“pyk‘lE + QQWk:%] (3.25)

The second contribution is quadratically divergent, hence ~ M?, not ~ In M?

—20a +g m? + $k%, + aap? (3.24)
[m2 + k2 — aap?)2 7" [m? + k2 — aap?]?

PuPv

Note also that

/M2 dAk 4 4 /M d4( k+p (3.26)

that we used above and also in the proof of the Ward identity (for scalar QED).
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Let us recall how it works on our case:

P p 4
d*k 1 1
A Y M, =-¢ [ —+Tr y
" eo/(27r)4i {%‘m—%’y m—%—i—p}

e o)

Write
p=(m—f+p)—(m—k)

Then, using cyclic property of the trace

d*k 1 1
NHI/:_2 T v v g .
P eﬂ/(%)% r{m—;ﬂ ”m—;wf}

This vanishes if one can change integration variable from p to p — k.

There exist other, better, regularizations that avoid this problem.

e Pauli-Villars regularization:

1 1
a m2 — k2 M2 — k2

— subtract the same diagram with a “heavy” electron with mass M

e Dimensional regularization ("t Hooft, Veltman, 1971-73), Nobel prize 1999

Lessons:
e (alculations of loop diagrams only make sense with a certain UV regularization
e It is possible to choose regularization to maintain Lorentz and gauge invariance
e However, all results depend on an (unphysical) number — the UV cutoff; what to do?

3.2 Photon self-energy and wave function

Free photon propagator in Feynman gauge

d‘k g , g
D(O) — / Qv —ikx D(O) k) — na
v (2) (2m)%i k2 + e ’ v () k2 + ie

Exact photon propagator

D) = oo+ o+ wn(idon + (o e e

31

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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The last pictured contribution is the repetition of the second one; can happen separated by large

time interval

Such contributions are called “one-particle reducible”, they are simple and can be summed up

One defines photon self energy as the sum of all 1PI diagrams (amputated):

Huy(k):©+@+@+.” = Q
Dytty = o+ Do + Do Doe ...

Duw(k) = DO)(k) + DO (k)I1*#2(k) D, (k) + ...

2V

Then

or

= Dyson equation:

0 0 v~ exact!
Dy(k) = D) (k) + DG, (k)T1#142 (k) Dy (k)

Using D,(fl),) (k) = g /K?* this yields an equation

kQDW(k) = g + 11,2 (k) Dy (K) = [k29uu1 _Huul]Dmv = G

Let (Lorentz invariance)

(k) = gu a1(k?) + kuky aa(k?)
Dy (k) = gu (k) + kb da(k?)
Using first the expansion for II,,,:
[kz - al(kQ)]D;w — kK" Dy a2(k2) = Guv
and second for D,,,, obtain
g = [K* — a1]di g + [K* — a1]kuky do — kyuky diay — K*daas kuky

Collecting the terms o< g,

Therefore

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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If a1 (k* = 0)#0 we are in a big trouble because photon acquires a mass (or just disappears).
Indeed

4 ) 3 - —ikoxo
D'u,y(l') — / d’k : g:U'V : e—ZkILL‘ — / dkle'bkx/ d]f(] : gl“je (343)
@r) T~y () T e o ) @mikg R —m(®) 1

Einstein’s relation ko = |k| (or ko = V/m? + k2) emerges when the ko integral is taken by residues.
Thus

— If the pole position is shifted (from zero), particle acquires a mass

— If there is no pole but, say, a cut (e.g. 1/v/kg — m) there is no particle at all (dissipation)

! Gauge invariance saves the day (as always)
KFIL, = 0 = kM [gu a1 (k%) + kukyao(k*)] =0 = a1(k®) = —k*as(k?) (3.44)

We used this relation in the previous Section:

(k) = (guwk® —kuko) II(E?),  a1(k?) = KIL(EY),  a2(k?) = —TI(k?) (3.45)
_ 9
Dy (k) = 21— (k2] (3.46)

Thus, unless T1(k?) ~ 1/k?, (Higgs mechanism) the photon remains massless in quantum theory.

For k% — 0 (almost real photon) we can write

K20 Z3Guv B 1
I R A T (0]

D, (k) (3.47)

that is, the pole of the propagator remains at k2 = 0, but the residue at the pole changes.

Recall that the photon propagator arise from the product of free photon wave functions and g,
originates from the sum over polarizations:

—Gu = Ze,(j\)*(k)el(})(k) + unphysical polarizations (3.48)
A
Therefore effectively
G = Zagw = k) = VZeM(k) (3.49)

Interpretation:
The physical photon spends part of its life as a eTe™ pair (or more complicated state).
Its wave function is a sum of many components

h
\Pthion = VU, + Y- + \I/eJref»y + ... (350)

If we require one physical photon in space

photon

/d3x (OPIYS ()2 = 1 — /d3:v U (z)*=Z3 < 1 (3.51)
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Redefinition of the normalization of polarization vectors (e e = —1) is not convenient.
Better keep Zs factors explicitly in which case they also enter the relation between the Green
function and scattering matrix:

T oy, k) =) e Gl (L )

on—shell

=(VZ5eQV) . (V25 )Gl ey K (3.52)

on—shell

— | an extra +/Z3 factor for each external photon line

Last but not least, we can rewrite the expression for the propagator in the following way:

B v _ Z39uv — (r)
Dy (k) = = .= Z3 D)(k 3.53
w®) = i) - e —ne)] T er-nog) C BPe G5
where
1
3 = 1_711(0) photon WF' renormalization constant
II(k?) — II(0
" (k?) = (1_)1_[@() photon renormalized self-energy (3.54)

By construction II(") (k?) = O(k?) so that for k> — 0 the propagator is that of a free photon (up
to the Z3 factor)

Let us use the expressions that we have just derived.
To O(«a) accuracy:

2
1 - P MS
Zy = —— ~1+1(0)+ O(?) = Smim
’ 1 —11(0) ©) (o) 1—%[1n%—22—1} cutoff
T1(k?) — T1(0)
i = 102) ~11(0) + 0(a?)
1 2 2
:—@ da ad lnL—l — ln%—l
7 Jo m? — aak? m?2
9 1 2
— _% do aa [ln QOadk’?] < in both schemes (3.55)
0 _

Thus:
e The renormalization constant Z3 depends on the regularization and scheme
e The renormalized propagator does not depend on regularization

We have been able to localize the problem of divergences in photon propagator — include all of
them in one constant. Let us see whether we can do the same for other cases.
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3.3 Electron mass and wave function renormalization

Exact electron propagator

S - N R N A s

n (SJ:LL P e MU s ™ _

Define electron self-energy as the sum of all 1PI (amputated) diagrams:

Ep)= ST T, . S, éJQlem: ,,,,,,

E.g.

: d'k p—k

— mo + 9 — gNV

p My = /(277)41'67%3— (0 — k)2 —ie V&2 +ic
pop—Fk u
Then
-3
S S| S
S(p) — 0 . 0 0 + ] .

< To the last step:
One can show that

S(p) = T1(p?) - T+pSe(p®) = B(p)  «pP=p°

Therefore ¥(p)p = pX(p).

Mass of a particle corresponds to the pole position in the propagator.

35

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

In order to find position of the pole it is convenient to project the matrix S(p) on the free electron

state.
Let m be the “true” mass, and wu,,(p) the corresponding Dirac spinor. i.e.

(p_m) um(p) =0

(3.61)



3 RENORMALIZATION AND REGULARIZATION IN QED 36

Then
() : ») (362
u = U .
mo — P+ X(p) mAP mo —m + X(m) mAP
Vanishing of the denominator implies the equation for m:
mog—m+X(m)=0 = m = m(mo, €g) (3.63)

Since my is not directly observable, it makes sense to eliminate it in favor of m = 0.511 MeV:

1 1
) = PSP m—pr () - Sm) (3.64)

As we discussed for the photon, the residue at the pole is also important

/ a(p, Nu(p, \) = 2m

d3p - 1
Se- ~ 3 [ Grpt@tt) s = (3.65)
In the present case we can write
1
S0) = G =P = ) + D) — Sm) — (p— )= ()]
O((p —m)?) (3.66)
so that close to mass shell
sp " = ;,(m)) (ml_ ) (3.67)
Define
1
22 = 550 (m)
50 = 1_21,(7%) [S(p) — S(m) — (p— m)> (m)] (3.68)
Then
S(p) = ——22 — Z 5" () (3.69)
P o) — Y |

— renormalized electron self-energy and renormalized propagator
— Z> is called electron WF renormalization constant

Note that

p—m

20 (p) F2 (’)((p—m)2) (3.70)
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Therefore for slow electrons p'< 0.5 MeV/c

3 :
= / dpod P —ip(z—y) 2
T0>Yo

QT () )}) o p—m

d3 . s . L
- Z/(Q)SZE [/ Zau(p, S)eﬂE”mO“p'x] [/ Zau(p, s)elEpyonp-g’]
T p
S

W7, 1) (7, 1) (3.71)

Interpretation: (similar to photon)
The physical electron is accompanied by photons (or ete™ pairs).
Its wave function is a sum of many components

\I/phys == \Ife + \I/e’y + \Ilefyfy + e (3'72)

electron

If we require one physical electron in space

electron

/d3 P (=1 = /de We(2)]> = 2o < 1 (3.73)

Redefinition of the normalization of Dirac spinors (uu = 2m) is not convenient.
Better keep Z5 factors explicitly in which case they also enter the relation between the Green
function and scattering matrix.

— | an extra y/Zs factor for each external fermion (electron or positron) line

One can show that at least in one-loop calculation (— exercises)

e Y(p) is UV divergent and must be calculated using a certain regularization

e All UV divergences are localized in Z and the relation m = m(mg, ep); the renormalized self
energy and propagator are finite

3.4 Renormalized interaction vertex

The three-particle Green function corresponding to photon emission contains both 1PI and 1PR

We define the vertex function as the sum of all 1PI (amputated) Feynman diagrams:

e

It is convenient to separate the leading term

contributions:

Lu(p1,02) = vu+ Au(p1,p2) (3.76)
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For p? — m?, p3 — m? Lorentz + gauge inv. = Ay~ or ~ o4,
If in addition ¢ = p2 —p1 — 0 then o,,¢” — 0 and only ~ 7, is possible:

Au(p, — m,p, = m) = y,A(m,m)

Adding and subtracting

F,u(plvp2) = Tu [1 + A(m7 m)] + {Au(p17p2) - ’Y}LA(mu m)}

Ap(p1sp2) — v A(m,m
= [14 A(m,m)] [%4— ul 11 j)A(m“m<) )] (3.77)
Define
1
Z = 1+ A(m,m)
A (p17p2) -7 A(m7m)
(r) — K o
Ay T+ A(m,m) (3.78)
Then
Tu(p1,p2) = Z7 [’Y;Hr/\y)} = Zleff)(Pl,pz) (3.79)

By construction, A,(f) vanishes when electrons are close to the mass shell and the photon momentum

goes to zero. In this limit the exact vertex function looks as the leading-order one apart from the
Z7 ! factor.

One-loop calculation:
e ['(p1,p2) is UV divergent and must be calculated using a certain regularization
e All UV divergences are localized in Z;; the renormalized vertex is finite

3.5 Effective charge and renormalizability

Consider electron-electron scattering at very small angles ¢ — 0

Main contribution comes from the diagrams where the electrons are connected by one photon line:

601‘/1
N N
2 —~ 2
_ -1
Dy Ty, = 2Ty (3.80)
7 7 Dy = Z3 D) = \/Z3+/Z3D})
/

eOPu
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Combine all Z-factors with eg: =

]
=

9]
—
-

(r)
D/W e = 6022Z1_1\/ Z3

OO0

]
Ay
=

If t = (p1 — p2)? — O
— FL) — Fg), DEZ,",) — DES,) < LO diagram with eg replaced by e;
— These diagrams ~ 1/¢, hence dominate at ¢ — 0: do/dQ ~ 1/sin* 0/2;

= e is the true electric charge that enters Coulomb law!

More complicated diagrams:

€ Z_11 €Q Z_11
\/ZQ 1 ZQ ! V Z2
Z3 ZS always €0Z2 Zl_l \/Z in each vertex
\/ZQ ZQ V Z2
N U/

—1 —1
€ Z1 € Zl
Thus:

e all physical amplitudes (Green functions on mass shell) can be written in terms of

m(m07€0)7 6(m0760)7 -Dg;j)(ma 6)7 S(T)(m7 e),FLT)(m, 6)

e The renormalized propagators and interaction vertex expressed in terms of renormalized mass
and electric charge are finite, i.e. do not depend on regularization of UV divergences to all orders
in perturbation theory [to LO D,(Z,) (m,e) = D,(L) (mo, eo)].

e The UV divergences only affect the relation between renormalized (physical) and “bare” mass
and coupling. If m, e are substituted by their experimental values, UV divergences disappear from
all expressions

e A quantum field theory with such properties is called renormalizable

In a different language:
A QFT is always defined with an UV cutoff: |ku| < M (divergences, ignorance of true theory
at short distances). How such a theory make sense? Let

Theory 1 = {mg, ey, M }
Theory 2 = {my, e, M'} (3.81)
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and require that the parameters are adjusted such that
m(eg, mo, M) = m(ef, mg, M')
e(ep, mo, M) = e(efy, mgy, M')
This means that the bare mass and charge depend on the cutoft:
eo = eo(M), mo = mo(M)

Accepted terminology “The theory is defined at the scale M”
A theory in which such tuning is possible is called “a renormalizable theory”

e special for QED:

Iy =2y = e=eg\/Z3 [« Ward-Takahashi Identity]

3.6 xxx Generalized Ward Identity * * x

Electron is not the only electrically charged particle:

et me~0.511MeV, ,ui : my ~ 106 MeV, p,p:  my =940 MeV,

They have exactly the same electric charge, why?

We could put all “bare” charges equal eg by hand, but what happens after renormalization?

The propagators depend on the mass, so they are all different:

5(p)
electron/positron ete”
Sy
9 muon/antimuon php™
S'(p)(p) = proton/antiproton p,D

Hence self-energies and Zs-factors are also different:

200 ST 2 ST W) Sl

and similarly we have three different Z%e), Zf“ ) Z{p ),

In contrast, there is only one Z3 which contains a sum over all charged particles:

>
z3 = w@vw + v W+ +
L

Therefore
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(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)



3 RENORMALIZATION AND REGULARIZATION IN QED

(?1) Why e(® = e(#) (experiment)?

41

This result follows from the generalized Ward identity (below) which implies that for every charged

particle in QED
ie. 729 =27 zW =z
As a consequence
e = W = @ = | = ¢\/Zs — universal coupling

Generalized Ward identity

. » e For real particle pp=m, p,=m
= ™ K'Tu(p1,p2) = 0, k=p1—p2
5 e For virtual particles pFmM,  pFmM

K'Tu(p1,p2) = S~ (p2) — S (p1)
Let us first show that Z; = Z5 follows from this result and then prove it.

In the limit &k, — 0,p,, > m

Ty =Z e+ A (p1p)] = Z7 'y
Z )

S(p1) = m_lerz(r)(pl) - m=p,

Therefore in this limit
KTy — Z7% = 27N (py — )
= 21" [(m—p,) = (m —p,)]
= Z7 [T p2) — ST ()] 2
It follows that
771 7y =1 —  Z1 =12

Now let us prove the generalized Ward identity itself.
1) Leading order O(1)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)
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2) Next-to-Leading order O(e?)

d*q 1 1 g
AL — 2/ o B Jab 3.97
H €0 (27r)4'ﬂ mo—gz)2—i-gry“mo—giil—i-gry q (3.97)
Write
Ky, = (p1 = p2)yu = (mo — p, + ¢) — (mo — p; + ¢) (3.98)
Then
dq 1 1 dq 1 1
kA = 2/ » a—Q/ o Y
b €y (277)42.’7 mo — p, + g’Y e €0 (27?)41'7 mo — p, + gV e

On the other hand

ST =mo-p+Se) LY ST - S ) =,y + 2D (2) - SO (1) (3.100)

This is exactly what we want to prove.

Another form of the same identity:
Consider the limit £k =p; —po — 0

K'Tu(prop2) = S7Hp, — K) = S7H(py) = _dS;l;@%
1
dS~'(p) _ _dS'(py)
ap, " '

’\'Yu

= Iulpi,p) = —

Ly
Ydp)  dplf

(3.101)

Thus

ds—t
dpt

Lulp.p) = — (3.102)

This is an exact relation to all orders in perturbation theory.

3.7 Renormalization group (QED)

An explicit calculation gives (QED lectures)
Photon self energy, one loop:

2

1 _ 1— k2 s
(k) = 20‘0/ duu(l — u) [m my = ul . Wk —ie 4 (3.103)
T 0 AUV
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For large momenta
mé < |k? < A2y,

this expression simplifies to logarithmic accuracy to

ap A2 e%
Ik)=—In—+0O(1 = —
(k) 37Tn—k:2—ie+ (1), W=
Let us clarify the meaning of renormalization procedure on this simple example.
Start with
D;u/ _ Guv 1 _ Juv 1
21— 2 2 1 A?
k2 +iel —TI(k?%) K tiel4+ 2L
and rewrite
1 B 1
1—1—‘?2‘—7‘31117’&—/,:2 1—1—%2111%22—?—2111;”—'“22
B 1 " 1
I+§2may ;‘—gm;ﬂ—’fz
1+g—2 In :}7
B Z3 B Z3
1- 2382z 12wk
where
Zs = Zy(A,m) !
3=243(Am) = ———5
and I used that
e =/ Zseg = a = Z3qq
Thus we obtain
Dy = Z3 D)
Guv 1
D) — I
S R O R . <
3 m?
o D,(Z,) = D,(fy) (e,m) as we want
e This is a good approximation so far as
a . —k? 1
—In— <1, =—
3r 0 m? BT

Question:
What to do if @ << 1 but ozln_m—"g2 ~ 17
— [In QED of academic interest, in QCD (agcp ~ 0.3) important]

— One can show that two-loop diagrams produce a?In? _m—k;, three-loop o In3 _m—]f etc

We can try to reorganize the perturbation theory:
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(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)
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e Fixed-order perturbation theory (usual):

1-st order: «
2-nd order: o2, etc.

e Resummed perturbation theory:

k> k> k2
LO (Leading Order) : aln g o? 1In? KRR (aln W)”
k2 k2 k?
NLO (next-to-LO) : a?In ol a3 In? o RRRE ,a(aln W)” (3.112)

but would need to calculate leading (subleading etc.) parts of Feynman diagrams to all orders.
A very powerful approach — the renormalization group

3.7.1 The running coupling, S-function

The idea:
Renormalization procedure is, basically, splitting the large logarithms in two parts:
—k? —k? m?
111 ﬁ = hl W —+ hl F
N—— N——
Ve N\
1, » ) AM Z — factors (3.113)

What we achieve by doing this:

1. Dependence on A disappears from physical observables; only enters e = e(eq, mg, A)
2. Renormalized e, m are the charge and mass for free electrons, as measured in low-energy expts.

Renormalized I, £ A are zero for free particles

— Renormalized propagators = free propagators for k? = 0, p?> = m?.

Note that property (1.) is crucial, (2.) is convenient

Let us change the prescription of how we renormalize:

—k‘2 —k‘2 M2
ln A2 = ln W =+ ln F
v ¢

) n) A Z — factors (3.114)

where M is an arbitrary mass parameter. For simplicity we will assume
m<<M<KA (3.115)
In other words

11" (k%) := (k) — II(k? = 0)
—
1" (k%) = I(k?) — IL(—k*> = M?) (3.116)
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and similar
A (p1,p2) == Au(pr, p2) — MAu(pf = p3 = (p1 — p2)* = —M?)
£ (p) == T (p) = S(p = M) — (p - M)E'((p = M) (3.117)
What happens in this situation?
e We must always specify the value of M explicitly, i.e.
" =110 (K2, M2, e(M), m(M)) ete.

e The first property remains valid
e The second property is lost; replaced by

Renormalized propagators (vertices) = free propagators (vertices) for —k% = M?, —p? = M?

< Accepted terminology: “the theory is renormalized on the scale M”
We can overtake all results with a simple substitution m — M:

1

Z3s(A, M, ap) = —— = Z3(M
3( 0) o 3(M)
M? g 1
H(T)(k):_glni D(Q(k):ﬂ—
smo ok S L
[0
o(M)=—""—F =Zs(M)ag,  QCoulomb ~ (M =m) (3.118)
14 Qoqn A

e | If we choose M ~ |k| there are no large logs in the renormalized propagator
— Problem solved? Not quite: we do not know the value of o(M) for large M
— What happens when we change M7 — M>s?

Consider
a(M) = LI a(My) = — 2 (3.119)
420, A 420, A
0 2 0 2
3m Mf 3m ]\422
e both expressions are valid if ln(AQ/MﬁQ) < 1/
Idea: eliminate ap:
o7y} oQ 1
M) = = X
Oé( 2) 1+Oé01 A2+O£0 M12 1+O[01 A2 (7)) M12
—In-—+ —In— —In— —In—%
37 M12 37 M22 37 M12 1 37 M22
14+ 204 A®
o
3 M12
M
- (M) . (3.120)
1+ OJ(MI) Ml

3T nﬁg
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e this relation is valid if In(M?/M3) < 1/a; A can be arbitrary as it falls out

What to do if M?Z < M2?
— Split the interval in smaller ones, M12 < M% < ,u% <...< M22
— Apply the above relation for each smaller intervall

An intelligent way to do this: a differential equation

d 1 1 d 2
M— = — M—~a(M) = —— 3.121
dM a(M) — a2(M) dMO‘( )= 5 (3.121)
or
Mia(M) = +3a2(M) (3.122)
dM 37 '
A very important concept:
Beta-function (Gell-Mann-Low function)
d
M ——a(M) = B(a(M)) = Boa® (M) + Bra(M) + B (M) + ... (3.123)
We have calculated
2
QED
= 124
0 3t >0 (3 )

Terminology: the running coupling
Interpretation: QED charge increases at small distances/large scales due to vacuum polarization

- S
=Y @%%

3.7.2 Electron propagator at large momenta; Callan-Symanzik and renormalization
group equations

| | -

M, M,

Consider electron propagator for p > m

B i

=P () +me(p?), PP =y (3.125)
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In this calculation we can neglect the electron mass m — 0, thus

First order:

AQ
Eli)are(p) _ & — @m—Q [exercises]

4T —p
Renormalization:
M? o
S (p2, M) =5, (p%) — Sy(—p? = M2) = Ln = ~ 2]
1 (p?, M) =%1(p°) — X1(—p ) ye e Rl
Zo(M) = ——
i _1+a01 A®
7n7
47 M?

e Both expressions are valid to O(a?)

In general:

Sbare(p,A,ao) = ZQ(A,M, ao)Sren(p M,a(M))

Note that the 1.h.s. does not depend on M. Thus

d d 0 d
= M—8bare — (M —2Z N 7o | M— M—a(M) | —
0=Mgs ( dM 2>S * 2[ 8M+< ! )> o
We define
M—d (M) = B(a) beta-functi
i = B« eta-function
Lotz o) lous dimensi
ZMar? = v(«a anomalous dimension
Callan-Symanzik equation:
M—a +5(a)£+2 ()| S™*(p, M,a(M)) =0
8M aa ,‘Y p7 9 -

e this is an example; the CS equation can written for other objects (later)
e why 27v(«): the number of external fermion legs (convenient)

In perturbation theory

Bla) = Boa® + Brad + ...

v(a) =ya+me’+...

2
50—3?
1
Yo =-—
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(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)

(3.132)

(3.133)

L10
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The self energy can depend on M through «(M), or dimensionless ratio p/M:

ST (p, M, o) = ! = ! 3.134
(A P+ 2, M2 0)  p1+ ST (02 M2, Q) .

This implies that if we rescale p,, — tp, and M — tM for fixed a:
ST (tp, tM, ) = t~1S™ (p, M, ) (3.135)

Euler’s Homogeneous Function Theorem:

9 0 ren __ ren

We can use this to convert partial derivatives in M into derivatives in p,! Obtain

Renormalization Group (RG) equation:

[puailL — 5(a)aaa +1- 27(&)] S*%p, M, a(M)) =0 (3.137)

e this is an example; the RG equation can written for other objects (later)
e this is a linear differential equation describing the momentum dependence

General solution:

i a(p) o
§(p, M (M) = 5 S(a(p) exp {2 [ a3 }
S

(M)
S(a(p)) := S™(p = M, a(M)) boundary condition, only function of a(p)
(3.138)
where a(p) = a(M? = —p?) is the running coupling
Duralp) = Bo) (3.139)
.U«apu .
[insert in the equation and check that it is satisfied]
One-loop approximation:
Sap) =1, @) =wa,  Bla)=pFa’ (3.140)

Then

a(p)
_ ;% | Y, op)
exp{**} = exp {Q/Q(M) da 500/} = exp {2ﬁ0 In a(M)}

()™= )"

L10



4 DIMENSIONAL REGULARIZATION AND MINIMAL SUBTRACTION

so that

7 (o, M. (M) — ﬁ < o(p) )3/4

If |p| is not very much different from M, can use

_ (M)
" 1+ (M) ln£2
3 —p?

In this case

%0/ o —2v0/Bo —2v0/Bo
(a(p) ) e <1+a(M) 1HM2> R <1+620a(M)1nW> '

(M) 3m —p? —p?
M? _ a(M) . M?
:1_7004(M)1n_71)2+(9(a In (...)):1— i lnTpQ

— in agreement with one-loop calculation

Our new result is also applicable for p? >> M?:
The difference:

e The one-loop result valid if

M2
akl, aln— <1
p

e The “RG-improved” result valid if

2

M
a1, aln—-=0(1)
p

e At the end can choose M — m if desired.

For a better (NLO) approximation have to calculate three new constants:
Bla) = Boo® + Bia
(@) = o +ma?

S(a(p)) =1+ s1a(p)

— sum up all terms ~ a(aln M?/p?)* k=0,1,...

4 Dimensional regularization and minimal subtraction

4.1 Polarization operator in dimensional regularization
Basic idea: analytic continuation in the number of space-time dimensions

d=1414 = d=4-—2¢, € — 04
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(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(4.1)
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Then
o /( 1-e<1
/ddkE = /dk2 (k2)d/2-1 (4.2)
0
In addition the charge becomes slightly modified
€o = p % [ has dimension GeV]| (4.3)
in order that ~wvw and w( w have the same dimension.
Let us calculate 11, in dimensional regularization. We can start with
d?k 1
II 2 4 d/ d /
v “ 2m)4i [m2 — k2 — aap? — ie)?
X {gw, [m? — k* + aap?] — 20ap,p, + 21@1@,} (4.4)
Master-formulas for loop integrals in d dimensions (see Appendix ?7?)
I(a) Tl (a—9)
dek = — % 4.5
/ R A= T e (4.5)
I'(a) ¢/ gu\L(a—1-9)
d |2 2
v = - 4
/d Ly s L int (- 2) = (4.6)
Obtain
1 _ _ I'(2—d/2)
_ 2 2 2
I, = —460M / da( ST { [g#,,[m + aap®] — 2040410;1191/} (12 — aap? -2
Guv } I'(1—-4d/2)
T [d 2 G [m?2 — a&pQ]lfdﬂ
~k2gu N 2Kk (4.7)

In the second term

4957 — g| = (~g0)(1 — d/2).

(1-d/2)0(1—d/2) =T(2—d/2)  (4.8)

Therefore

62 4—d _
4 / do [m2F(2 d/2) {gu,,W+ aap?] — 2aappy — (ﬁ{? - adpQ)gw}

M = (47r)d/2 — aap?]2-d/2
Segut™? . T(2-4d/2) 0
 (4r)d/2 / dooa [m? — aap?]2—d/2 (glwp B p“p”> (4.9)
This indeed has the structure required by gauge invariance! Therefore

8e2 [! 1 pt=ir(2 — d/2)
I 2y — 0 d _
(p ) (47‘(‘)2 /0 (e Xe%e7 I:(47T)d/2_2 [mQ — aap2]2—d/2:|

(4.10)
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Now let us take the limit d=4—2¢ ¢€—0:

1 1 Indr __ 2
i e — ¢ = Lk elndr + O()

M4—d :HQE — €2eln,u, =1 —i—eln,uQ + 0(62)

(2 —d/2) =I'(e) = % el'(e) = %F(l +€) = %(1 — evp)

Thus we obtain

1 ) 1
[*} = g(l—E’yE)(1+eln47r) (1+elnp?) <1+elan_aapz>

1 2

:E77E+ln47r+ln 5 + O(e)

m2 — aap?

Regularization: subtraction of divergent term at e — 0

MS: Minimal Subtraction /1/
€
MS : Modified Minimal Subtraction %?m

One often writes /‘12\/18 or M12\/TS to distinguish between these two standard choices.

Note that choice of the subtraction scheme can be compensated by the choice of pu:

2 2 -
Pis = Hus 4me e

This is usually referred to as scheme-dependence.

We obtain
- 2 1 e
mMS(p?) = N daaa 111%8,2
T Jo m? — aap
20 [ M?
chtoff(pZ) — _ﬂ do ot |:1n 5~ 95 1
T Jo m* — aap

The two expressions are formally equivalent if we identify
2 2 2
M* = epgg = 2.71828 pugyg
Last but not least:
In dimensional regularization, e.g.,
2

A 1
22:1—’}/0060111m — 1—4_D’)/0040

A 1

[Details — exercises]

o1

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

L11
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4.2 Asymptotic freedom: QCD Beta—function

w2 (1) Z7%(1) Z3(n) o ap = a¥

s

) = Bla) = fuod + Brad+ .. (4.19)

Difference to QED:

e Renormalization at k2 — 0, $ — m makes no sense because of confinement

e Z1+#Z3, therefore have to calculate everything:

o O Dr G -

Zo:

A
Zg(u) =1- (530[0 In ?

(4.20)
Let

A2
Za(pn) =1 — 0209 In ?

2
Zi(n) =1—=010¢1n 22 (4.21)

Then

QCD _ 9(65 + 26, — 26) (4.22)

e (Calculation using explicit UV cutoff is at best inconvenient
—> Dimensional regularization

v@wy = nfTr(tatb) X W\QN\
QCD

where ny is the number of existing quarks u, d, s, ..., Tr(t%?) = 1/259

The simplest case

(4.23)

QED,e——g
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Compare:
1) Calculation with a cutoff:

—a(l — a)k?

A2 -1

™

1 2
chtoff(kQ) — 20“)/ doo(l — @) [ln =
0

M2
= %? In Az + finite terms

_qEp, M° :
= agdy " In el + finite terms (4.24)

—> 03 is a coefficient of agln %

2) Calculation in dim. reg.:

1 2 2
. 2 m” —a(l —a)k
Hdlm.reg. k2 _2050/ d 1— — —In4 1
(1) =27 | dea(l=a) |=7—5 + e —Indr +1n 12

_ % f 2 i
=3 < e D) + finite terms (4.25)

—> 43 is a coeflicient of ag (—ﬁ)

In both cases we need a divergent part only, with the correspondence

Explicit calculation (exercises) gives:

I,a v,b
WOW = (k2" — kMEY)gab <-Z‘W : gnf> T2 - D/2)
% m m 2 b as 5
o =R — kR (432 N, D2 = DJ2) (4.27)

47

1 1 2 .
(4.28)
so that
1 5 2
Next:

Ty S(pym=0) = %ch (2 - D/2) (4.30)
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where for SU(N,)

aga N2—-1 4
Zajtt = Cpl, Cr=—gr— >3 (Ne=3)
]. ao
S(p) = ag = Zy=1-CrT(2-D/2) +...
p(1+ECFF(2—D/2)>
1
— (52:70}7‘
47

Finally (exercises)

1
/&\ —— (51 = E(CF-FNC)

and we obtain (Gross, Wilczek, Politzer, 1973)

2 ) 2
8CD:2(53+252—251):I[—§ C+§7"Lf+ 20F _2CF_2NC
& ———— N N—,——
03 02 o1

e Results for individual J; in Feynman gauge, the sum is gauge-invariant

1712 11 2
(‘SCD:—[— - =N, <0 GED = 2= 5 g
27 L3 3 3
Asymptotic freedom:
0.5 April 2012
a{Q) v T decaysnsLo)
® Lattice QCD(NNLO)
041l a DIS jets(NLO)
o Heavy Quarkoni@uLo)
o €'¢ jets & shapeges. NNLO)
e Z pole fit(N3LO)
pp —> jetsNLO)
0.3+
0.2t
0.1t
==QCD as(Mz)=0.1184 + 0.0007
1 100

© QGev]

e Often a different definition is used:

o4

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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d 1 Og g\ 2
P =50, Ble)= by —bi (1)

47 47
11 2

e five terms in this expansion are known (five loops) [Baikov, Chetyrkin, Kihn, 2017
e A simple parametrization

2 bo 9 d 1 bo 2

M(ZL%(#) = Boo; = —5 05 = Miposn) ~ 2n = as(p) = b In(j1/Agen) (4.37)
with Aqep ~ 200 — 250 MeV (not to be mixed with UV cutoff)
One can rewrite this relation as
Agep = e~ 27/ (oas(w) = Ay e~ 27/ (boao) (4.38)

! The scale parameter arises because a field theory “remembers” about the UV cutoff
This phenomenon is called dimensional transmutation.
| Note that e~1/(Poas(1) has zero perturbative expansion

4.3 Renormalization on a Lagrangian level

All UV divergencies in QED can be isolated in three renormalization constants Z; (interaction
vertex), Z, (electron propagator), and Zs (photon propagator). To obtain a finite result involving
divergent diagrams, the suggested procedure was to calculate the diagrams using bare parameters
mo, €9 with a certain regulator M to make the expressions well-defined (regularization), and reex-
press the results in terms of “physical” parameters m, e (renormalization). The resulting expression
should be finite in the limit Ayy — co. A more convenient procedure (especially in higher orders)
is to implement the renormalization on the Lagrangian level.
As an example, consider scalar field theory

1 1 A
L= (0P 5 — 06" (439)

where we will also disregard the mass term for simplicity. The (exact) propagator of the ¢ field will
be divergent (similar to electron propagator in QED) and close to the mass shell can be written as

)
4 . ipx _ ZZaS 2 _ 2
d*z e (Q|p(x)p(0)|Q2) = P + terms regular at p© =m (4.40)

We can eliminate the Zq% factor from this equation by rescaling the field

¢ = Zg(€ 1) or(p) (4.41)

where p is the renormalization scale (before I used M ). Then obviously

/d4x e (2 () (0)|2) = m + terms regular at p® = m? (4.42)
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is free from any divergences, by construction. In addition, we will have divergences related to the
vertex function and can isolate them in a similar manner by introducing the renormalized coupling

Mo = p2 Zx (e, ) A (1) (4.43)
The Lagrangian of our theory can then be written in terms of the renormalized field and coupling
as
1
L= 523,(6“@)2 — %7, fz¢¢4 (4.44)

Here we already imply using dimensional regularization and the appearance of the ;¢ factor needs
explanation.

We require that the action of the theory is dimensionless. In four dimensions, this requires [¢] =
1 (field canonical dimension) and the coupling A is dimensionless. Changing [d*z £ — [d%z L
requires to modify both. From the kinetic term it follows that we need to assign [¢] = d/2—1 = 1—e,
and then the bare coupling constant cannot remain dimensionless, we need [A\o] = 4 —d = 2e.
Following 't Hooft we introduce the factor ;¢ in the bare coupling in order that the renormalized
coupling A, remains dimensionless. One can write

Z5=1+623, WINZy=1+06Z (4.45)

and
£ = = (ﬁ L\T (¢4 + *1 6Z2 3 (25 2 6Z7)\ (254 4.46
( 12 T) 24 T 2 (i)( 1 T) 21 T ( . )

so that the addenda (called counterterms) produces extra contributions that cancel the divergences
that appear in the Feynman diagrams corresponding to the first two terms (identical to original
Lagrangian). In other words, in our old formulation the renormalzation was done by dropping the
divergent 1/e terms in Feynman diagrams, in the new formulation the divergent terms are cancelled
by adding the contribution of the counterterms.

By definition of the minimal subtraction, the counterterms can only involve poles in 1/¢, so the
they have the following generic structure

1 1 1
Z(e,p) = l—l—2[211a+212a2+213a3+...} + 2 [nga + z99a> + . } +6—3[233a3+...} + ...
a” Ar (1)
=1 — = 4.47
+ kg;lznk Ek ) CL(,M) (477')2 ( )

One obtains by a direct calculation

2 3 1 3

Zi=1+ [~ 51+ )+ al -]+
ZA:1+1[32G—1I;2} l[—%}t@(ai”) (4.48)

The S-function and the anomalous dimension of the scalar field are defined as follows:

d da 1 d,_, 1dWnZ}

= _— g —_ 7Z —
Bla) Mdua dlnp’ e QZ;Mdu¢ 2 dlnp

(4.49)

L12
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Let us calculate the g-function first. The starting observation is that the bare coupling does not
depend on the renormalization scale. Thus

0= dliﬂ [MQGZA(QMG(N)} = 2ep* Zy(e, p)a(p) + p** (dlnﬂZA(au)) ap) + H26Z/\(€7M)m
— 2642 Zy (e, phalp) + 12 T2 LN 1y ez e,y B0 (4.50)

da dlnp dlnp

where I used that Z(e, p only depends on p through powers of a(u). Using the definition of the g
function and dividing out the factor p?¢Z) (e, i) one gets

0= 2ea(y) + ac“gaz* 8(a) + B(a) (4.51)
or
2 dlnZ dln Zy\?
5(@——%——2&1(#) 1—a ;1@ A <a zlla A) —i—] (4.52)

Note that the S-function on the Lh.s. of this equation is a finite quantity in the e — 0 limit (as a

derivative of a finite renormalized coupling), but dlgaZ* is a sum of poles:
dlnZ a a?
a— A = ~ (211 +2210) + 5[~ + 22:] + O(d?) (4.53)

Thus the only way how a finite l.h.s. can arise is that all 1/¢? and higher power contributions from
the expansion of the Z-factor must cancel (which implies that there are some nontrivial relations
between the coefficients of higher poles), and only the 1/e term will contribute (and the singularity
cancels thanks to the prefactor €). Thus we get

1
Bla) = —2€ea [1 - (zna + 2221a2) + (’)(a?’)} = —2¢a+ 2211a> + 4z91a° + O(a4) (4.54)
€
From the above expression for Z) we read off z%’l\) = 3/2 and zé/l\) = —17/12 so that
o 17 3 4
f(a) = —2ea + 3a” — 30 + O(a”) (4.55)

Next, calculate ~y4:

1dan¢2) 1dan¢2)
T2 dlnp T2 da

¢

1(1 1
= 2{ <2z§‘f) + 3z§(f)a) + higher poles + (’)(az)}{—Qea + 3a% — gag + (’)(a4)} (4.56)
€

Here again, the only way to obtain a finite contribution is from the product of the single pole terms
in the Zé—factor and the —2ea term in the S-function; the higher poles must cancel. Thus

1 1 1 1
Yo = 5(—26a)€ (225? + Szédf)a) = —22%) - 32%’)&2 = —a— —a’ (4.57)

To summarize
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e The B-function in a 4—2¢ dimensional theory has a term 3(a) = —2ea+O(a?). In renormalized
quantities we set € — 0 so that this term can be omitted (at the end of calculation!)

e Only simple pole terms ~ 1/€ in the Z-factors are important, because all higher-order terms

must cancel in proper combinations. One can show that all higher poles can be restored

without calculation from this condition, they do not contain new physical information.

The construction of the renormalized action/Lagrangian in gauge theories is very similar. We

start with the gauge-fixed QCD action in d = 4 — 2¢ in terms of bare fields

- € 1 a v,a —a a 1 a
5= [ s a0~ inqad)a+ {ER 0 — (0,07 + 50,4

Here
Fﬁu = auAg - ((‘)HA,% + NEQOfabCAZAzC/
D,c = 0uc—ipcgolAy, ] Dzb =0, + ,uegofabcAfL
and make the replacements
q— Zgqr A— Z4A,, c— Zecp 9 — Zggr, §— Z¢&,
Converting to our previous notation (standard)
Zy =277, Zs = 7%, 77t = 2,232,

The corresponding anomalous dimensions are defined as
Yg = 10, In Z, Vg = 10, In Z, YA = 1O, 1In Zy

etc. We will use

_ 92 Qs 92
G Tan (4m)2
The S-functions:
Bla) = pdua = 2a(~e —7g) = 2a(—e — f(a)),  Bla) = foa+fra®+...,  fo=

Be(€,9) = ndué = pduboZg ' = —&pdyIn Zg = —Epd, In 25 = =260, In Za = —2674 .

where I used that Z; = Zf‘ since the gauge fixing term is not renormalized.

11
3

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

2

7Nc - gnf )

(4.64)

Note that in Landau gauge { = 0 the beta-function B¢ vanishes identically for arbitrary coupling.

4.4 xxx The strategy of regions: A simple example * * x

Dimensional regularization offers very powerful tools to calculate Feynman diagrams. The strategy

of regions is a technique which allows one to carry out asymptotic expansions of loop integrals

around various limits. The expansion is obtained by splitting the integration in different regions

and appropriately expanding the integrand in each case. We will later formulate an effective theory,
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called SCET, where the different regions will be represented by different effective theory fields. My
presentation follows a book by T.Becher, A.Broggio, A.Ferroglia: Introduction to Soft-Collinear
Effective Theory. For a higher-level discussion see B. Jantzen, arXiv:1111.2589.

Our present goal is only to illustrate the main idea. To this end we consider a simple integral,
which we will expand using different methods, first using a cutoff to separate two different regions
and then with dimensional regularization:

00 k 1 M
1=/ dk - In — . 4.
/0 rm)(k2+ M2 MZ—m? ' m (4.65)

We assume m? < M? and will discuss an expansion in the small parameter m/M. Obviously

1 m?  m? M
Our goal is to reproduce this result by expanding the integrand in Eq. (4.65) before carrying out
the integration. This is helpful in cases where the full result is not available.
A naive expansion of the integrand

k k m?  m?
(2 1 m2) (k2 1 M%)~ K22 1 M) <1k2+k4+”'> (4.67)

does not work as it gives rise to IR divergent integrals. This was to be expected: If one could simply
Taylor expand the integrand in m/M and integrate term by term, the result would necessarily be
an analytic function of m because the integrals would simply give the Taylor coefficients of the
expansion in m. But the result for I is not analytic in m/M, it contains a logarithm.

The problem with the naive expansion is obviously that it is valid only for k > m? while the
integration domain in Eq. (4.65) includes a region in which k? ~ m2. As a warm up, we can avoid
this problem introducing a scale m < A < M to separate the two regions:

A k > k
1:/0 W T (2 1 02) +/A e ) (k2 1 1) (4.68)

Iiry T

In the first region we use that k, m < M so that

A k A k k2 k‘4
Iy = = —— (1 —-—= 4+ —+-- ] . 4.
Y /0 w2y (2 1 01 /0 e T ) < eI ) (4.69)
In the second region we use m < k, M so that
00 k o] k m2 m4
I = dk = dk——(1——5+—F+-|. 4.
(D /A (k2 + m2) (k2 + M?) /A k2(k2 + M2) < gt ) (4.70)

Taking into account the first two terms in /(7) and the leading term only in /()
M? +m? A? A? 1 m A2 AY m? A
Iy = =5 <1+mz> “sr = (5) " O (M6’M410g (m>> !

1 M? 1 A A? A* M
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and summing up

1 m m? M

which is the expected result. All terms depending on A cancel as they must.

Thus the trick works, but it is well known that the use of hard cutoffs is impractical in cal-
culations of Feynman diagrams (apart from the simplest cases). We want to find out whether a
separation of different integration regions can be achieved using dimensional regularization. To this
end, consider

o0 k
I= dk k¢
/0 (k2 +m?)(k2 + M?)’

where we will eventually send € — 0 at the end of the calculation.
Using a low-energy expansion of the integrand, k,m < M, as in (4.69)

I —/Oodkkek 1—k—2+k—4+ (4.74)
) = 0 (k2 + m2)M?2 M2 M : :

Here, for each term separately, we can choose the dimensional regulator € > 0 such that the integral
will converge both for & — 0 (IR finite) and for k — oo (UV finite).
Similarly, by performing a large-energy expansion k > A (cf. (4.70)) one obtains

o0 k m2 m4
I = dkkt—rr—— (11— —+—+--- | . 4.
(I1) /0 k2(k2 + M?) ( k2 + KA + > (4.75)

and we can choose ¢ < 0, to avoid IR divergences in the region where £ — 0. Taking into account

(4.73)

the first terms only one finds

Iy = ;”]\;r (1 - g) r (%) - # (i —lnm+ (’)(5)) . (4.76)
Iun = —%r (1 _ g) r (g) - # <—i YoM+ 0(5)) . (4.77)

The poles in € cancel in the sum, and the final result is again as expected!

This looks like magic, because at first sight there are at least two suspect issues:

e Tirst: can we choose € > 0 in the low-energy region and € < 0 in the high-energy region and
then combine the two?

— This is legitimate, because dimensionally regularized expressions are defined for arbitrary e: we
only choose € > 0 to be able to evaluate I(1) as a standard integral, but by analytic continuation
the resulting function on the right-hand side is uniquely defined for any complex-valued € and can
be combined with (7).

e Second: The integration domain in both Eq. (4.74) and Eq. (4.75) is not restricted to a low/high
energy region. Since we integrate the high-energy part over the low-energy region (and vice versa),
one could worry that this leads to a double counting?

— To see that this does not happen, observe that the low-energy integral [(;y ~ m™*°, while the
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high-energy integral I(;;) ~ M™¢. This statement remains true also for the subleading terms.
Keeping the complete dependence on m and M the result for our integral (for finite ) is

1 € e\ m—M~¢
I=-r(1-2)r(5) S 4.78
2 2 2/ M?—m? ( )
and the low-energy/high-energy parts just pick up the pieces ~ m™¢ and ~ M ¢, respectively.
Even though we integrate twice over the full integration domain, there is no double counting, since

the two pieces scale differently: the low-energy integrals can never produce a term M —¢ since they
depend analytically on the large scale, and vice-versa.

— Let us see what happens if we insist in restricting the integration domain of the low- and

high-energy region integrals when using dimensional regularization. The integral in the low-energy
region would become in this case

A 2 4
k Kk
A _
f _/ I e (1 [TER T )

:U A [N A

= - Ry (4.79)
To calculate the remainder Ry we can use that k> A > m? to expand in the small m limit:
00 k ]{72
= (1 - — +...
R /A dkk (k2 + m2)M? < e >
[e%s) . k m2 k2
:/A dk k 202 (1—]{:2—]\/[24-...). (4.80)

Note that in this way we performed two expansions already: First, expanding the integrand in the
limit M — oo to separate part I(y), and, second, expanding the result for m — 0.

Similarly, consider the high-energy integral I(;7y in Eq. (4.75) with a lower cutoff A on the
integration. As above, it can be written as an integral without a cutoff and a remainder

A 2
_ k m
R(rn :/0 dk k 67k2(k2+ 2 (1_k2 +>

A 2 2
.k m k
= /(; dk: k em <1 - ﬁ - W + .. .> . (4.81)

In this remainder, we have again expanded the integrand in both the limit of small m and also in
the limit of large M, but in the opposite order as in R(;). However, the two expansions commute
so that the integrands of Ry and R(;p) are identical. Adding up the two pieces, we find that

R=Rp+R —/Oodkk_a K 1_m72_k72+ (4.82)
= () n — 0 k2 M2 L2 M2 o) :

The dependence on A disappears, as expected, and the remaining integrals are of the type

0 k k.n+5

=? n=0,%2,... (4.83)
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Integrals of this type are called scaleless integrals as they do not involve dimensionful parameters.

Take n = 0 as example (the leading term). As written, the integral is ill-defined since a nonzero
€ > 0 does not help to eliminate the divergence for £k — 0 and k£ — oo simultaneously. To define this
integral properly one needs to introduce an additional regulator — e.g. restore the scale separation

/Oodk /k +/ d—]fk (4.84)

such that the first and the second pieces can be regularized choosing ¢ = ejp < 0 or € = eyy > 0,

respectively:
A

/ % —€IR - _ LA*EIR , and /Oodk k—euv

o k e1r<0 IR Ak

The main point is that by analytic continuation the resulting functions on the r.h.s. are uniquely
defined for any complex-valued € so that we can take e;p = eyy at the end, such that the whole

1
= + A0V (4.85)
eyv>0 EUv

integral vanishes. This observation is crucial for the applications of dimensional regularization:

[ all scaleless integrals can be put to zero ]

To summarize, the remainder (4.82) vanishes because it is given by a series of scaleless integrals,
so that there is no double counting.

5 Unitarity and Feynman diagrams

5.1 Optical Theorem and cut diagrams

A transition amplitude (probability amplitude) to observe a particular state in a scattering ex-
periment can formally be thought of as a matrix element of the unitary operator in the Hilbert
space

(@1 aulSlkk2) = lim (a1 e |y ) (5.1)
Unitarity means
STS =1 (5.2)
i.e.
D (ki1 ar) (] S|kika) = (Kiko|STS kika) = (2m)°61 (k1 — k)P (ky — ky)  (5.3)
af
We write
S :=1+:iT T-matrix
(A|iT|B) := (2m)*0W (py — pp) iM(B — A) Amplitude (5.4)

Unitarity of the S-matrix implies
STS =1 = (I—iTH([I+4T) =1

— | —i(T-T" =TT (5.5)

L13
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a) Take matrix element  (pipa|...|ki1k2)

e b) Insert a complete set of states TTT — qu TTqp){qr|T, e

(p1p2|TTT k1 k) = Z H/ 32E (p1pa2|T g1, - qn)(qr, - - au|Tlkak2)  (5.6)

One obtains:

—i[M(kle — pip2) — M*(pip2 — /€1k‘2)} (2m) 0™ (k1 + kg — p1 — po) =

d

x (27r)45(4)(k:1 +hy— > qp)(@m)*0W (k1 + k2 — p1 — p2) (5.7)
f

where the energy-conservation J-functions can be cancelled on both sides.

An important special case is (k1, k2) = (p1,p2) (forward scattering)

d? 1
2Tm M (kika — kikg) = H/ qu T M (kiky = qp)2(2m)* 0@ (k1 + k2 = Y " q5) = 4v/5]Pem 0o
f
(5.8)
— The optical theorem
kz k2 ks ks
e ™~
2Tm = > /dnf (5.9)
f ™~ e
k’l ]{11 kl kl

e this is an exact relation
e valid in each order of perturbation theory separately

Example: hadron production in electron-positron annihilation

On the quark-gluon level, to leading order:

o
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This explains why we always had In(—k? — i¢): Imaginary part can only occur for k2 > 0 in which
case real decay processes are possible

To the first order in as we can have quark-antiquark or quark-antiquark-gluon final states:

e F e By P B

Very importantly, these rules are valid on a diagram-per-diagram level:

2

+ 0% (5.11)

Cut diagrams

Consider phase space integration over one particular fermion line:

i ;
m /(;iwz)??)?;pzM*(p"”)u(p’ s)u(p, s)M(p,...)
— /d4p5( 2 2)0( )M*( )( M( ) (5 13)
a (277)3 P m po Dy ¢+m) p,--- .
Note that
1 1 . ) )
i - Vg T —m) (5.14)
so that this can be written as
* m
_ /(5754]\/[*(]), ) [ — 9Im ]M]e(mw(p, ) (5.15)

Similarly for a gluon (photon) line:

dSk 1 V% ()\) *()\) "
/(mzsz’ (k,...)eN (k)es™) (k) MH (, . ...)
A

&k, y )
N /(27r)35(k )0(ko) MY (k.. ) (—guw) MF (K, ...)

4 —
= / (;lwl;AtMu*(k,...){— 2Im 2 ii“;g 0(po) M*(,...) (5.16)

— Thus, expressions for [ dIl, M* M can be written similar to usual Feynman diagrams, adding
new rules for “cut” propagators — the “cut diagrams”
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— Thanks to the optical theorem, the sum over all cuts gives the total imaginary part for the
particular Feynman diagram contribution to the forward scattering amplitude.

— This statement is actually more general and applies to arbitrary Feynman diagram. The imag-
inary part of a Feynman diagram can be calculated using the following algorithm:

e Cut through the diagram in all possible ways such that cut propagators can simultaneously
be put on shell

e Use k? + ie prescription for all propagators to the left of the cut and k? — ie prescription to
the right of the cut

e Use usual vertices to the left and complex conjugated to the right of the cut

e For all cut propagators replace

1

and add positive energy conditions 6(pg) for all lines
e Sum the contributions of all cuts

These rules are often referred to as Cutkosky cutting rules (which they are not)

5.2 xxx Singularities of Feynman diagrams * % %

It is easy to convince oneself that various “i” factors in propagators and vertices combine in such

a way that the Feynman diagram is real unless the integrations become singular because the de-
nominators vanish.

e Vanishing of one denominator is not enough because the integration contour can be moved away

e Imaginary parts arise when two poles come together and trap the integration countour so it
cannot be moved

K o o x ® o
e This phenomenon is called “pinching”
Example: Scalar field theory with quartic interaction A¢*
K, k/2—q
2 4
k= k+k, iM:’\/dq = :
2 ) 2m)*[(k/2—q)%2 —m2?+i€][(k/2 + q)2 — m? + i€]
? k/2+q

(5.18)
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— 1/2 is a symmetry factor for the diagram
— [d*q/[(2m)%] is real and positive after rotation to Euclidian space; thus M is naturally a real
function

Let k2 > 0, choose
kﬂ = (k1 + k‘g)u = (ko,0,0,0) (5.19)

and consider integration over gy. The integrand has four poles located at

1 . 1 .
0= skok (B =0, m=—skok(E—id. B=V@rm  (520)

q
K 2-F ky2-E, 9o
[ ]

&\ -k /2.+ Eq ko/.2 + Eq;

We choose to take the integral by closing the contour in the lower half-plane

— Thus have to sum the contributions of two poles at ¢y = —%ko +E,—ie and qo = —1—%]{0 +E,—ie
— Only ¢g = —%ko + E, — ie can contribute to the imaginary part, neglect the second
Why:

Since E, > 0, the only pair of poles that can pinch is
1 . 1 . .
51{:0 —Ey+ie & — 5]4:0 + E, — e, = pinch at E, = 2k (5.21)

the rest always stay apart.

Picking the contribution of this pole corresponds to the following replacement in the integral:

1
¢« = —2midy ((k/2 + q)* — m? 22
= O Gargrer — e -md) (522)
This gives:
, A2 d37 1 1
M = 2w / (2m)1 2B, [(K0 — B,)? — E2 + id

1 1

= o> | 4E,E 5.23
9 (27r)4/m a qszq kolko — 2E, + ic] (5:23)

The imaginary part appears because of the singularity at kg = 2E, which is exactly the pinching
condition

1 1 .
Tho—2B,+id V[ —2E, imd (ko — 2Eq) (5.24)
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Taking ino account this delta-function contribution only, obtain

1 N2 4r [ 11
~ _(_ ; 2 _ 2 —4 _
M = = (=2mi) (27r)4/m dE,Eqy\/E2 —m 5 qko( im)o(ko — 2E,)

ix2 1

= /K2 — 4m20(k2 — 4m? 2
327Tk0 0 m ( 0 m ) (5 5)
or
22 4m?
ImM = /1 — ——0(k* — 4m? 2
m T 2 0(k m*) (5.26)

e note that the imaginary part must be positive (related to total cross section).
e This is consistent with +ie prescription in propagators (and can be used to derive it)

Note also that picking up the pole is equivalent to replacing the original propagator by a delta-
function
1

[(k/2 — q)? — m? + i€]

Going back to the original representation we can relabel the momenta in the loop as p; and ps and

— —2midy ((k/2 — q)? — m?) (5.27)

rewrite the momentum integration as

d*q d*py d*ps 4c(4
/ (2m)t / (2n) / @1 20 O o1 p2 — k) (5.28)
Then we can summarize our findings as
. A2 d4p d4p .
2t (k) = 5 [ G2 [ GERCm Y o 2 — (2w = )5 35— )
i [ dPpr 1 d*py 1 o a4
- 2/ (2m)° 2 / ) 2 M (E127) '8 (1 + p2 — K) (5.29)

where to our accuracy on the r.h.s. M (k) = A; factor 1/2 takes into account identity of particles
in the final state.

— the first line above gives a representation as a cut diagram
— the second line is an optical theorem

Last but not least:
Scattering amplitudes can be viewed as analytic functions of invariant energies. In our case

M(s =k* = (k1 + k2)?) = M(s + ie) (5.30)
has a cut in the complex s-plane:

S

% physical region

4m
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Two-point functions do not have other singularities apart from unitarity cuts (can be proven).

Landau has given a general classification for singularity structure of arbitrary Feynman diagrams,
hence arbitrary three-point, four-point etc. functions. [important topic, but too much for these
lectures]

6 Electron-Positron annihilation

6.1 Total cross section: Leading-order analysis
The best environment to study strong interactions: Electron-positron collisions at high energies
e (ky)+e (k_) — hadrons (6.1)

pro: initial state exactly known, small backgrounds etc.
contra: electrons are more difficult to accelerate as protons because of radiation losses

The simplest quantity:

otot(eTe” — hadrons)

R =
(S) Utot(€+e_ — U+ M_)

where

Ao’
Tror(eTe” = ptp) = gs . a=1/137 (6.3)

is used for normalization

Heuristic discussion:

e The process involves two time scales (in CM system ¢ = k; +k_ = {qo,0,0,0}, s =¢?):
— quark-antiquark pair is produced at times ¢ ~ 1/qy (uncertainty principle)
— hadrons are produced when interaction becomes strong 7'~ 1/Aqcp ~ 1 fm

e If energy is large, T' > t, these two (sub)processes cannot have any quantum interference;
Probability to produce a given hadron state is a product of probabilities to produce a gg pair
times the probability to produce a particular hadronic state

e For a total cross section it suffices to know that when g and ¢ fly apart, some hadronic state
will be produced with probability one

e Thus expect
Utot(6+€7 — hadrons) ~ atot(eﬂg* — qq)

or

R(s) ~ N, ei+e§—|—e§+...}, ew =2/3, eq=—1/3, etc.

quarks with mass < /s/2 (6.4)

L14
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1 O BES m Crystal Ball
B === exclusive data W2 A PLUTO
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[Figure taken from: Davier et al., Fur.Phys.J. C27:497-521,2003)

e A strong argument for N, = 3

We can make the two-time-scales argument more precise using optical theorem:

1
owi(eTe” — hadrons) = —Im M(eTe™ — eTe™) (6.5)
s

[exact expression contains 1/(2+/S$pem), reduces to 1/s for large energies]

= calk ) o(ke) M) S o(k )y u(k ) (66)

where
Wy (q) = i/d4$ QT {ju(2)5 (0}Q) = (quay — Cg) (),  s=¢° (6.7)

and

1
e = — =y e = Vira (6.8)

W N

ju = Z eq&q'}’;ﬂ/}q ) €y =

q

Note that both momenta and spins of the e™ and e~ must coincide in initial and final state.

Neglecting the electron mass and averaging over spin directions obtain

1 I . ,
5 ’ 5 U(k_, S)’}/‘u’(}(k_,_, S/) U(k-i-a S/)fy U(k}_, 8) [QMQV - Sg;w] H(S)

8,8’

= I T ] = Gl A ki) = 20 (6:9)
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where I used s = (k_ + k)2 ~2k_ - k.
Obtain therefore
L 1, et 1 9
otot(eTe” — hadrons) = —s”Imll(s)— = —(4ra) ImII(s)
s s s

and

‘R(S) = 127TIIHH(S)‘

e Let us check this relation in leading order

If quark masses can be neglected, calculations often become easier in coordinate space.

I choose the present example to illustrate this technique

Massless quark propagator

j / d4p —ipx Zp _ L ¢

(OIT{¥" (2)¥" (0)}[0) = &7

Then, ignoring electric charges

| —

nw4q>=:g/lfxewx«n7{¢mxym¢«x>w«Dwaan}m>

— N i 2 d4 iqur ¢ ‘¢
= WNelgm) [ Awe I amga

elax

“iN. [ ,
= 4t ' x8

. 4[2x#a:,, - gu,,xQ]

Fourier integral:

) 2
; TyuTy LT o 2

d4 ipT 4 — 1 9 5 5

/ T C T T 18 n(—p2—z’e)[p“p P 9]

Thus
I (q) = :fg Z: In _M; 422490 + ¢ 9) — 6944°]
= 1]2\%2 In _M; [auay — 9]
Finally
Im ln_qéﬂ_i6 = 70(¢%) = ImII(s) = 1];];9(3)

thus, up to quark electric charges

R(s) = No[1+0(a,)] @

(2#)46 p? +ie 272 (—a? +ide)?

70

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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71

Corrections are due to radiation of “hard” gluons at small times ~ 1/qp, so it should be possible

to calculate them in perturbation theory

e the possibility to use perturbation theory at ¢> — +o0 is not obvious; we will develop a more

rigorous approach later

6.2 Gluon Bremsstrahlung and jets

6.2.1 Soft and Collinear emission

p+q p p g
+q+m
*(A) ppm a( #(A) o 1t
. ~ )My
. j j (p+q)2—m2
Assume that a gluon with small energy is emitted at small angle:
Pu = {p0,0,0,p} pp=E>m  pp'=m’
qu = {qo,qsin0,0,qcos b} p=w<k qug" = A2 7gluon mass”
02
) 0~1——
0 p . cos 5
0<<1 m?
X ~ E(l - 7)
)\2
~uw(1- —)
ol ~w(1- 35

To this accuracy

9 m2 )\2
2pq = 2Ew —2|p||q|cosf = FEw (0 +E2+w2>
€ -p = Esinf = Ef
and therefore
OV U S 0
" 2pq + A\? w92+%§+:\7§+%

The corresponding cross section is

3 d 02d6>
do ~ |6*M|227‘—’ ~ | MPwdwdds ~ &
q0

2
Y|+ E

One can consider two cases:
1) 2<%
E

~In—In—
o~ In—+In-—

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

L15
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E
JN/ e v mE (6.24)
\ )

do ~ — — (6.25)

— soft and collinear emission

What is the meaning of the divergence at w — 0 (called IR-divergence)?

— What is the total number of gluons

e Wrong question: emitted at a certain angle?

— What is the total energy of gluons

o Correct questions: emitted at a certain angle?

— What is the total number of gluons

with energy w > wp (e.g. experimental resolution)
emitted at a certain angle?

6.2.2 Total cross section to NLO

Continue our discussion of the ete™ annihilation

Our LO result can/will be modified by gluon emission at short distances ~ 1/gp. To O(a) accuracy
there are two effects (cf. Section 4.1):
1) interaction between the outgoing quark and antiquark

oo o
.

Explicit calculation gives (for my =0), Q =

2) gluon production

4 g 7 w2
Tete s = "0+"°3W[ wFramy -+ 5]
4as Q Q 5
Oete~—gqg = 3 T |: 2In 2>\31n>\+26:| (6.26)

Both expressions do not makes sense:
— what is A?
— gluons do not exist as free particles
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... but the total cross section is well defined:

« g\ 2
Otot = Octe——gq T Tete——gqg = 00 [1 + f + O (f) ] (6.27)

The cancellation of IR divergencies in the sum of contributions of real and virtual emission is
referred to as the “Bloch-Nordsieck cancellation”
6.2.3 Sterman—Weinberg jets

— IR divergencies in QED signal that the question must be put in a more precise way
— IR divergencies in QCD signal that the quantity of interest recieves large contributions at long
distances and cannot be calculated in perturbation theory at all; what to do?

1. Improve the theory...
2. Find a class of observables that are not sensitive to contributions of large distances and can
be calculated within the theory that we have at present

Infrared-safe observables, that do not suffer from IR divergences, have a chance to be calculable.

Why did IR divergences cancel in the total cross section of e*e™ annihilation?
— because for the total cross section it does not matter if the emitted gluon recombines with the
quark at large distances or flies away:

QW
O
%

Sterman and Weinberg formulated a simple criterium for such cancellations:

“To be or not to be” ...
(gluon)

Large (potenitally divergent) contributions come from emission of soft gluons (small energy) or
collinear gluons (small angles), therefore:

Observables that do not change if:

a) a “soft” gluon is emitted (with w — 0)
b) a “collinear” gluon is emitted (with 6 — 0)

are IR safe and have a chance to be calculable

A jet: Collection of particles (spray, bundle,...) flying in more or less the same direction
(inside a given solid angle 02, called jet cone)

Jets are IR-stable because if a collinear particle is emitted it remains inside the jet cone, if a soft
particle is emitted, the energy of the jet does not change.

A two-jet event:

Almost all energy in the c.m. frame ¢, = (Q,0,0,0) is deposited in two narrow cones
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2
5]
g
=
3

Jet cones

A three-jet event:

Almost all energy in the c.m. frame ¢, = (Q,0,0,0) is deposited in three narrow cones

Jet cross sections for given §6 and JF can be calculated in QCD:

2

Oete——3jets ™ % + % (628)
6>60¢
E<eQ

One obtains

4o 1 1 1 7 2
Oete——3jets — O'Og?s |:41H00 ln; + 3111?0 _ 1 + ?
Oete——2jets — Otot = Oete——3jets (6.29)

Rurevent 1190 1363 Dot 01115 Time 162518 Ctri{Me 25 Sumps 11.4) EcoiNe 43 SumE= 20.8) Hea(Na13
fbeam 45.765 Evis 41.0 Emiss 505 Vix (0.7, hhn‘-‘s))mom‘:g
$015 _Thrust )

An example of real data collected
from the OPAL detector on the
Large Electron-Positron (LEP) col-
lider at CERN, which ran between
1989 and 2000. Here a Z0 particle
is produced in the collision between
an electron and positron that then
decays into a quark-antiquark pair.
The quark pair is seen as a pair of
hadron jets in the detector.
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e Unphysical IR regulators (gluon mass) substituted by physical parameters of concrete experiment
e Observations of three-jet events (DESY, ca. 1983) gave direct evidence for existence of gluons

Similar:
Jet production in proton-antiproton collisions (Fermilab)

jet 1

3

jet 2

e Need to know quark distributions in protons — later

6.3 Unstable particles
L15

Most of the existing hadrons decay:

Weak decays n — peve 7 ~ 900s life time]
A —pr™ 7~ 10705
Strong decays p— T T~ 10725 (6.30)

The life time 7 is defined through the decay rate [half-life = 71n 2]

T=1/T (6.31)
where
_ Number of decays per unit time (6.32)
~ Number of particles present '
The decay rate can be calculated as (in the rest frame of the decaying particle A)
ar = 4= )P ([ el | @m0 — Y0 (6.33)
2ma ! A (2m)32Ey f '

For comparison:

1 1

do =
o 2E42Ep |vg — vp|

IM(A+B = {p )P [ [] _Dry (2m)*6™W (Pa+ Pp = py)
f
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In the following I use a shorthand notation

dily = H (d?’m (27)*0™ (Puitial — Panal)
How can one describe unstable particles in quantum field theory?

— Consider a scalar particle as example

The propagator:

1

The pole (renormalized) mass:

Renormalized propagator:
i i
Pt | mE SR - )

1

(p?2 — m2)[1 4+ X'(m?)] + [2(p?) — Z(m?2) — (p? — m?)X/(m?)]

17
P —m? =50 (7)

Here we tacitly assumed that ¥(m?) is a real number. Is this always the case?
Optical theorem:

2Im(p?) = Y _dlly |[M(P — {ps})|”
7

¢* — theory Q ,4?:,
B

(mp + me)? < m,‘)l

QED/QCD |
mg
’ 2
n n T "
B — decay e |
N ‘ !
T
2
~ - m,
A N T !
p — meson — —— |

>

76

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)
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For unstable particles
Y(m?) = ReX(m?) + iImX(m?)
One defines the pole mass as
m? —m3 +ReX(m?) = 0
In this case

? 1

p2—mi+2(p?)  p?—m2+ ReX(p?) — ReX(m?) +ilm X(p?)

p2—m? VA ,
= p? —m? +iZIm¥X(m?)’ Z=1/(1+ ReX(m))

We define
ZIm%(m?) = ml

The renormalized propagator close to p> = m? is therefore

1
p2 —m?2+iml o 3T/2

effectively
m — m —il'/2

(mass acquires a negative imaginary part)

Note that our I' is indeed the decay rate:
1
ml = ZIm % (m?) = 5 Z/dnf |M(P — {ps})?
f

in agreement with the definition
[extra Z-factor corresponds to v/Z - v/Z for external legs (LSZ formula)]

e Why a negative imaginary part (in the mass) corresponds to a decay?

Wayve function of a free particle is a plane wave

Bp{E ) ~ et ilmi TS

NGY

Total probability to find a particle is then

d
7 o(Z,t) ~ e 1t = decay

/ d37 ¢* (Z,1)i

77

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)
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Production cross section:

/ﬁ\
/ \
, ) o [
g 5, T / \\
s —m?* +1ml’ / \
/// \
- /’/ \\\\\ .
(6.49)
This shape is called a Breit-Wigner resonance
This is a good approximation if I' < m; in general case I' — T'(s)
In the review by the Particle Data Group one finds for JP¢ =1-:
p(770) : mp, =775 MeV, ' =149 MeV p — mm(~ 100%)
w(782) : my, = 783 MeV, I' = 8.49 MeV w — mm(~ 90%)
¢(1020) : mg = 1019 MeV , ' =4.26 MeV ¢ — K K(~ 85%) (6.50)

w does not decay in two pions because it has negative G-parity I = 0~ compared to I¢ = 1% for
p-meson.

7 Operator Product Expansion

e Motivation:

Find a generalization of the Taylor series for operator products of the type
? 1
T{p(0)p(z)} = > — 0y (0) Dy - By 6(0) (7.1)
n
or, more generally

T{j(0)j(z)} = ZC (7.2)

where O(0) are local operators built of fields and derivatives and C(x) are some functions, i.e. for
any states

(AIT{5(0)j()}|B) = ZC )(A|On(0)|B) (7.3)

This is useful if the sum can be truncated after a few terms:
— z-dependence is “universal” for all matrix elements
— can use RG methods (later)
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A naive Taylor expansion does not work because the point = 0 is singular:

¢(0) ¢(x)

T T + T—T (p|T{p(0)p(x)}|p) ~ 1 + ag®Inz’p* + ..., aeR (74)

The trick is to introduce a factorization scale

2
In2?p? = Ina?ud + 1n57, 1/a* > pg > p° (7.5)
F

[Note obvious similarity with renormalization scale] and rewrite

1+ag?Inz?p® 4+ ... = (1 + ag? lnx2u%> (1 + ag® IHPQ/N%> +...

~~

coef. function operator matrix element (7.6)

Thus, we envisage an expansion of the type

T{j(0)j(z)} = Y C™(w, up)[0n] ¥ (0) (7.7)

where the coefficient functions C™(z, ur) contain all z-dependence and thus all singularities at
x — 0, and the operators’ matrix elements have to be calculated with an UV cutoff pup (or other
regulator)

CF's of composite operators have the generic structure

Cla,pug) ~ 1+ 79" In(—=2?pF) + ... (7.8)

If |z| — 0, the logarithms eventually become large. If g> < 1 but g?In(—z?u2%) ~ O(1) one has
to account the whole series of contributions ~ [g2In(—2212)]* but can still neglect terms with

~ g°[¢* n(—2?pF)]".
This is the same situation as we had with the polarization operator or electron propagator in QED,

so we can treat this problem using the same methods: The result must be independent on pur —-
RG machinery: Callan-Symanzik equation etc.

¢ Renormalized composite operators

Composite operators are made of renormalized fields and derivatives, e.g.

O = 6:(0)dy, - - - Oy, 62(0) (7.9)

Despite the fact that the operator is written in terms of renormalized fields, its insertion in Green
functions will produce additional divergences because the two fields stand at the same point. We
can get rid of these divergences by introducing additional Z-factor:

0], = ZO (7.10)
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Note that unrenormalized O is already scale-dependent because the renormalized fields are. Thus
at first step we rewrite it in terms of bare fields

0], = 2232 V(0)0, - . . 9,1, 0 (0) (7.11)
\,_/
Zo
so that
d d d 1
M@[O]r = <'ud,uZO> ¢(0) (0)0, - -- aun¢(0) (0) = ('ud,uZO> TO[O]T (7.12)

Define operator anomalous dimension

1 d
M@Z@ =—7%0a) = —fa+... (7.13)

= C(allan-Symanzik equation

{uai + o) vo(a)}[O](’” 0 (7.14)

The solution of this equation is, as we have seen

=& /Bo
[(9](#1) - <Z§Z§;> i [()](#2) (7.15)

The operator product expansion can be formulated as the following
Theorem (K. Wilson)

Let [01]® and [O5]™ be renormalized operators. Then

[01]® (@)[02]") (0 E:meﬁt x]*(0) (7.16)

where the sum goes over the complete set of renormalized operators [(’)n](“) with suitable quantum
numbers and Cly(z, 1) are (complex valued) functions.

Each of the operators in the OPE satisfies its own Callan-Symanzik equation:
{ — + B(a )7 +m 2}[(9]&72) =0

{1z + Bl g5+ HOW =0 (7.17)

Since the p-dependence of the two sides of the OPE must agree, the CFs have to satisfy a similar
equation:

0 0 n _
{M87L+B(a)£ +7 +’Y2—’Yn}c12($aﬂ) =0 (7.18)
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Let dq, dy and d,, be the dimensions of the operators [(’)172,”](“), respectively. Since dimensions in
all terms in the OPE must be the same, the CFs have to be of the form

di+da—dn
quam:(l) Oe ) (7.19)

|z
where C is a dimensionless function that depends on the product zu only.

The general solution (cf. electron propagator)

1\ dtda—dn _ a(1/|z]) .
Cly(z, ) = <|x|> Ciy(e(1/]z])) exp / d‘”'m [%(a,) (e — ()
a(p)
A A eV ) A S
a (Ix!) Cis ( o) ) (7.20)

Special case: It can happen that S(a) = 0 or at least f(a*) = 0 for a particularly chosen o* (critical
point, e.g. point of phase transition in condensed matter). In this case the solution is

. 1 D1+D2_Dn Dl = dl + 7 (O[*)
Cio(e) = (1) , D —ds-+ ) (7.21)
=dy +7"(a")

This explains why " are called anomalous dimensions.
e Example: [¢?] in the ¢* theory

We continue with the example from Section 4.3. The Lagrangian in terms of the renormalized
field and coupling is

1
L= §Z;(6M¢T)2 — 1> Zy fz¢¢4 (7.22)
where
1 a®  a? a’ Ar(pt)
7 ) [N S I 4 _
61T e[ 24 " 48} + 62[ 24] +0(a) ali) = T2
173a 17a®7 11 9a? 3
Zx=1 2{2_ 12] ?[_T}JFO(“) (7.23)
where from
Bla) = ditll,u = —2¢a + 3a* 3 a® + O0(a'),
1dln Z2 1 1
Yo = = = —a— —a’+ O(a®) (7.24)

Now consider a composite operator built of two renormalized fields.

O(z) = ¢r(x)pr(x) (7.25)
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Its insertion in Green functions will produce additional divergences because the two fields stand at
the same point. We can get rid of these divergences by introducing additional Z-factor

[6-(0)$(0),]%) = Zo¢,(0)¢,(0) (7.26)

which can be calculated as a sum of divergent terms 1/e, etc., in the sum of 1PI diagrams

TEA

Explicit calculation gives (A. N. Vasil’ev, The field theoretic renormalization group in critical
behavior theory and stochastic dynamics, Boca Raton, USA: Chapman & Hall/CRC (2004), p 277)

1/1 1 1 /1
Zo=1+ = 2a—=ag2 (.2 3 9
2 +6<2a 4a>+62<2a>+(’)(a) (7.27)
so that
1/1 1 1 1 /1
— -2 _ 2 2 2 3
Z¢2—ZQZ¢ —1+€<2a—4a +24a>+62<2a>+(’)(a) (728)
and
dln Z dln Z
_ 62 _ ¢
K dlnp da Bla)
1/1 1
= {e (2 - 152a> + higher poles +O(a2)}{2ea+3a2 - 37a3+(9(a4)} (7.29)

The only way to obtain a finite contribution is from the product of the single pole terms in the
Z4o-factor and the —2ea term in the S-function; the higher poles must cancel. Thus

1/1 5 )
oo = ~(-2ea) (5 - 130) =a- 52 (7.30)

e Final remarks:

e This scheme of calculations is the same for all theories; in QCD one of course has to substitute
Zg by quark or gluon field renormalization constants for the operators built of quarks and
gluons, respectively.

e If two (or more) operators have the same quantum numbers, they can miz with each other,
meaning that counterterms to one of these operators can have contributions of all other
operators. Hence the Z-factors become matrices instead of numbers.

e Operators with several open Lorentz indices should be decomposed in irreducible reps. of
the Lorentz group which can be considered separately as they do not mix with each other.
(Matrices of Z-factors are block-diagonal).
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8 Electron-Positron annihilation I1

8.1 OPE analysis and QCD sum rules

We have found that

te~ s h
R(s) = Jelele” = hadrons) o b ) (8.1)
oor(ete” = p+p)

where
I (q) = i/d493 T {,u(2) 30 (0)}Q) = (guay — P9)N(@®),  5=¢ (8.2)

Our program is now:
1. Find a way to relate II(s) at large s to T'{j,(z)j,(0)} at small |z|

2. Study T'{j.(x);j,(0)} using OPE

8.1.1 Dispersion relations
Causality = I1(¢?) is an analytic function of ¢® with a cut at positive real ¢> = s > 4m2.

It is easy to see that the expansion of T'{j,(x);j,(0)} in powers of |z| produces a series in 1/q after
the Fourier transform, but convergence properties of this series can depend on the direction in the
complex ¢? plane.

There are reasons to suspect that convergence becomes bad (no uniform convergence) for ¢? ap-
proaching the cut at real positive values.

Example 1: (extreme)
Assume II(¢?) has a contribution

M(g?) = ...+ ¢ (8.3)
For ¢? < 0 it is exponentially suppressed, will not be seen in OPE in any finite order, but it explodes
at ¢> >0

Example 2: (more realistic)
Assume I1(¢?) has a contribution

(¢%) = ...+ Ko(/—q2 — ie)
L\ -1/
¢ — —oc0: Ko(v/—q?) ~ const. x <2) eV
—-q

1\-/4 .
@ — +o0: Ko(v/—q?) ~ const. x <2> iV @ in/4 (8.4)
q

For ¢?> < 0 it is exponentially suppressed, will not be seen in OPE in any finite order, but produces
an oscillating correction ~ 1/4/¢? at ¢> > 0

Thus, it is believed that the OPE has to work at ¢> — —oo (called Euclidian region) but there
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might be subtleties for ¢> — 400 which so far nobody was able to quantify.

The trick is to connect these two regions using dispersion relations

a* a*

8.5
® (8.5)

If the integral over the large circle can be neglected

H(q2):1.7§d ! 7 9 (s + i) — TI(s — ic)
0

211 s—q* 27 ) s—q?
2 Im TI(s) (8.6)
so that
1OO ds 1 7 ds
I(¢*) = = ImIl(s) = — | —= R 8.7
(@)= [T mIe) = o [ S5 RG) (57)
0

— a dispersion relation.

Unfortunately it does not work that way, because for large ¢® we derived I1(¢?) ~ In(¢?). A simple
estimate shows that in this case the large circle contribution does not vanish.

A possible way out: do the same for the derivative:

d o0
310 = 1 [ S RO 55
0
or write a dispersion relation with a subtraction:
oo
1 ds 1

W) =M+ ¢ 5505 | =g
0

How to use this:
e Choose large Q?> = —¢?, much larger than hadron masses
e Calculate the r.h.s. inserting exp. data and integrating numerically
e Calculate the Lh.s. in QCD using PT and/or OPE

e Compare and draw conclusions

L18
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8.1.2 Operator product expansion
We want to write
(QT{ju(2)7,(0)}|€2) = Z ,(Q]0n ) (8.10)
Which operators can contribute? <= Gauge and Lorentz invariance
Only gauge-invariant scalar operators can have nonzero vacuum expectation value (VEV):
1
1) Unity Operator I =0, dj=3 = (1~ —
x
_ 1
2) Quark Condensate (Qy|Q) dppy =3, dj=3 = Cpy ~ s
. 1
3) Gluon Condensate (|G, G* Q) deg =4, dj=3 = Coc~ —
x
_ 1
4) Mixed Condensate Qg0 G* 1) dpgy =5 = Cyay ™~ puy
5) (Q)(4T)?|Q) ()2 = 6 = Clpp2 ~Inz
ete. (8.11)
After Fourier trafo
/d4m e Cy(x) ~ ¢ = (quav — ©9) - 0(¢°) (8.12)
so that the corresponding contribution to II(¢?) is O(¢") [In reality it is In ¢ /pu?]
Similar
, 1
/d4x ' Cag(r) ~ -, etc. (8.13)
q
Therefore OPE takes the form
~ My ~ —_ 1~
(%) = Cp +—2C; + —Cac(G?) +
(a°) I . ¢¢<@W’> 7 6 (G7)
\ pert. theory (8.14)
where C; are dimensionless functions (may contain In ¢2/2)
Explicit calculation (Shifman, Vainstein, Zakharov 1979)
1 2 as(—q?) My +mg , -
M) = 5ty 1+ R
1 jog g\ 224 o
.- 1
i (5 6) + ggeos m0) + (8.15)

e in NLO, all coefficient functions receive corrections in as(|¢?|)

e Perturbation theory is correct to O(1/ q4) accuracy: There exist no gauge-invariant operators
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with dimension two.

e Leading corrections beyond perturbation theory involve two parameters
(P)) ~ —(250 MeV)?
<%G2> ~ 0.012 — 0.020 GeV* (8.16)

e Interpretation: (background field)
Separate formally all field operators in “fast” and “slow” components:

3 3 ) .
o(x) = / (2332&+ / (%‘;3’;& dT(k)em+d(k¢)e”kx] = Ptast(7) + dslow(z) (8.17)

k[>p |kl<p

so for quarks and gluons

(@) =Vt (2) + Giton () A (x) = Al () + Al (2) (8.18)

Fast and slow components can be viewed as independent fields in the Lagrangian. One can, for
example, consider “slow” fields as given external fields (think of a magnet in a lab) and develop
a Feynman diagram technique for calculation of fast field propagation in the background of given
slow fields (think of an electron propagating and emitting photons inside a magnet)

By this reason, fast and slow fields are often referred to as “quantum” and “classical”

Integrations over the fast (“quantum”) fields in QCD can be done in perturbation theory; they
correspond to the coefficient functions in the OPE (by construction, see scalar examples) and the
result is expressed in terms of slow (“classical”) fields in the vacuum, which cannot be described
perturbatively.

Vacuum condensates are parametrizations of average properties of nonperturbative vacuum fields
— a variant of the mean field aproach adapted for QFT.

8.1.3 QCD sum rules

R(s)

Experiment:

s

| 0.8 1.5 GeV

where the peak corresponds to the p-meson. Let us calculate this contribution.
) = [ a0 GO

=/d4$6m [9(950)<Qlju($)|p><plju(0)}\ﬂ>+9(—1’0)<Qlju(0)lp><plju($)}\9> (8.19)
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Define
Qu0)pMp) = mi—=d,  A=1,23,  Ppr=0 (8.20)

Note that a p-meson can have three polarizations, two transverse ones and one longitudinal

The contribution of interest corresponds to a simple Feynman diagram

p — ZmQQG(/\) . #e(A)*mQQ (8.21)

- Py, M m/2) — 2 g,
The sum over polarizations can be done using
A) (A= qudv
ZGI(L ) e,(, > — — G + :12 (8.22)
by P
Obtain
2 1 < q qy> 2m? 1
4 1 p 2
= My —5— |~ + = (=guwmy + quav)
P22 _ 2 H 2 2 2 _ 2 pvttep T Gp
9pMp — 4 mp 9p Mp—4
2my 1 2 :
= (—gw,q + quqy) + term ~ g,, without the pole (8.23)
gp mp —q

?7 Is this extra term in contradiction with gauge invariance
— no, it will be cancelled by contributions of other states

Thus
2m?2 1
I(g? = —F 8.24
<q ) p—meson gg m% - q2 — 1€ ( )
and therefore
22m/2) 2
R,(s) = 12nImIl(s) = 127 g—Q(S(s—mp) (8.25)
P

In this derivation we assumed that p is a stable state (for simplicity);
taking into account decays p — mm will modify the §-function to a Breit-Wigner resonance.

Idea: (Shifman, Vainstein, Zakharov)

Consider a simplified model of the spectrum

R(s) R(s)

! !
0.8 1.5 GeV m] \So

with free parameters m?), gp and sq

L19
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Then on the one hand
2 MQ

7
1 d 2mg 1 1 d
Hmodel(qQ) _ o / - _sq2 RmOdel(S) _ P + / S - N,

and on the other hand

N, 2 1 /a 224 -
[ACD(g2) = ¢ ) <—5G2> 222 24 ..
(a°) 1272 n —2 + 1244 \ 7 + q s - () +

The sum rule:

rmedel(g2) ~ 1P (42) for moderately large negative ¢*

Why moderatively large:
For small ¢% need many terms in the OPE, for large ¢® loose sensitivity to resonance

First trick: The pert. term in the OPE can be written as (u? > ¢?)

I so  p?
N, 2 N, / ds / /
In = = | +
1272 7 —¢2 1272 | s—¢q2
0 0 £l

2
Subtracting the f:) part from the both sides obtain

S0
om?2 1 N, ds 1 /a 224 -
P . [ <75 2> STqGO[s 7T<¢w>2

g2 m2 — ¢ = 127r20 s—q2+12q4 7

This must work for ¢ ~ —(1 — 2) GeV?, = three parameters m%, gp and sg
Second trick: Borel transformation ¢> — M? = Borel parameter
1 1 2 /072
Bl|l—— = —m*/M
[mz - QQ} Mz
1 1 1
Bl— - =
[(W] (n—1)! 1%

Why:

88

(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

(8.31)

— Contributions of higher mass states are suppressed exponentially e5/M? instead of 1 /(s —q?)

— Higher-order 1/¢*" terms in the OPE are suppressed by 1/(n — 1)! factors

= SVZ sum rule

50

12M4 \ 7 -~ 81M6

2m? 1 N, 1 s 112 _
M gmmi/M? 2 /dse_S/M2 + <a G2> - m{h)?

92 M? 1272 M2
0

(8.32)
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A numerical analysis:

0.04

0031 lhs = solid
Pl rhs = dashed

mf) ~ 0.5 — 0.6 GeV?
gi~28+2
sp~ 1.5+ 0.5 GeV?

0.00 h L L L L L L
0.0 05 10 15 20 25 30 35

in fair agreement with experiment.

e A large subfield of research inside QCD
e Original SVZ paper is one of the most cited in HEP,
has 5607 citations as of 30.11.2022

1989
8.2 7—decay and duality
Heavy 7-lepton: (e, p, 7) m,; = 1.777 GeV
The Standard Model:
T Vr T Vr T Vr
—t —t— —t—
WY 7, w1 i WY a
< ‘/Iul< ‘/us- <
e d s
. 1 1
my = 80.4GeV > m.,, hence for low energies 5 5~ —
my; —q miy,
— Effective four-fermion interaction (Fermi)
_ Grr_ ., _
T — eVrlp : Lefp = ——= [67 (1-— 75)1/6] [VTyu(l — 75)7']
V2
Grrz oy _
7 — hadrons : Lepp = — Vud% [d’y (1-— 75)11,] [1/7—”)/”(1 — 75)7] + ...

Explicit calculation yields (exercises):

GEm?
19273

(1 — ev 1) =
We expect, qualitatively

I'(7 — hadrons)
D(1 — ev; )

R, = ~ (|Vyal® + [Vas|?) - Ne

89

(8.33)

(8.34)

(8.35)

(8.36)
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This quantity can be measured very precisely, let us try to calculate it in QCD.
For simplicity set V,q — 1, Vs — 0 and neglect quark masses m,, 4 — 0

Using unitarity (optical theorem)

v, Vr
T !
I'(r — hadrons) ~ T ®@ ~ 2Im (8.37)

where the shaded blob is given by
I, = i/d4f€ QI T {d(x) (1 — 75 )u(x) a(0) 7, (1 — 75)d(0)}|€)

= (qHQV - guuQQ)HT(q2) (8.38)
[transversality holds for m, = mgq =0, add an extra ~ g, function otherwise]

Explicit calculation yields (exercises):

2
] s 2s -

T

° \ 4310

which can be compared with eTe™ annihilation cross section
R+ (s) = 127 Im I+, (s) (8.40)
The extra s-integration corresponds to neutrino energy in the final state

The trick:
write

20 ImII7 (s) = II" (s + i€) — IT" (s — ie) (8.41)
and transform the integration contour to a circle of radius m? in the complex plane:

Im s

2
msz

Res

Thus

12 [ ds s \? 2s -

T T T
C

In this form
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e Integration contour is far away from s = 0, |s| = m2 > A2Q0D5 thus perturbation theory (+
OPE corrections) can be used, apart from possibly a small region close to the real axis

e Luck: The contribution from the dangerous region s — m2 suppressed by the factor
2
(1—s/m2)

e Luck: The LO contributioon ofthe gluon condensate ~ 1/s% = 1/¢* vanishes upon integra-
tion (accident)

= a very accurate prediction possible

OPE:
_ 1 s 2 3 L jas
Ii(s) = e In . [1 + aras(s) + ago(s) + agas(s)} + [1 + b1as(s)} 19a <?G >
+ [co + clas(s)} Tas(Prp)? (8.43)
Experiment:

R; = 3.4771 £ 0.0084 HFAG, http://www.slac.stanford.edu/xorg/hfag/ (8.44)

as(IME)

Thiswork (CIPT)

—_— Thiswork (FOPT)
—_— Abbaset a. '12 ..
. Recent «, determinations from -
——— Pich'11 ; . .
—_— Caprini and Fischer '11 decays using different hypothesises
— Cveticetd.'10 for the resummation of high or-
| ——] Menke '09 d . b . h T
—— Narison ‘09 ers In perturbation theory. a-
—_— Maltman and Y avin '08 ble taken from: D.Boito et al.
— Beneke-Jamin 08 [arXiv:1212.0091]
p—— Davier et al.'08
—_— Baikov et a.'08
e World Average (Bethke) '11
L L L L L L L L L L L L L L L L |
0.30 0.35 0.40 0.45

The trick that we used here is rather general.

Let II(s) be a certain two-point correlation function. Then R(s) ~ ImII(s) for small s ~ A%CD
cannot be calculated in perturbation theory, but the integral

/050 dsw(s) ImTI(s) (8.45)

where w(s) is a smooth function is often calulable (or at least can be estimated).

E.g. for the total cross section of eTe™ annihilation

R(s)

0.8 1.5 GeV

< the area is the same

s

Accepted terminology: A resonance is “dual” to the gg pair in the “interval of duality” sq
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9 Deep—Inelastic Lepton—Nucleon Scattering

9.1 Elastic Lepton—Nucleon Scattering

Elastic scattering of electrons from protons (neutrons):
e(k) + N(p) = e(K') + N(p')

Differential cross section for unpolarized particles (Rosenbluth)

do s 1 o @ 20 ¢ 200
4 _ F2 ) Z_ @7 F) 71 91
dQ 4F?2 Sin4 g 14+ (2E/m) sin2 g ( 1 4m2 9 | COS m 1+ L2 sSin 9 (9 )

where

E : electron energy in the lab frame

m : nucleon mass

0 : scattering angle in the lab frame

q=k—Fk =p —p: momentum transfer; Q*>=—¢*= 4E23in2g

and (definition):
NGO OING) = 10!) [1uF(@) + o @) (o) (9.2

The functions F1(Q?) and F5(Q?) are called Dirac and Pauli form factors, respectively

FP(0) =1, F'(0) =0, electric charge

FP(0) = 2.792847 uy F3(0) = —1.913043 un magnetic moment ‘,uN =eh/2my ‘
(9.3)

In a non-relativistic theory form factor is a Fourier transform of the charge/current distribution:
F@) = [ doc® (@) (9.4

Hence a deviation from F(Q?) = const signals that a particle has internal structure
For Q2 <1 GeV? (Hofstadter)

1
Fio ~ —[1 n QQ/Q%P

<= corresponds to the proton radius ca. R, ~ 0.85 fm

with Q2 ~ 0.71 GeV? (9.5)

Studies of form factors at large Q? > 1 GeV? is an active research topic (theory complicated)
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Recent results from Jefferson Laboratory: [Arrington et al., arXiv:1102.2463]

15 i T J 4
1.6 T T
A sl
1.4 F o Bartel 3 1.0 — llﬁi} l, l, P
o Walker E.’E [ 1 I
a L x Pri 4
o 12 rice S "
20— e 8B _ ] O, LI ]
N 1.0 Yﬁﬁaﬁ 3:' 4 Puckett iiE 1
™ iz W Gayou 1 I
w 08 !Z | @ Punjabi |
JH 0.0 Iy T
0.6 [ ] @ qatten
04 X Paclone
B 0 T 05 I I I I I
10 120 2 10 0.0 20 4.0 6.0 80 100
Q? [GeV?] Q* (GeV?)

9.2 Deep-Inelastic Scattering and Bjorken scaling

In 1968 J. Bjorken proposed a different type of experiment: Sum over all hadronic final states

e(k) + N(p) — e(K') + X(p')

<= the Deep-Inelastic Lepton-Hadron Scattering (DIS)

e “Sum over all states” in practice means that hadrons are not identified (measured);
the only detected particle is the scattered electron in the final state
— one measures its scattering angle 6 and energy E’

Kinematic variables

o m: the nucleon mass
o = %k: beam electron energy (in L.S. p, = {m,0,0,0})
e F' = %c’: scattered electron energy (in L.S.)
e 0 electron scattering angle (in L.S.)
g =k—k =9p—p sz—q2:4EE'sin2g
o =1 energy transfer to the hadronic system (in L.S.)

y=v/E: energy transfer/maximum energy transfer (in L.S.)

W?=(p+q?* invariant mass squared of the hadronic system
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e Ip= gfq = 2%21/ Bjorken’s scaling variable

Kinematic bound:
W2:m2+2mu—Q22m2 = zp <1
Elastic scattering corresponds to g = 1 in which case 2mv = Q?

The Bjorken limit

2

W — oo, Q> = such that rp = %00 const.
Pq

The transition amplitude for a given final state is
. - -1, .
iM(eN — eX) = (—ie)u(k’, N')v"u(k, /\)?(le)<X(p’)lju(0)|N(p)> (9.6)

where

Ju(x) = equ(x)yu(z) + edJ(m)%d(:n) + ... (9.7)
The cross section summed over hadronic states is then

1 &K 1
Mx|iM(eN — eX 2454 —p .
do = 5 %32%,,2;;%:# SM(EN = X)) 'S0 +a-p)  (98)

N As usual, we sum over spins of final state electrons and average over spins of initial electrons.
This corresponds to the simplest experimental setup where spin is not measured

Thus

do 1 1 1 et

=g = —ogarr s O Ak, Ny u(k, N)ak, X )y ulk, )\)Q4

25 (2m)32/k'] 2 & 2m)Wu (p, @) (9.9)

where
2Woulr.0) =3 [ AN @O X N WO N ) 25 o+ g~ ) (910)
Using the optical theorem

1
W;w(pa Q) = ; Im T,uu(p7 Q) (9'11)

where
Ty =i/d4ﬂc (N (p)| T {ju(2)5.,(0)[} N (p)) (9.12)

is called the forward Compton amplitude:

iM(YN — yN) = e?c;(q)e, (q)TH =0 (9.13)
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We will use this representation later

Conservation of the electromagnetic current (Ward identity) implies

"W (0, q) = "W (p,q) =0 (9.14)

Therefore W, (p, ¢) must have the form
quqv bq pq
W (p,q) = (—g,w + ’:]2) Wi(pq, Q%) + (pu — quq2> (pu — qu2> Wa(pq, Q%)

+ i€ P’ Ws(pg, Q) (9.15)
Parity conservation in strong and electromagnetic interactions == W3(v, Q%) =0

The scalar functions Wi 5 depend on the invariants W (pq, Q?) or equivalently W (x g, Q?)
They are called structure functions

Further we have

& STl Ayl N[ Ny ulk, 3] = T K] = 204K 4 KR ¢ (kR)] (9.16)
AN

and
&K = |K[dK|dpdcosd = (E"2dE'dSY (9.17)

so that after some algebra

m 2 2

do  8rwaZ,E” { 1

.90 m 0
dE'dcos®  Q* Wi (v, Q%) sin® 5 + S Wa (v, Q) cos® } (9.18)

Thus W1 (v, Q%) and Wa(v, Q?) can be measured experimentally from the E’, § of scattered electrons

A more convenient representation

(E',cosl) — (xp,y) (9.19)
Since
2pq  E—-F AEFE' sin? ¢
= 2 ~ —_ - - — — 72 '2
s=(p+k)"~2mkE 2k z B om(E B (9.20)
obtain
20 =By Oxpy) _ 2B 2F 0.21)
2 s 1—y O(E',cosl) 2m(E—FE') ys :
and neglecting terms O(m/FE)
do Ta2,s 9 ) )
o = ot [2eB0P WA, Q%)+ y(1 — )W, @) (929)
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The prediction by Bjorken was that in the synchronous high-energy and high-@Q? limit
Wi, Q%) = Fi(zp) + 0(1/Q%)
1
1vsWa(1, Q) = Fy(xp) + 0(1/Q%) (9.23)

— the Bjorken scaling
confusing notation: Structure functions F} and F5 are not Dirac F; and Pauli F5 form factors !!

As we will see, this behaviour indicates the existence of free pointlike charged particles in hadrons

9.3 The Parton Model

The physical picture of DIS becomes more transparent in a special reference frame, the Breit frame:

We choose
0 ST
du = 8 by = 8 (9.24)
-Q p-

e Since gg = 0, electron has the same energy before and after the collision (in this frame)
e Since pg = Qp. and x5 = Q?/(2pq) it follows that p, = Q/(2x5) — oo in the Bjorken limit

Assume that nucleon is a bound states of pointlike (small-size) constitients — partons

(e.g. quarks and gluons).

— In nonrelativistic QM such a state would be described by a wave function ¥(z1,...,x,).

— In a relativistic theory this description is lost, in general, because the number of partons is not
conserved

time
—_—

/

%
il

2 partons 4 partons 2 partons

Z-graphs: |

However, in a fast moving hadron all longitudinal distances are contracted and all processes are

slowed down by the Lorentz factor v = 1/4/1 — v2/c?
e For an observer in the Breit frame the proton “looks” like a pancake Q — O

e An interaction between partons in the proton rest frame requires time 79 ~ R/¢;
it becomes t ~ TO%Z — oo in Breit frame — partons do not have time to “talk” to each other

Thus:

e A fast-moving hadron can be viewed as a collection of partons which fly in the same direction
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e Since the partons have no time to interact, each of them can be considered as free and carrying

a fixed momentum fraction of the proton

e A “hard” external probe (virtual photon) can only interact with one parton (unless parton

density is very large)

e Scattering processes on different partons do not interfere quantum-mechanically; the cross

section is given by a sum of cross sections on individual partons

The overall picture that arises in this way has become known as the QCD parton model

In our case (DIS)

ct ,
/
p l
7*(q)
14
€
O — -
electron
z
parton (quark) momentum in the proton:
E/L = (§p27 07 07 Epz)
parton momentum after the collision:
EL = éu +q=(£p2,0,0,¢p. — Q)
parton remains to be on-shell:
Q
0= £,2 = (fpz)2 - (gpz - Q)2 = 2€sz - Q2 = 5 = 2
z

since p, = Q/(2xp) (see above) we obtain

=g =sotn =

— parton momentum fraction is equal to the Bjorken variable

The parton content of the nucleon is described by parton distributions. Let

Fy(§)dg f=a¢ay9

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

be the number of quark, antiquark and gluon partons with momentum fractions in the interval

between & and & + d€
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The deep-inelastic cross section from a proton (in the parton model) is given by the incoherent sum
of the DIS cross sections from the partons:

1
Te(R)N(p)—e(k)X = D /0 d€ Fr (&) Oe(r) f(€p)—re(k) f (€p+a) (9.30)
f

This formula can be illustrated by the following picture:

electron — quark
cross section

|
|
I
— I |
I
|
I
I

= Z |

Quantum-mechanical intepretation:

Transition amplitide between two states is proportional to the overlap between the wave functions:

3,. ,—iqT * 3,. ,—iqT dgp dgp/ ipx—ip’x (1
Fj\1>—>|2) (q) = d’ze \1’1(13)\1’2(17) = d’ze (27’(‘)3 (27‘{‘)36 \Ijl(p)\I’Q(p)

3 . _
B /(27:;”‘111(1?)‘1’2(1?+Q) ~ 1/lgl* or ~ e 4 forlarge q (9.31)

If we sum over the final states this suppression disappears:

2 dgp * dgp, *( / /
S 1 Fysm @ =Y [ —=5m)¥p+q) 0T () W2’ +q)
2 5 27 (2m)
d3p d3p/ *( 1 3¢3 /
- [ a5 | G o) o5 —p) =1 (932)
where I used the completeness condition
> Wip+ @) Wa(p' +q) = (27)*8 (p — 1) (9.33)

12)

Thus the cross section becomes much larger and, crucially, we can calculate it without any knowl-
edge of the “true” eigenstates of the Hamiltonian:

> Fosp@P = Y. [Fysp@f (9.34)

|2):eigenstates of H |2):plane waves

Example: photodisintegration cross section for deuteron

In our context: we can neglect interaction of hit quark with the remnant partons in the final state
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Electron-quark scattering

— a close analogue to electron-muon scattering (QED):

do 1 2 =

Ao GanZs!

where
ly~Epy quark four-momentum
P =0*=0 P=kK"=0

Mandelstam variables for the electron-quark scattering;:

>
I

t = (K —k)?=-@Q*

o= (k—0)?=—-5-1, = S+t+a=
In the physical region for the electron-quark scattering
8> |1 = £s > Q?

In the CM system:

0

99

2.2 » -
a€q82+u2

25 {2

(k+0)? = (k + &p)* = 26(kp) + p ~ E(k + p)* = Es

(9.35)

(9.36)

- 1
dQom = dé d cos Ocm t= —§§(1 — cos Ocom) (9.37)

Therefore

2.2 .
do 2

a‘e; § 4 42 2rate; §2 44

W | DN

= = (27)-
~—

dt 25 {2 Q¢

Jdo
The last factor can be rewritten as (8% 4+ 42)/8* =1+ [(—§ — f)/§]2
It follows that

doP1S 5 2’

1 dO.DIS
= dxp ——
/0 P G pdQ?
Since £ = zp this means that

2 (12

Q4

dO'DIS

_ 2
dopdQe = 2 CTFr)

f

(9.38)

1 ﬁ,2
—F5 = Z d§ Fr(§es— |1+ = 0(¢és — Q%)
dQ 7 0 Q S

(9.39)

[1 + Z?] O(zps — Q%) (9.40)
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It remains to express everything in terms of z g,y variables:

C2%q  2p(k—K) € 2k-K) s+a

Y00k T T 2k € 2k 3
U
21—
= ;=-10-y
2pq  2pk B
) dQ?
—  dxpdQ* = d—da:de = zpsdrpdy
Y
dO‘DIS dO.DIS
= — 9.41
degdy 7% degdQ? (941)
We obtain
doP1S 9 2ma’s 9
e Zf:efxBFf(xB) T[l +(1-y) } (9.42)
On the other hand, we derived before
doP1s a2, s
_ em® |9 2 2 1— 2 } 4
Toeds = O 278V, @%) +y(1 — y)sWa(v, Q) (9.43)
so that for Fy = Wy, Fy = (ys/4)W,
FQ(SCB) :l'BFl(J?B) = Ze?chFf(CCB) (9.44)
f
e The structure functions F; and F» do not depend on y (or Q?) (Bjorken scaling)
o Let
u(zp) : u-quark momentum fraction distribution
d(zp) : d-quark momentum fraction distribution
(9.45)

The structure function F} is given by the sum of quark distributions weighted with electric
charges squared:

Fi(es) = %u(mB) + %d(mB) 4o (9.46)

e The structure function F5 is expressed in terms of Fj through the Callan-Gross relation

FQ(I'B) = xBFl(xB) (947)
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Let
Fy(rp) —rpFi(zp)
R(zp) = 9.48
(25) i (9.49)
One can show (exercise) that in the parton model
Riz) - 0, if all charged partons have spin 1/2 (9.49)
1, if all charged partons have spin zero

— Experimental confirmation that partons have spin 1/2 (quarks)

Typical values: Shown: new ZEUS F7, (a) and R (b) measurements (solid points) in compar-
ison with H1 measurements (open points) and NNLO HERAPDF

ZEUS
2 g M AT
I3 A ST
 oaf T - ;
i3 TR ﬁ
| T 1|
:;: - ZEUS (overall R) :

10 10? 10°
Q2 (GeV?)

[Figure taken from: Zhiging Zhang, for the H1, ZEUS Collaborations, arXiv:1412.6328|

The power of the parton model is that it is applicable for many reactions. Example:

The Drell-Yan Process

N(p1) + N(p2) = p* (k1) +p~ (k) + X
N(p1) + N(p2) — Higgs(M) + X (9.50)
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Bjorken limit:

Higgs )
== 5= (p1+p2)° = o0,
= (k1+k2)2 — 00,
M?/s = const

— Two “pancakes” approach each other at larger velocity and collide

In the parton model

do 1 ! _ _
dMQ(NN%M po+X) = Zq:/o dleéV(fl)/O déy F)Y (ﬁz)dMg(qq—HﬁM + X)

2

8ra? 1 1 u
- 97;\;‘4 Zq:ei /0 ¢y F)Y (&) /0 dés Fy' (€2)0 (glgz— 8> (9.51)

Most importantly, F 0. (§) are the same functions as in DIS, so that e.g. Higgs cross section can be
predicted

10 Factorization and Parton Distributions

Aim of this section is to provide a QCD derivation of the parton model and go beyond it.
Let us summarize what we know about DIS

T = i/d4$ (N (p)| T {ju(@)3u (0)[}IN (p))

1
W;w(pv Q) = ; Im T;w(pu q)

where
(2m) W (p, q Z/dﬂx P)3u(0)| X () (X (0')]5, (0)[ N (p)) (2m)*6*(p + ¢ — ') (10.1)
can be expressed in terms of the structure functions (observable quantities)

Qulv 2
W (p,q) = <—gW + ‘;2> Fi(zp,Q%) + (pu - qu];fj> (pu - q/;?) ]7qF2($B7Q2) (10.2)



10 FACTORIZATION AND PARTON DISTRIBUTIONS 103

Parton model suggests that we can separate (factorize) the DIS cross section in two subprocesses:

|
|
I
| ' electron-quark cross section

N\, quark momentum fraction distribution

QCD quarks interact by exchanging gluons; we will have more complicated Feynman diagrams like

Where to draw the line?
— The first possibility: gluon is just an “other” parton in the nucleon, part of “X”
— The second possiblity: gluon exchange is a correction to the electron-quark cross section

The guiding principle is whether the gluon is emitted at short distances or long time ago, as part
of the preparation of the parton wave function. It is easy to see, however, that the integral over
gluon momenta is logarithmic

q

Q atk
~043/ —  ~ 045111@2/m2

k

Logarithmic integrals are specific in that there is no dominant integration region — the answer
comes from contributions of all momenta, both large (~ @) and small (~ m).

This situation is similar to what we have seen in the operator product expansion.
Thus we need to make an explicit separation by introducing an intermediate factorization scale,
schematically

2 Q2

F

and rewrite, in the sum with the LO diagram

2 2 2
1+aasan—2+ (1—|—aasan2>(1—!—&045111#—1;)—1—...
m 02 m

e~ q cross section parton distribution (10.4)
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In this way, the space-time picture of the parton model is recovered at the cost that the parton
cross sections and parton distributions become scale dependent:

1
oo =3 [ de Fy(6 ur) dory (o) (10.5)
f 0
or

0?
Fia(zp,Q Zef/dﬁcm xBafa 2 VEf (& 1y) (10.6)
Ky

The scale-dependence of parton distributions can be studied using renormalization group.
After this is done, we can choose ,u?c = Q? so that the coefficient functions will be calculable as a
series in ag(Q?) without large logarithms.

To the leading order we will obtain e.g.
4 1
(05, Q) + =d(wp, QY + .. (10.7)

F %) =
1 (xBa Q ) 9 9
Thus we will develop a systematic approach:
e We predict that Bjorken scaling is violated by (small) logarithmic effects

e We can calculate the Q? dependence of the structure functions to arbitrary accuracy in
perturbation theory (in principle)

e We can generalize this method to other processes, e.g. Drell-Yan or Higgs production

10.1 Leading-order calculation

As I discussed already in connection with vacuum condensates, the scale separation can be intro-
duced at the level of quantum fields in the Lagrangian:

Separate formally all field operators in “fast” and “slow” components:

3 3 ) .
qb(l’) = / (277‘653/;}?]@ + / (27:2% dT(k)€Zkz + d(k)e_lkx] = Pfast (:B) + ¢slow(x) (108)

kl>p |kl <p
so for quarks and gluons
¢(.%') :wfaSt(x) + wSIOW(x) ’ AF ( ) A?ast( ) + Aslow( ) (109>

Fast and slow fields are often referred to as “quantum” and “classical” and can be viewed as
independent fields in the Lagrangian:

wq(x) = zbfast(l') ) wc(x) = wslow(x) (10'10)

For gauge fields one requires

Ag(az) — V(.%‘)AZL(I)VT (x)

AR(z) — V(2) (Ag(a:) + ;au> Vi(a) (10.11)

under gauge transformations. This has two advantages:
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e Renormalization is simplified because A} transforms homogeneously
(— gAj is not renormalized)

e If the integrals over all “quantum” fields are taken (loops), the result must be gauge-invariant
under the transformations of “classical” fields. Hence one can use different gauge conditions
for “quantum” and “classical” fields.

Propagators of quantum fields are formally defined with an IR cutoff, e.g. in Feynman gauge
d*k o gt
T {A¥(x)AY = ik 10.12
O T AN = [ et (10.12)

&[>

but the cutoff dependence only matters if the integrals are IR divergent (and in this case can be
regularized dimensionally)

Classical and quantum fields are orthogonal:

(0] T { A% () AZ(0)}|0) = 0 (10.13)
and all interaction vertices must contain at least two quantum fields

A=A A A A

Let us do the leading-order calculation using this logic (we expect to reproduce the parton model).

L24

T =i / d'z €' (N| T {t(2) ()9 (0)71(0) [}V

_ / d 69 (N| T {1, ()70 (2)8 (0) e (0)) [}V

L / €9 (N T {3y (2)1uthe(2) 0o (0) 7109 (0)) [} V)

+i / a4 € (N| T (g (@) yutby () g (0)vsthg (O) V) + ... (10.14)

C C

(massless) quark propagator in coordinate space:

4 7 i
O T @b, 040 = [ et = ot (10.15)

K| >p
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Thus to LO

T = iy [ b S (V1 [l nel0) = BoOF sty bela)]|IN) (10.16)

v =1
272 T

In what follows we will omit the subscript “classical”; just remember that all matrix elements
include small frequencies, less than p.

e First, use
YtV = TV + TV — Gt + t€upot’ 1577 (10.17)
The matrix element of 5% must be a pseudovector
(N|Y(z)y577(0)|N) ~ SP [nucleon spin vector]

For unpolarized nucleons
1

such matrix elements vanish

e Second, the relevant matrix elements have the following general structure:
(N|9(@)$(0)|N) ~ p fi(pz,a?) + 27 fo(pa, 2?) (10.18)

If Q?> — oo (Bjorken limit) the second structure and also terms in the expansion of fi(pz,z?) in
powers of x? produce corrections ~ 1/Q? and can be neglected

Indeed, one can easily derive

eiq.t
/d4x — Ty = 27r2q—a
x4

2
q
. €T 29a 2
/d Ty e = 81 3 <— note extral/q (10.19)

If 22 = 0 the MEs are functions of one variable (pz) and can be written in the form of a Fourier
integral

1
= 2p‘7/ du e™P* F(u)
z2=0 -1

(N[(z)y79(0)|N)

1
(N|4(0)y74(x)|N) = (N|p(—z)77¢(0)|N) = 2p‘7/ due_i“pT’F(u) (10.20)

z2=0 z2=0 _1

[why f_lldu: the function F'(u) vanishs outside of u € (—1,1); will motivate later; formal proof
complicated]
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We obtain:

1 d4x . ) i .
T = 52 [ 53 [aur <u){ewpx+zqz [+ 2B = ] = P 2y — g }

1
= -2 /1du F(u){(qwiw [(q + up) by + (¢ + up)vpy — G - (g + up)}

1

Tl —upP 1 [(q —up)upy + (¢ — up)vpp — Guwp - (4 — up)} } (10.21)

Let p? = m%\, — 0, then

(q+up)? = ¢* + 2ugp = —Q* + 2ugp = 2qp(u — =)

(¢ —up)* = 2qp(—u — zp) (10.22)
so that
1
1 1
T = —2% du F(“){u—mm [(q + up)upy + (g + up)upy — guypq}
-1
1
T Tu—zp tie [(q —up)upy + (¢ — up)upp — g;wpq} (10.23)
Next
! 1 J ) I . S(u+zp) (10.24)
m——— = —7o(u—= m-————————=—70(u+2x .
so that

~Im T, = p {F(mB) [(q + 2p)upy + (¢ + xBP) Py — g;wqp]

— F(-zp) [(q +2Bp)upy + (¢ + TBP)vpu — g,wqp} } (10.25)

Finally, we can rewrite

qudv 1 1
(¢ +xpp)upy + (¢ +TBP)uPp — Guwap = Pq <—9W + q2> + 2z <pu + qM%B> <pu 1 T
(10.26)

and thus

1 — duqv 2z 1 1
—ImTy = |F(zp) - F( xB)] {( G + 2 > + T (pu + q“2x3) (pu vy )}
(10

27)
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or
Fi(2p,Q%) = F(zp) — F(—p)
Fy(zp,Q%) = zpFi(zp,Q?%) (10.28)
thus reproducing the parton model, with the identification
F(zp) = Fy(xp): quark distribution
—F(—zp) = Fy(zp): antiquark distribution (10.29)
Thus:
e We are on the right track, but:
e Our definition of parton distributions is not gauge invariant. Result gauge dependent?

e We used free quark propagator in this calculation. In reality the quark propagates inside the
nucleon and could interact with “clasical” fields theerein. Can we neglect this interaction or

Hi

= o >

Note that this is a reformulation of the question whether we can neglect the final state

not?

interaction

ikt

10.2 Light-cone expansion of the quark propagator in the background field
Quark propagator in the background field

e

Light-cone expansion:

1

1
S(z) = ?31(1’,14“) + ?sz(m,Au) +Inaz?S3(x, Ay) + ... (10.30)
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Only the most singular term ~ 1/z% is relevant in the present context

— b@)p(0) = ol

=ig <i2>2/d42 MAN(Z)’}/M%& u=1-u

I'(4)
uzx)? 4+ vuz?|*

1

1
-~ 2 [awuti—) [t a6 - e

4t
= 4W4/duuu/d4zA (z 4+ ux)(ug — V(£ + ¢)[z2—|—(12x2]4 (10.31)

Since there is no dependence on z - x in the denominator, the expansion of the field
Az +ux) = Ap(ux)+ 2"0, A, (ux) + ... (10.32)

will produce subleading terms that are less singular at 2 — 0.
We need
I'(4) .9 1
4 _ 2
/d 2[32+A]4 T a2

T(4) (1 1
4 R = — 2 — —_—
/d 2[22 " ]4za25 i (29a5> (10.33)

After some algebra one obtains
1

I {?A“(USUM—Q; [8"‘/15 (ux) (u7a75¢—ﬂ¢757a) +x§uﬂ¢82A§(um)] }—I—(’)(ln z?)
0

472
(10.34)
Here we only need the first term:
.¢ 1
+ = L4
Pyl [1 —i—zg/dua:MA”(ux)] (10.35)
0
The leading contributions are easy to calculate to all orders in the field. One obtains
. 1
— i
+ E + E E oo = 27T2¢ 5 Pexp [zg/du qu“(ua:)} (10.36)
0

where

u

1 1
Pexp [* *} =1+ ig/du z, A (ux) + (ig)Q/du/dv z AP (uz)z, AY (va) + . .. (10.37)
0 0o 0
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The fields cannot be interchanged because

)\CL
Ay = Ajtt = AZ? 3 x 3matrix in color space (10.38)

[full analogy with time-ordered exponent in QM time-dependent perturbation theory]

A convenient shorthand notation:
1
[x,y] = Pexp [ig / du (x — y) A" (ux + ﬂy)] ut=1-u (10.39)
0

Thus we obtain the quark propagator in the background gluon field (Gross, Treiman '71)

S(x) = the()1hy(0) = %[w, 0.+ 0 <> (10.40)

10.3 Parton model revisited

Now go back to the calculation of the DIS cross section. The first contribution becomes

 E—

T = i [ a0 € (N| TG, (0)00 20, O1 0O} IN) ..

g elaw _
= Zﬁ d4$ F<N|¢c(x)7u¢%/[xa 0]c¢c(0)|N> (10'41)
The calculation remains the same, but the operators become decorated with a gauge-link factor
(called Wilson line) connecting the quark fields. Thus a better definition of the parton distribution

is

1

V@I W OINGD| , = 27 [ ducPla) (10.42)

Let us check that the operator on the lLh.s. is gauge invariant. For simplicity I consider abelian
gauge trafos (like in QED):

&(x)’yoeigfol dum“A“(uz)l/J(O) N %Z;(:E)fygefm(;p)eigf(} dua:#(AN(uz)+§8Ma(um))em(o)w(o) (10'43)

Thus the extra term under the exponent is

1
—io(x) +ia(0) + 4 / du zH O, 0(ux) (10.44)
0

Euler’s Homogeneous Function Theorem implies

x“%a(uw} = u%a(ux) (10.45)
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Therefore
1 1 1
/du:ﬂ“@ a(ux) = /dux“ 0 a(ux) = /du luioz(ux) = a(z) — a(0) (10.46)
K O(uxt) u du
0 0 0

and all a-dependent terms cancel as they should

Another possibility to see gauge invariance: Let x — 0 (all components); then
- - —
Y(x) = YO0)1+a" 9, +...]
1
[z,0] = 1+ z'g/ dux, A (ux) + ... =1+1igx, A" (0) + ... (10.47)
0
Thus to first order

()T, 01(0) = HO)T(0) + 2HP(0)T (D, +igAJio(0) = D(O)T(0) + 2" F(O)T Dy 1(0) (10.48)

— the expansion of nonlocal operators with Wilson lines goes over covariant derivatives. This is
true to all orders:

B, 0l(0) = 3 %xm e 2 DO Dy - Dy, (0) (10.49)

n

The parton model is largerly based on intuition that fast moving hadrons are Lorentz-contracted,
similar to what we know about rigid bodies. But is it really obvious?

S-1

Example I:  Assume that a proton can be modelled as a point-like charge which is a source of a
scalar potential (Yukawa with mass zero)

o(%) = € +— for proton at rest (10.50)

The field is certainly spherically symmetric in this frame.
Making a Lorentz transformation (boost along the x3-direction) we obtain

q
&+ 720t = a7

(2 = = a? 4 22 (10.51)

where v = 1/v/1 —v%. As v — oo the field vanishes as 1/ except for a narrow strip (pancake)
around z§ >~ vt’, as expected.

Example II: A Coulomb potential in Eigenkoordinatensystem (QED)

J
Au(@) = 200 +— for proton at rest (10.52)

—

7]
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Then

A () = qr
0( ) [le_,_,YQ(vt/_xg)Q]l/z

A () = —quy
3(z') [xi +2(vt! — x)2]/2

A (') =0 (10.53)

In this case for v — oo both Aj(z') and A5(a’) ~ const(?!) Where is my pancake???

The resolution of this paradox is that
for v — o0 A (2') ~ qdy In(vt" — x3)

— can be removed by a gauge transformation. Thus, although the four-potential is not Lorentz-
contracted, the electric and magnetic fields are contracted to a pancake, e.g.

- t'—af)
By(z)) = alCU 10.54

The parton model is recovered in a certain gauge where the Wilson line can be neglected
M Ay (ux) =0 (10.55)
where x# is the 4-vector in the direction of the outgoing (struck) quark.
light-cone gauge ntA,(x) =0, n?=0
Fock-Schwinger gauge atAy(x) =0, Au(0)=0 (10.56)

10.4 The DGLAP Evolution equation
10.4.1 Preliminary remarks

Let us look at our definition of the parton distribution more closely. We have

1
(N (p)|[tbe(z)Y7 [z, 0]2b(0)| N (p)) = 2p‘7/ du ™" F(u, 11) (10.57)

z2=0 1

where I restored the subscript “classical” and added the argument u to F'(u, ) to remind that only
low-frequency part of the fields is included. The role of the cutoff is that it allows the limit 22 — 0
to be taken.

Consider the similar matrix element with “full” fields and finite z2:

1
(N(p)]db(2)77 [, 0] (0)| N (p)) = 2p”/ du e F (u, 2?) (10.58)
332p2<<1 _1
The only UV divergences in this ME are due to field and coupling renormalization: adding v/ Z5
for each quark field and expressing the result in terms of the renormalized coupling the result is
finite. However, the limit 22> — 0 cannot be taken. Schematically

(V@I o O OING)|, _ ~1+casn x;p2 . (10.59)

L26
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The role of the cutoff in the fields is that it regularizes additional UV divergences that appear in
the 22 — 0 limit:

2
(N (D)[tbe(x)y7[2,014c(0)[N(p))| , ~1+4cash 5—2 +... (10.60)

<=0

The dependence on p will be compensated by the similar dependence of the Feynman diagrams for
T}, in higher orders:

[ -

These diagrams (for quark legs on-shell) would be IR divergent if we forget that only frequencies
above p are included in “quantum” fields. The sum is schematically

e

Q*
1+ casln— (10.61)
1

1 .
1+ casln—— Fourier
wrx
In order to avoid large logarithms in the coefficient functions we should set the scale u ~ Q.
Therefore our leading-order result to the structure functions actually involves parton distributions
at the scale ~ @

(2,Q) + ...
(10.62)

©\>J>
©\H

Fl(xBaQQ) :F(IEB,;L:Q) _F(_xBaM:Q) = gu(va)+ (l’ Q)+ d(l‘ Q)

and we expect that Bjorken scaling will be violated by logarithmic corrections corresponding to the
scale-dependence of parton distributions.

To calculate this dependence, split “slow” fields that appear in the operator matrix elements in
— “moderately slow” , with frequencies pp < |k| < p

— “very slow”,  with frequencies |k| < pg

We can treat “moderately slow” fields as “quantum”, that is involved the loops and “very slow” as
“classical” external fields

L e p |

Integrating over the “moderately slow” fields we obtain operator matrix elements of “very slow”

P i):

operators corresponding to parton distributions at the scale ug:

[operator at the scale | ~ (1 + caIn ﬁ) [operator at the scale pg] (10.63)
Ho

and obtain the finite-difference equation

[operator at the scale u] — [operator at the scale pg] ~ casIn L [operator at the scale ug] (10.64)
Ho
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which we will rewrite as a differential renormalization group equation which is our goal.

A technicality:
as we know, a calculation with momentum cutoffs is very awkward. One scale can be introduced
via the dimensional regularization but for the second scale we need another regulator.

A convenient choice: use

— finite 22 as a substitute for u? ~ 1/|2?| (larger scale);

— dimensional regularization for uZ (smaller scale, thus an IR divergence) and, simultaneously,
the remaining UV divergences (coupling and field renormalization)

[One can prove that both IR and UV divergences can be regularized dimensionally]

10.4.2 One-loop calculation

To avoid an open vector index consider the operator multiplied by extra x% so that

1
(N (p)lY(x)¢]z, 0] (0)[N(p)) = 2(pz) / ) du P F (u) + O(2?) (10.65)
Let us calculate the diagram corresponding to gluon emission from the Pexp.
We write
Al(z) = Al (2) + Al (2) (10.66)
and consider the first term in the expansion of Pexp]...] in the “quantum” gluon field
1
[x,0] = [z,0]. + ig/du [z, ur]cw, Al (uz)[uz, 0], (10.67)
0
We choose
Al Feynman gauge
At Fock-Schwinger gauge [x,0]. = [z,ux]. = [uz,0]. =1 (10.68)
Then
1 S |
J— [ I . !
s T.(2)ig / du 2, Al () g 0) g / 02y (2) A, (2)be(2)] (10.69)
0

Use

MTZ)%(O) = Jab 27:;1/2 ? [_;(:i—/i)] d/2

A B 1 rd/2-1)
A (ux)A) (2) = —0aBGuw 42 [ (uz — 2)2 + ie] /21

(10.70)
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leading to

1 .
= (ig)? / du / ddznﬂc(fv);é%zﬂ 4;;2#“(—%) i%f}z = (gjdﬁ 22)_2]22_1¢t%(z) (10.71)
0

Next, combine the propagators

1

I'(d/2 I'id/2-1 o d/o— I'id—-1

[—(ngd/)Q [_(w(c Z Z)Q]d)/Q—l - /dv o2l 1[—(2 — uvx()2 - x)zu?vv]d—l (10-72)
0

and shift the integration variable z — 2z + uvx to obtain

8md [—22 — x2u2ov]d-1

—ig? f ; 0/2-25d/2-1P (g — 1) _
= gCF/du/dv/ddz [(d 1)¢c(a:)¢(7é+uv¢)¢¢c(z+uvx) (10.73)
0o 0

We are looking for the contributions of the type

1 T(d/2 - 2)

2 2 4—d

Note:
e do not need terms with positive powers of 22 = can expand the field

Ye(z + uvx) = P(uve) + 2,0 (uve) + . ..

e argument of the Gamma-function: I'(d/2 — 2) stands for IR divergence, I'(2 — d/2) stands for
UV divergence.

Why:
/ddf . . choose d < 4 to suppress the large-k region (UV) (10.75)
k choose d > 4 to suppress the small-k region (IR)
One can regularize IR or UV divergence “by hand” so that only the other one remains:
dek 42— d/2) _
/ m =17 m ﬁnlte ford <4
d o I'(d/2 -2
A 2ika _jpa2 D42 =2) g ford > 4 (10.76)

L4 [—a2]d/2-2
In general situation the identification — UV or IR, — is not simple, one needs to consider each case
separately.

Using generic integrals

[ )

2 _ CLQ]O‘ [7a2]a7d/2

I'(« . w N —d/2 -1
/dz[_ZQ(_)az]azuz,, — g2 <_97> M (10.77)
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obtain

1 1
_ —ig? ind/2) d/2—2-d/2—1) 2 = I'(d/2-1)
= g T COr( /du/dvv v {1: umj}c(x);éwc(uvx)—[_IEQuZUﬁ]d/zil
0o 0

+ e(@)EVutOuthe(uve) (_gﬂ) [_EEZ/Z i%;gQ }

1 1
’C - I'd/2—1) . 1 T(d/2
= gﬂd/};/ d“/ d“”c(x){ [_(x/z]d/z—z? W+ g[iz/z]m)zamaéva“}wduv@ (10.78)
0

0
The first term:

d
/ % : finite ford < 4 = UV divergence atu — 0 (10.79)
u

0
—> contributes to coupling/field renormalization, irrelevant for us
In the second term can replace
1
SHndO" = #(20) + O)

so it becomes

1

2 — —_

275/2 / du / de%(x)ﬂxa)wc(um) (10.80)
0 0

The familiar trick:

1 d 1d

Ye(uvx) = %u@@bc(uvx) = —— ) (uvz) (10.81)

(x0)Ye(uvx) = a2t —

0
O(uvzh)

]d/2 2

The dependence on u in [—2%u can be neglected to logarithmic accuracy (In1/(x?u?)+ const)

leaving us with

1
/du %wc(uvx) = c(vx) — 1 (0) (10.82)
0
Thus the result is

1
§ — or- _
gﬁfij/g [_Fx(j/j;R}d/Qg)_g /dv v [wt:(@?é@bc(vx) — e(z)#1(0)] (10.83)
0

L27
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where I restored the IR scale 7z dependence coming from g2 — g%ut—.

Other contributions:

1
2 - V- -
gﬂgf; [—I;;(Qi/;R]d/?—Q /dv % [¢C(U$)¢¢C(O) - ¢C($)¢¢c(0)
0

1 u
g*Cr T(d/2 —2) _
QI 87rd/§ 222422 /du/dec(um)qéwc(vx)
0o 0

<— only UV divergences, coupling renormalization in Pexp

§ + —  \/Zy-+\/Zy field renormalization |z%| — u3p
(10.84)
The final result:

g*Cr T(d/2—2)
]7d/2 [_xQ'UJ%R]d/Q—Q

1 u
/du/dv K (u,v) Ye(uz) 1. (vr) (10.85)

0

»(@)#(0) = Pe(@)f1be(0) +

where

K(uo) = 6@) 7] +6) [2] +1- %5(@1)5(@) (10.86)

The “plus-distribution”:

1 o L5
[ [Z] s = [ avtipe - o)

1 u E u
| 2], s = [ auZire - s (10.87)

It remains a little bit of cosmetics.

e We are only interested in matrix elements between the states with the same momenta. In
this case

(N(p)|$(uz)f(vx)IN(p)) = (N(p)|et PP ((u — v)a)p(0)e P*7 N (p))
— (N(0)[((u— v)2)(0)| N (p)) (10.88)
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where P is the momentum operator: P,|N(p)) = p,|N(p))
Thus e.g.

u

/ du / dvB((u— v)a)fb(0) = / du / it (t2) 0 (0) = / dt (1 — £ (t2)(0]10.89)
0 0 0

0 0

u

e Expanding at d =4 — ¢

2
g 2 2 1 g 1
787Td/2 CF <_6) |:1 — ; In —;L‘2/_L%R:| — %CF In m -+ const. (1090)

Remember that the goal of the calculation was to change the definition of the “classical” field
from the cutoff p? =1/ — 2? ~ Q? to a lower cutoff p3 = p?, < pi. Thus we get, for 22 = 0

a,Cr

GOz = [B)F6(0)], +

1
ﬁ U u 7’LL£U 2
mV@;/d K () [b(u)#d(0)],s (10.91

with
K(u) =2 [%} e %5(@) (10.92)

This relation is valid if )

as(p2) In 'L% <1
Ha
e The last step, we have to take the matrix element (N|...|N). Consider quark contribution:

(N(p)|[¢(2)¢]x, 01(0)]2IN (p)) = 2(19:6)/O dg P (&, 1) (10.93)

We obtain

1 2 ; 1
iEpa 2\ o] _ aCr H1 iuépx 2
2] [ dec [Fie. ) - Fie.sd)] = %5 i iy [ I 207 | deeernrie. i

(10.94)
Next, insert

1
1= [ dvo(v—u)
/

in the integral on the r.h.s.:

1 1

/1 du K (u) /0 1dg‘c,ﬂ'ufpﬂﬂF(g) - / dv (v —uf) = / dv e'P* /1 du K (u) /0 1 dE F(€)6(v — uf)
0 0 0 0

1F<B> O(u —v)

u u

1

1
= v e'PT du u u .
_ O/d / =K F(-) (10.95)

v
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and finally
1
Fy(w. 1) = Fyw, ) = a2Cpn Z; [ K F(20) (10.96)
or
1
i mot) = 250 [k E, () (10.97)

— the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation

Accepted notation:

u2
[11 ju]+ + 25(1 - u)} (10.98)

Pq_,q(u) = CFK(U) = CF [

e We could consider antiquarks instead of quarks, replacing fol dEe™PTF(€) — f_ol dEePTF(€).
To this order in perturbation theory there will be no difference:

Prsgu) = Pysy(w) (10.99)
— quarks and antiquarks have autonomous (and the same) scale dependence to leading order.

10.5 Solution of the DGLAP equation

The DGLAP equation can be solved by numerical integration, but a better approach is to consider
moments:

/ drpxy ' Fy(rp, Q%) (10.100)
Taking moments
p 1 () 1 1 p
as(p _ U v
Qd/ oNTUE, (v, p?) = 5 /dvUN 1/quq(u)Fq<u,u2>
0 0 v
1
_ as(p) N-1 dv (7)N—1 (3 2)
27 /dquq(u)u u \u A\t
0 0
() 1 1
o _ -
= 2o /dquq(u)uN l/dttN 1Fq(t,,u2>; t:§10.101)
0 0
Thus we obtain
2 d MN 2 _ as(:u’) NMN 2 10 102
H dij,LZ q (,U, ) - or qu q (:U’ ) ( . )

where

L28
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1 1
_ _ U 1
Toa = —/dquq(u)uN 1:_CF/dUUN 1{2 [u]++u—26(u)}
0 0

1
U 1 1 1
= — 2 — N-1 - 1 -~ - 3 1 1
Cr /duu(u )+(N N+1> ; (10.103)
0
The remaining integral:
1 . 1 1 LN
/dul_ (uN—u):/du —(u’ —1+1-u) /du __uu 1
0 0 0
/ Y g
= —/du(l+u+...—|—uN_1)—|—1:—Z,—|—1:—Z,(10.104)
q =17 =27
We obtain
1. &1 1 1
N : )
Yoq = {2 E - } Gross, Wilczek '73 (10.105)
s34 NIV+1) 2
The solution of Eq. (10.102) is then
2 2aal® 12
MV (@) = (@) MN(u2);  b=-"N.— = 10.106
q (Q ) (Oés(,u%) q (IU’O)’ 3 3nf ( )
Check:
Lo - — L e e a@y oo
i o) Ty aQ> |
The S-function:
Do) = Blow) = — 5-ba? + 0o
Md Qs(\p) = PlGs o Qs Qs
d 1 _d
QQdT.QQ = QQE +—  extra factor 1/2 (10.108)
Thus we obtain
1 as(Q) P/
@MY@ = @) (291 ™ g
MN(Q?) (10.109)

Since a(Q?) decreases with Q?, the moments Mév (Q?) decrease as well: the quark looses momen-
tum because of gluon radiation
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parton distributions can be reconstructed from the moments using inverse Mellin transform

1/2+ic0
Fy(w) = ANz VMY (10.110)
1/2—ico
example below shows the so-called valence u-quark distribution
zuy (2, Q%) = x[u(z, Q%) — u(z, Q%] (10.111)

Q2= 2
— upy GRVE8lo

GeVex2 Q++2= 1000

upv GRVOBIo

GeVx2

0.6

This is, however, not the end of the story. ..

[Y(2)#¢(0)],2 = [(2)#(0)] 2

& fod B

2

Qs H1
—Crln—
+ 9. CF n—;

1
/ du K gq () [(u)1(0) .

Ha
0

1

+ ;L;CF In Zg/du Kqg(u) 2”2 [Fpu (uz) F*,(0)] ,410.112)
0
— our calculation is not complete
10.6 Gluon parton distribution
The definition:
1
22 (N ()G o) o 0LanGE O N ) =" 20 [ duc™uby(up®)  (10.113)
-1
e There exist no “antigluons”:
Fy(u) = Fy(—u) (10.114)
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e The gauge link is in adjoint representation:

(2,0] = Pexp{ig /0 lduac“Au(u:E)}

Ay = ANTY . (T e =—ifapc  +— 8 x 8matrix (10.115)

Explicit calculation:

— Py
— Py
— Dy
— Py (10.116)

Obtain the system of coupled equations:

1
@) = S

aQ’

1
QngQFq(J?,QQ) - 04;(;2) /CS/{qu(y)Fq(;j,Q) +qu(y)Fg(z,Q)}
1
Q2dg22F(x,Q2) - az(f) /?{qu(y)Fq(sz) +qu(y)Fg(”;,Q)} (10.117)
where
1+y* 3
Paq(y) [[1 s + 55(1 — y)]
— )2
Pyqe(y) = Cr {1—{_(11/ y) }




10 FACTORIZATION AND PARTON DISTRIBUTIONS 123

e Gluons only couple to Fy(x) + Fz(x) (sum of quarks and antiquarks). Thus we obtain

— a separate equation for Fy(x) — Fgz(x) which is the same as we had before, and
— a coupled system of two equations for Fy(z) + Fg(x) and Fy(z)

For example for the moments

d as(Q)
2 d N _yN) — _ N N _ agN
g (3" = 017") e an (M3 =17
o2 (MqN +]JVW§V> _ (@) <V% 7%) <M5V +J£‘45V) (10.119)
dQ? 2M, 21 \Ygq Vag 2M,

e A proton can be viewed as a collection of three “valence quarks” that carry the quantum numbers,
extra quark-antiquark pairs that are called “sea quarks(antiquarks)”, and gluons

valence quark

sea antiquark Q(ﬂf) = QU(J;) + QS(x) ) Q(ZL‘) = QS ($) (10120)

sea quark

Then
Fo (@) = Fyfw) - Fyfo) (10.121)

can be interpreted as the valence quark distribution.
(The number of valence quarks)/3 = baryon charge, so we expect that for any Q2

1

/ dz [Fy(, Q%) — Fy(w, Q%) = 3 (10.122)

0

This is consistent with the evolution equation since

. as(Q)
2w

1 1
d _
szo/dx [Fq(%,Q2)—Fq(JJ,Q2)] = ’Yé\(;_lo/d$[Fq(£U,Q2)—Fq(I‘,Q2)]

1= 0! (10.123)
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Why is the gluon distribution so large for z — 07

Measured reaction rates (reduced cross sections)
for neutral current processes, as a function of
the scaling variable Q2 for different values of x,
the proton momentum fraction carried by the
partons. These results represent the combined
analysis of H1 and ZEUS. Scaling violations, i.e.
a Q2 - dependence of the rates, are clearly ob-
served.

Presented by V. Radescu at Int. Conference
DIS2009, April 2009, Madrid, Spain

Parton distribution functions of the proton as
obtained by the HERA Structure Functions
Working Group, at a scale of Q? = 10 GeV?.
The PDFs (solid lines) are shown separately for
the gluon (xg), the sea quarks (xS), (both scaled
down for visibility by a factor of 20), and the
valence quarks up xuv and down xdv. The un-
certainties are indicated by the coloured bands.

Presented by V. Radescu at Int. Conference
DIS2009, April 2009, Madrid, Spain

1
Pyy(y) ~ 2N~ (10.124)

Y

The DGLAP equation is not in danger since it involves a cutoff y > x, but this behavior implies

that

z—
Fy(z) >

0

8=

(10.125)
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so that the number of gluons in the proton is infinite:
1

/d:L’ Fy(z) = o0 (10.126)
0

Let us see why this happens. For Q7 ~ Q3 and small

@)~ Fyfe. @) = 2o / DL Q) (10127
0
Try an ansatz
F,(z,Q3) = const (10.128)
Then
F,(z,Q%) = const <1 + 3as 1 —l Q2) (10.129)
Q3
+— the gluon distribution cannot be “flat” at x — 0, our ansatz was bad.
Second try:
F,(z,Q3) = const - %, or xF,(z,Q3) = const (10.130)
In this case obtain
zF,(z,Q%) = const < 30 g2> = xFy(x, Q%)( 3%1 —1 ?;) (10.131)
0 0

One can show that this structure is general: In the limit 2 — 0 and Q% — oo each power of ay is
accompanied by two logarithms:

1@} L @Y
l4+clagln—In—== + ¢y (a In — + ... 10.132
s In s s Qo ( )
It is possible to sum this series to all orders (the so-called double-log approximation)
1
rFy(z,Q%) x—)O ~ exp\/ = (10.133)
N

What to do if z — 0 but Q?/Q2% ~ 17
In higher orders

&5 py(x) _ 3%y ge() (O‘Sln 1>3 fg( ) <1 1>5 +0 <O‘Sln 1>6”
27 z—0 T T X T T T T
(10.134)
< this series is known to all orders <+— BFKL equation
Resummation
> (aslnl/z)" wFy(x, Q%) ~ x 1225 (10.135)

k
Too strong! What stops this rise? — Active field of research
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11 To be continued



