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1 The Quark Model

1.1 Historic overview

Known before 1932:

� Photon γ mγ = 0

� Electron e− me ' 0.5 MeV

� Proton p mP ' 938 MeV

Then:

� 1932: Discovery of the neutron (Chadwick) mn ' 940 MeV

� 1932: Isospin formalism (Heisenberg)

� 1935: Prediction of the π-meson as carrier (mediator) of strong forces (Yukawa)

� 1938: Extension of the isospin formalism to π-mesons, prediction of the π0 (Kemmer)

� 1947: Discovery of charged π+ and π− (Lattes), mπ± ' 140 MeV

� 1950: Discovery of the neutral π0 mπ0 ' 135 MeV

The picture seemed to be converging, however

� 1947(?): Observation of new long-living particles in cosmic rays (V -particles); first signatures

of new “strange” particles in accelerator experiments (K-mesons, Λ-hyperons)

1.1.1 Isospin formalism

One observes that p, n and also π+, π0, π− have almost the same masses, why?

Recall the Hydrogen atom: the states |n, `,m〉 with m = −`, . . . , ` have the same energies (are

degenerate) because of the rotational symmetry of the Hamiltonian

? Hidden Symmetry Internal Symmetry

Analogy with spin:

|p〉, |n〉 ⇔ | ↑〉, | ↓〉

Spin-rotations:

| ↑〉 → α| ↑〉+ β| ↓〉

| ↓〉 → γ| ↑〉+ δ| ↓〉 (1.1)

Isospin-rotations:

|p〉 → a|p〉+ b|n〉

|n〉 → c|p〉+ d|n〉 (1.2)
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Symmetry group SU(2):

U =

(
α β

γ δ

)
or U =

(
a b

c d

)
; UU † = 1 , det U = 1 . (1.3)

! Isospin: Abstract transformation in Hilbert space of the quantum states

Following this line of reasoning we introduce

Nucleon =

(
p

n

)
(1.4)

is a particle with isospin 1/2; It has two states with isospin projection +1/2 and −1/2.

For small isospin transformations

U = I + i
3∑

a=1

δφa
τa
2
, τa = Pauli matrices (1.5)

Isospin operators:

Îa =
1

2
τa (cf. : Ŝa =

1

2
σa)

Î2 = Î2
1 + Î2

2 + Î2
3 (cf. : Ŝ2 = Ŝ2

1 + Ŝ2
2 + Ŝ2

3) (1.6)

Then

Î2|p(n)〉 = I(I + 1)|p(n)〉 , I = 1/2

Î3|p〉 = +
1

2
|p〉 , Î3|n〉 = −1

2
|n〉 (1.7)

The operator Î2 is fully equivalent (mathematically) to the operator of angular momentum; possible

eigenvalues are therefore (follows from group theory)

I = 0, 1/2, 1, 3/2, . . . (1.8)

Kemmer postulated that π-mesons form a system with isospin I = 1:

π =

π+

π0

π−

 I3 = +1

I3 = 0

I3 = −1

(1.9)

←↩ This was a prediction for π0 !

Isospin summation (cf. spin-summation):

NN -states:

isospin 1/2 ⊗ isospin 1/2 = isospin 1 + isospin 0 (1.10)
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I = 1 :

I3 = +1

I3 = 0

I3 = −1

pp
1√
2
(pn+ np)

nn

triplet

I = 0 : I3 = 0 1√
2
(pn− np) singlet (deuteron) (1.11)

πN -states:

isospin 1 ⊗ isospin 1/2 = isospin 1/2 + isospin 3/2 (1.12)

←↩ predictions for πN → πN scattering etc.

1.1.2 Strange particles and the “8-fold way”

Before 1953 “strange” V -particles were only seen in cosmic rays but eventually could be observed

in also in accelerator experiments that allowed for their detailed study. For example

π− + p→ K0 + Λ (1.13)

for Eπ ∼ 1.5 GeV one has measured, e.g.

σ(π−p→ K0Λ) ∼ 1 mb ≡ 10−27 cm2 ,

σtot(π
−p→ hadrons) ∼ 40 mb (1.14)

These cross sections correspond (roughly) to geometric cross sections of hadrons

R2 ∼ (1 fm)2 = 10−26 cm2 (1.15)

hence K and Λ are produced via strong interaction.

“Strange” particles decay, e.g.

Λ→ p+ π−, n+ π0 (1.16)

A natural life time for decays induced by strong interaction would be

τstrong ∼ R/c ∼ 10−13 cm/3 · 1010 cm s−1 ∼ 10−23 s (1.17)

The experimentally measured life time is, however

τΛ ' 2.63 · 10−10 s (1.18)

hence this is a weak decay, similar to n→ pe−ν.

It seems that strong and electromagnetic decays of these particles are forbidden, why?

←↩ New quantum number — “strangeness”

p, n, π+, π0, π− S = 0

Λ,Σ+,Σ0,Σ− S = −1

Ξ0,Ξ− S = −2

K0,K+ S = +1

K̄0,K− S = −1 (1.19)
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assume that strangeness is conserved in strong and electromagnetic interactions, e.g.

π− + p → K0 + Λ 0 + 0→ +1− 1 (allowed)

K− + p → K0 + Ξ0 − 1 + 0→ +1− 2 (allowed) (1.20)

In addition we have a conserved electric charge Q and baryon number B:

Baryons : B = +1

Antibaryons : B = −1

Mesons : B = 0 (1.21)

Gell-Mann and Nishijima observed that for all observed particles the following relation holds:

Q = I3 +
1

2
(S +B) ,

Y = S +B : Hypercharge (1.22)

The breakthrough: Gell-Mann, Neeman 1961,1964: The “8-fold way” (← Mahajana-Buddhismus)

SU(2) (isospin) ⇒ SU(3) (isospin + hypercharge) (1.23)

Mesons:

I
3

0
ππ

−

I
3

K

0

K

0

K
−

K
+

0
ππ

−
π

+
π

+

Y  = +1
3

0−1

Y

η

+1

3

3
Y  = −1

Y  = 0

Baryons:

I 3

I 3

Σ
∗

Σ
∗

Σ
∗

∗
Ξ ∗

Ξ

∆
0

∆
+

∆
++

0 +

∆

0

Ω

pn

ΣΣ Σ
0 +

Λ

Ξ Ξ
0

Y Y

0.94 GeV

1.19 GeV

1.12 GeV

1.32 GeV

1.23 GeV

1.39 GeV

1.53 GeV

1.67 GeV

� ←↩ Prediction for Ω− with mass ca. 1670 MeV and JP = 3
2

+
!
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� Symmetry is approximate: different states are not exactly degenerate: splitting appr. 150

MeV

Hypercharge symmetry breaking :
mΛ −mp

mp
∼ 20% (1.24)

It was possible to classify all known hadrons in irreducible representations of the SU(3) group

(later) and predict the existence of Ω−. However, no hadrons could be matched with the represen-

tation of the lowest dimension — the fundamental representation of SU(3).

Example: isospin group SU(2) I = 0, 1/2, 1, 3/2, . . .

Fundamenental representation

N =

(
p

n

)
, I = 1/2 I3 = ±1/2 (1.25)

Adjoint representation

π =

π+

π0

π−

 , I = 1 I3 = −1, 0, 1 (1.26)

etc.

For the case of the SU(3) classification the analogue of p and n was missing.

Gell-Mann, Zweig 1964 Quarks

Quarks I I3 Y S B Q

u 1/2 +1/2 1/3 0 1/3 2/3

d 1/2 -1/2 1/3 0 1/3 -1/3

s 0 0 -2/3 -1 1/3 -1/3

Q = I3 +
1

2
Y

The SU(3) transformations:

q =

ud
s

⇒
U11 U12 U13

U21 U22 U23

U31 U32 U33

ud
s

 , UU † = 1 , det U = 1 (1.27)

Mesons are built from a quark and antiquark. We identify:

π+ = ud̄ , π− = dū ,

K+ = us̄ , K0 = ds̄ , K̄0 = sd̄ , K− = sū ,

π0 =
1√
2

(uū− dd̄) , η0 =
1√
2

(uū+ dd̄) ,

η
′0 =

1√
6

(uū+ dd̄+ ss̄) (singlet under SU(3)) (1.28)

Three different quarks u, d, s are usually called “flavors”. L2
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Baryons, in turn, are built of three quarks: The quark model

N=
mu ∼ md ∼ 300 MeV

ms ∼ 450 MeV

1.1.3 Quarks have color!

� Problem 1:

There exist apparently no free quarks in nature — no particles with electric charge +2/3 or

−1/3

←↩ Quark confinement

� Problem 2:

Ω−(s = 3/2, s3 = 3/2) is built of three strange quarks:

Ω− = s↑s↑s↑ (1.29)

For the ground state, one expects that the wave function describing space distribution of the

three quarks in the nucleon is symmetric, Ψ(x1, x2, x3) = Ψ(x2, x1, x3), etc.

Hence a totally symmetric wave function for a spin-3/2 particle — contradiction with Pauli

principle?

Gell-Mann (1972), Fritzsch (1973): a new degree of freedom:

— Each quark exists in three versions (states), called “colors”

u =

u1

u2

u3

 , d =

d1

d2

d3

 , s =

s1

s2

s3

 , (1.30)

! A totally antisymmetric wave function can be built as

Ω−(3/2, 3/2) = s↑αs
↑
βs
↑
γε
αβγΨ(x1, x2, x3) (1.31)

! This state is invariant under rotations in the color space:

qα →
3∑

β=1

Uαβqβ ; α = 1, 2, 3 q = (u, d, s)]

UU † = 1 , det U = 1 (1.32)

— again a SU(3)-group.
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color–SU(3) /= flavor–SU(3)

The color–SU(3) symmetry plays a fundamental role in QCD; the flavor–SU(3) is (as we know

now) rather accidental.

Postulate:

Only SU(3)-invariant (“colorless”) states exist in nature.

� Baryons:

qαqβqγε
αβγ → Uαα′Uββ′Uγγ′ε

αβγqα′qβ′qγ′ = detU εα
′β′γ′qα′qβ′qγ′ (1.33)

� Mesons:

q̄αqα → q̄α′U
†
α′αUαβ′qβ′ = q̄α′qα′ (1.34)

Confinement: only colorless particles exist.

A big question: are quarks mathematical constructs only, or they indeed exist materially inside

hadrons?

� 1969: Crucial evidence:

Scattering of electrons from protons with large momentum transfer (at large angle) (Bjorken)

e−(k1) +N → e−(k2) +X(← any hadron state) (1.35)

! Nucleons contain quasi-free point-like particles inside them (“partons”)

e

e

qu
ar
k

quark

L3

� 1973: Gross, Wilczek, Politzer: “Asymptotic freedom”

— Theory of quark-gluon interactions

Quantum Chromodynamics

— a “nonabelian gauge theory”:

QED gauge transformations U(1) e→ eiφ(x)e ← photons

QCD gauge transformations SU(3) q → Uq ← gluons

QCD (color) charge (coupling constant) is small at small distances and becomes large at hadronic

scales.

World summary, see [S. Bethke, arXiv:1210.0325]
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pp –> jets (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2012

Lattice QCD (NNLO)

Z pole fit (N3LO)

τ decays (N3LO)

1.2 Elements of group theory: The SU(3) group

Consider a three-dimensional abstract Hilbert space with orthonormal basis vectors

|1〉, |2〉, |3〉; 〈i|k〉 = δik (1.36)

these could be e.g. |1, 2, 3〉 = |u〉, |d〉, |d〉 or |1, 2, 3〉 = |u1〉, |u2〉, |u3〉
The SU(3) group:

U |i〉 = |j〉Uji UU † = 1 , det U = 1 (1.37)

Infinitesimal transformations

U = I + iδφH , δφ ∈ R (1.38)

Then

(I + iδφH)(I− iδφH†) = 1

det (I + iδφH) = eTr ln(I+iδφH) = 1 + iδφTrH = 1 (1.39)

yields

H = H† , TrH = 0 (1.40)

i.e. H is a hermitian 3× 3 matrix with Tr= 0.

A suitable basis (Gell-Mann matrices)

λ1 =

0 1 0

1 0 0

0 0 0

 λ2 =

0 −i 0

i 0 0

0 0 0

 λ3 =

1 0 0

0 −1 0

0 0 0

 λ4 =

0 0 1

0 0 0

1 0 0



λ5 =

0 0 −i
0 0 0

i 0 0

 λ6 =

0 0 0

0 0 1

0 1 0

 λ7 =

0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 (1.41)
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Normalization convention

Tr (λaλb) = 2δab , a, b = 1, 2, . . . , 8 (1.42)

Each infinitesimal SU(3) transformation can be written as

U = I + iδφa
λa
2

(1.43)

The matrices

ta =
1

2
λa (1.44)

are called generators of the SU(3) transformations.

They satisfy the following (canonical) commutation relations:

[ta, tb] = ifabct
c (1.45)

The fabc symbols are called structure constants of the SU(3).

Multiply by td and take the trace; since Tr (tctd) = (1/2)δcd obtain

ifabc = 2 Tr ([ta, tb]tc) (1.46)

From this representation one can easily see that fabc are totally antisymmetric and real.

An anticommutator of two ta matrices:

{ta, tb} = cab I + dabctc (1.47)

Taking the trace:

Tr ({ta, tb}) = 2 · 1

2
δab = cabTr (I) = 3cab ⇒ cab =

1

3
δab (1.48)

also

dabc = 2Tr ({ta, tb}tc) (1.49)

Hence dabc symbols are real and totally symmetric in indices.

Using trace folmulas and explicit expressions for λa matrices one can calculate fabc and dabc
explicitly; these expressions are, however, rarely needed (cf.: Dirac matrices)

Useful identities:

fabrfrcs + fbcrfras + fcarfrbs = 0

fabrdrcs + fcbrdras = dacrfrbs

farsfbrs = 3δab

daab = 0 ← summation over ”a” implied

darsdbrs =
5

3
δab (1.50)



1 THE QUARK MODEL 10

Very useful identities:

fabct
atb =

3

2
itc

tata =
4

3
I

tatbta = −1

6
tb (1.51)

A very powerful identity:

(ta)αβ(ta)α′β′ =
1

2
δαβ′δα′β −

1

6
δαβδα′β′ (1.52)

1.2.1 Representations of the SU(3) group

� A unitary representation of the SU(3) group is a homomorphism

U → D(U)

of the 3× 3 matrices U onto unitary n× n matrices D,

D(U)D†(U) = 1

(in general of other dimension), which respects the group multiplication:

D(U)D(V ) = D(UV ) (1.53)

D(U) can also be viewed (more generally) as linear operators acting on the representation

space

R
D(U)−→ R R = Cn |α〉 ∈ R n-dimensional vectors (1.54)

� A representation is called reducible if it is block-diagonal in a certain basis

D(u) =

(
D1(U) 0

0 D2(U)

)
← {n1

← {n2
n1 + n2 = n (1.55)

Otherwise it is called irreducible

A necessary and sufficient condition:

Represention D(U) is irreducible if and only if

∀|α〉 ∈ R linear combinations of D(U)|α〉 span the whole space (1.56)

� Two representations D1 and D2 are called equivalent if

∃S ∀U S−1D1(U)S = D2(U) (1.57)
L3

� Simplest representations:

– U → I [1] ←− trivial representation
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– U → U [3] ←− fundamental representation

– U → U∗ [3̄]

� Adjoint representation [8]:

Representation space:

R = C8 c = {c1, . . . c8} ca ∈ C a = 1, . . . , 8 (1.58)

Let

C = cat
a ←− a complex 3× 3 matrix with Tr = 0 (1.59)

Define

C
D(U)−→ UCU † (1.60)

or, equivalently

Tr (Ctb)→ Tr (UCU †tb) ⇒ 1

2
cb → caTr (UtaU †tb)

Infinitesimal transformations:

U = I + iδφat
a −→ D(U) = I + iδφaT

a (1.61)

Lie algebra:

[ta, tb] = ifabct
c −→ [Ta, Tb] = ifabcT

c (1.62)

(The generators in all representations obey the same commutation relations)

In our case (adjoint representation)

cb −→ 2Tr
[
(1 + iδφct

c)ta(1− iδφc′tc
′
)tb
]
ca

= 2Tr [tatb]ca + 2iδφc
{

Tr (tctatb)− Tr (tatctb)
}
ca

=
[
δab + iδφcifcab

]
ca

≡
[
(I)ba + iδφc(T

c)ba
]
ca (1.63)

It follows

(T c)ba = −ifcba (1.64)

←↩ generators in the adjoint representation

Example: Classification of the q̄q states under SU(3)-flavor

Let

q1 ≡ u q2 ≡ d q3 ≡ s
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and assume

[3] |qi〉 −→ |qj〉Uji , U ∈ SU(3)

[3̄] |q̄i〉 −→ |q̄j〉U∗ji (1.65)

Now consider quark-antiquark states. Representation space is 9-dimensional R : |qi〉|q̄j〉

D(U)(|qi〉|q̄j〉) = |qi′〉|q̄j′〉Ui′iU∗j′j (1.66)

This representation is reducible:

� SU(3)-invariant state:

|1〉 =
1√
3
|qi〉|q̄i〉 =

1√
3

(
|u〉|ū〉+ |d〉|d̄〉+ |s〉|s̄〉

)
(1.67)

Check

|1′〉 = D(U)|1〉 =
1√
3
|qi′〉|q̄j′〉Ui′iU∗j′i =

1√
3
|qi′〉|q̄j′〉Ui′iU †ij′

=
1√
3
|qi′〉|q̄j′〉δi′j′ = |1〉 (1.68)

� An arbitrary orthogonal state

|C〉 = Cij |qi〉|q̄j〉 Cij = 3× 3 matrix with TrC = 0 (1.69)

Check SU(3) transformation:

|C ′〉 = D(U)|C〉 = Cij |qi′〉|q̄j′〉Ui′iU∗j′j = (UCU †)i′j′ |qi′〉|q̄j′〉 (1.70)

Thus

C ′ = UCU † (1.71)

! This is precisely the transformation rule of the adjoint representation

Result:

[3]⊗ [3̄] = [1] + [8] (1.72)

Example II: Classification of three-quark states:

[3]⊗ [3]⊗ [3] = [1] + [8] + [8] + [10] (1.73)

Start with the first pair:

[3]⊗ [3] = [3̄] + [6]

↙ ↘

εijk|qi〉|qk〉 |qi〉|qk〉+ |qk〉|qi〉
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Add the third quark:

[3̄]⊗ [3] = [1] + [8]

[6]⊗ [3] = [8] + [10]

↘

|qi〉|qj〉|qk〉+ permutations

Symmetry in quantum mechanics:

[Ĥ, T a] = 0 (1.74)

Example: Angular momentum

[Ĥ, ~L] = 0 , [L̂i, L̂j ] =
1

2
εijk︸︷︷︸ L̂k (1.75)

↓

structure constants of SU(2) ∼ SO(3)

Hence one additive quantum number:

Lz|Ψ〉 = m|Ψ〉 , [Lx, Lz]/=0 [Ly, Lz]/=0 (1.76)

←↩ SO(3) group has rank one.

For SU(3):

[T3, T8] = 0 ⇐ group has rank two (1.77)

therefore can require that simultaneously

T̂3|Ψ〉 = t3|Ψ〉 , T̂8|Ψ〉 = t8|Ψ〉 (1.78)

←↩ two quantum numbers, Ψ = Ψ(t3, t8).

Following Gell-Mann we identify (for SU(3)-flavor)

I1 = t1, I2 = t2, I3 = t3, (isospin)

Y =
2√
3
t8 (hypercharge) (1.79)

The eigenvalues of I3 and Y that occur in a given representation can be shown as points in the

isospin-hypercharge plane. Quarks u, d, s and antiquarks ū, d̄, s̄ transform according the three-

dimensional fundamental representations of the SU(3), called [3] and [3̄]:

Mesons are built from a quark and antiquark:

[3]⊗ [3̄] = [1] + [8] (1.80)
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+1/2
I3

−1/2 +1/2
I3

−1/2

Y
d u

s

Y
s

du

Y=2/3

Y=−1/3

Y=1/3

Y=−2/3

[3] [3]

udud
ss

dduu

Y

d u

s

s

du

s

s s

d u

2 Nonabelian quantum field theories

2.1 Geometry of gauge invariance

Weil (1923): gauge invariance

ψ(x) −→ ψ′(x) = eiα(x)ψ(x)

Aµ(x) −→ A′µ(x) = Aµ(x)− 1
e∂µα(x)

}
=⇒ LQED(ψ,A) = LQED(ψ′, A′) (2.1)

[Aµ transformations introduced by Maxwell; Weil added ψ]

Modern interpretation:

Let ψ(x) −→ ψ′(x) = eiα(x)ψ(x) and require L(ψ) = L(ψ′)

What is the most general form of Lagrange density consistent with this symmetry?

� Simple:

mψ̄ψ , g2(ψ̄ψ)2 , . . . all allowed (2.2)
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� Complicated: derivatives

nµ∂µψ(x) := lim
ε→0

1

ε

[
ψ(x+ εn)− ψ(x)

]
−→ lim

ε→0

1

ε

[
eiα(x+εn)ψ(x+ εn)− eiα(x)ψ(x)

]
bad (2.3)

General solution (differential geometry)

In addition to ψ(x), consider a function of two variables U(y, x) with transformation property

U(y, x) −→ U ′(y, x) = eiα(y)U(y, x)e−iα(x)

U(x, x) = 1 (2.4)

Its utility is that ψ(y) and U(y, x)ψ(x) have the same transformation laws.

Define covariant derivative:

nµDµψ(x) := lim
ε→0

1

ε

[
ψ(x+ εn)− U(x+ εn, x)ψ(x)

]
(2.5)

Simplest choice:

UU∗ = 1 , U(y, x) = eiφ(y,x) (2.6)

Then

U(x+ εn, x) = 1 + iεnµ
∂

∂yµ
φ(y, x)

∣∣∣
y=x

+ . . .

:= 1− iεεnµ eAµ(x) e = arbitrary constant (2.7)

! A new vector function Aµ(x) — a vector field

Math termonology: U is called a comparator of local symmetry transformations

Aµ is called a connection, it appears in a local limit of U *

Thus

Dµψ(x) := (∂µ + ieAµ)ψ(x) (2.9)

From the transformation law

1− iεnµeAµ(x) −→ 1− iεnµeA′µ(x) = eiα(x+εn)
[
1− iεnµeAµ(x)

]
e−iα(x) (2.10)

follows

Aµ(x) −→ A′µ(x) = Aµ(x)− 1

e
∂µα(x) (2.11)

so that L4

*Remark: One can choose

U(y, x) = Pexp
{∫ 1

0

du (y − x)µAµ(ux + (1 − u)y)
}

+ additional vector fields (2.8)
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Dµψ(x) −→ D′µψ
′(x)

=
[
∂µ + ie

(
Aµ −

1

e
∂µα

)]
eiα(x)ψ(x)

= eiα(x)Dµψ(x) (2.12)

Thus we are allowed to have in L terms like

ψ̄ /Dψ , ψ̄DµD
µψ , etc. (2.13)

What else? L5

x x+ ε~e1

x+ ε~e2 x+ ε(~e1 + ~e2)

W (x) = U(x, x+ ε~e2)U(x+ ε~e2, x+ ε~e1 + ε~e2)U(x+ ε~e1 + ε~e2, x+ ε~e1)U(x+ ε~e1, x) (2.14)

A straightforward calculation for ε→ 0

W (x) = 1− iε2e
[
∂1A2(x)− ∂2A1(x)

]
+O(ε3)

W (x) = invariant =⇒ Fµν = ∂µAν − ∂νAµ = invariant

[W ′(x) = W (x)⇒ F ′µν = Fµν ] (2.15)

Alternatively, consider

[Dµ, Dν ]ψ = [∂µ, ∂ν ]ψ + ie
(

[∂µ, Aν ]− [∂ν , Aµ]
)
ψ − e2[Aµ, Aν ]ψ (2.16)

The first and the last terms obviously vanish. The other two:

[∂µ, Aν ]ψ = ∂µ(Aνψ)−Aν∂µψ = (∂µAν(x))︸ ︷︷ ︸ ·ψ(x)

derivative only acts on A! (2.17)

Hence

[Dµ, Dν ]ψ = ie
(
∂µAν(x)− ∂νAµ(x)

)
ψ(x) [Dµ, Dν ] = ieFµν (2.18)

Summing up, the QED Lagrangian

LQED = ψ̄(i /D)ψ −mψ̄ψ − 1

4
FµνF

µν (2.19)
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� need a real function with mass dimension four

� could add

. . .− c εµναβFµνFαβ parity conservation ⇒ c = 0 (2.20)

� could add

. . .+ c5ψ̄D
2ψ + c6(ψ̄ψ)2 + . . . • not renormalizable

• c5 ∼
1

ΛUV
, c5 ∼

1

Λ2
UV

(2.21)

QED Lagrangian is defined (almost) uniquely by the requirements

� relativistic (Lorentz) invariance

� local gauge symmetry U(1)

! Photon exists “because” we require local gauge symmetry !

A very powerful idea: construct physical theories starting with geometric symmetry principles.

2.2 The Yang-Mills Lagrangian

Let

ψ =

(
ψ1(x)

ψ2(x)

)
(2.22)

Global SU(2) transformations:

ψ −→ ψ′ = eiα
k σk

2 ψ; σk = Pauli matrices (2.23)

for example isospin — original motivation for YM

Local SU(2) transformations (YM):

ψ(x) −→ ψ′(x) = eiα
k(x)

σk
2 ψ(x); σk = Pauli matrices (2.24)

Y&M asked: how to built a theory (Lagrangian) invariant under these trafos?

Main difference to QED: the symmetry is nonabelian:

eiα · eiβ = eiβ · eiα but eiα
k σk

2 · eiβk
σk
2 /= eiβ

k σk
2 · eiαk

σk
2 (2.25)

Comparator of local SU(2) transformations

U(y, x) = 2× 2 matrix , UU † = 1

U(y, x) −→ V (y)U(y, x)V †(x) (2.26)
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with

V (x) = eiα
k(x)

σk
2 , V (x)V †(x) = I (2.27)

It follows

U(x+ εn, x) = I + igεnµAkµ
σk

2
+O(ε2) (2.28)

where g (arbitrary constant) will be called “coupling”.

Covariant derivative

Dµ = ∂µ − igAkµ
σk

2
≡ ∂µ · I− igAkµ

σk

2
(2.29)

Transformation rule for Akµ follows from

I + igεnµAkµ
σk

2
−→ I + igεnµ(Akµ)′

σk

2
= V (x+ εn)

(
I + igεnµAkµ

σk

2

)
V †(x) (2.30)

where we have to expand everything to O(ε).

First term:

V (x+ εn)V †(x) =

([
1 + εnµ

∂

∂xµ
+O(ε2)

]
V (x)

)
V †(x)

= I + εnµ
(

∂

∂xµ
V (x)

)
V †(x) +O(ε2)

= I− εnµV (x)

(
∂

∂xµ
V †(x)

)
+O(ε2) (2.31)

Therefore, comparing terms in ∼ igεnµ

Akµ
σk

2
→ V (x)

(
Akµ

σk

2
+
i

g
∂µ

)
V †(x) (2.32)

For small transformations

V (x) = I + iαk(x)
σk

2
+ . . . (2.33)

this becomes

Akµ
σk

2
→ Akµ

σk

2
+

1

g
(∂µα

k)
σk

2
+ i

[
αk
σk

2
, Ajµ

σj

2

]
︸ ︷︷ ︸

new ! (2.34)

Check transformation for the covariant derivative:

Dµψ −→ D′µψ
′ =

(
∂µ − ig(A′)kµ

σk

2

)
ψ′

=

(
∂µ − igAkµ

σk

2
− i(∂µαk)

σk

2
+ g

[
αk
σk

2
, Ajµ

σj

2

])(
1 + iαk

σk

2

)
ψ

=

(
1 + iαk

σk

2

)(
∂µ − igAkµ

σk

2

)
ψ +O(α2) = V (x)Dµψ +O(α2) OK (2.35)



2 NONABELIAN QUANTUM FIELD THEORIES 19

As a consequence

[Dµ, Dν ]ψ(x) −→ V (x)[Dµ, Dν ]ψ(x) = V (x)[Dµ, Dν ]V †(x)︸ ︷︷ ︸V (x)ψ(x)︸ ︷︷ ︸ (2.36)

Define a nonabelian field strength tensor (Feldstärke) as

[Dµ, Dν ] = −igF kµν
σk

2
, F kµν

σk

2
−→ V (x)F kµν

σk

2
V †(x) (2.37)

Inserting explicit expression for the covariant derivative this becomes

F kµν
σk

2
= ∂µA

k
ν

σk

2
− ∂νAkµ

σk

2
− ig

[
Akµ

σk

2
, Ajν

σj

2

]
(2.38)

Use [
σk

2
,
σj

2

]
= iεkjl

σl

2
(2.39)

multiply by σp and take the trace:

F kµν = ∂µA
k
ν − ∂νAkµ + gεkjlAjµA

l
ν (2.40)

! F kµν is not yet SU(2) invariant, but this is easy to repair:

Tr
[
(F kµν

σk

2
)2
]

=
1

2
F kµνF

µν,k = invariant (2.41)

Thus, a possible Lagrangian invariant under local SU(2) is (Yang-Mills)

LYM = ψ̄(i /D −m)ψ − 1

4
(F kµν)2 (2.42)

! Very simple and very similar to QED

Euler-Lagrange equations:

� “Dirac”:

(i /D −m)ψ = 0 ! field hidden inside D (2.43)

� “Maxwell”:

∂µF kµν + gεkjlAj,µF lµν︸ ︷︷ ︸ = −gψ̄γν
σk

2
ψ ≡ jkν , [← the SU(2) -charge curent]

! non-linear equation: terms ∼ A2, A3 (2.44)
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Generalization to SU(3), [and SU(4), . . .SU(N)] is trivial:

ψ =

ψ1(x)

ψ2(x)

ψ3(x)

 (2.45)

Local SU(3) transformations:

ψ(x) −→ V (x)ψ(x)

V (x) = 1 + iαa(x)ta +O(α2) , a = 1, 2, . . . , 8 (2.46)

so that

σa

2
−→ ta =

λa

2
Gell-Mann matrices

[σk
2
,
σj

2

]
= iεkjl

σl

2
−→ [ta, tb] = ifabctc (2.47)

It follows

ψ −→ (1 + iαata)ψ

Aaµ −→ Aaµ +
1

g
∂µα

a + fabcAbµα
c (2.48)

and further

[Dµ, Dν ] = −igF aµνta

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν

Dµ = ∂µ − igAaµta (2.49)

Remark: Sign of g is a convention, differs in various textbooks

and finally

LQCD = LSU(3) = −1

4
(F aµν)2 +

∑
ψ=u,d,s,...

ψ̄(i /D −mψ)ψ (2.50)

L5

2.3 Quantization and Feynman rules

Assume that QCD can be quantized in the same way as QED (will have some surprises).

Generic Green functions:

〈Ω|T{ ˆ̄ψiα(x1)Âaµ(x2)ψ̂jβ(x3) . . .}|Ω〉 =
〈0|T{( ˆ̄ψI)

i
α(x1)(ÂI)

a
µ(x2)(ψ̂I)

j
β(x3) . . . ei

∫
d4xLI(x)}|0〉

〈0|T{ei
∫
d4xLI(x)}|0〉

(2.51)

Here
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� ψ̂ . . . on the l.h.s. are Heisenberg operators

� |Ω〉 on the l.h.s. is the exact vacuum (ground state)

� All operators on the r.h.s. are written in the interaction representation

� |0〉 on the r.h.s. is the “perturbative” vacuum (ground state if interactions are switched off)

Then:

Propagators:

〈0|T{ψiα(x)ψ̄jβ(y)}|0〉 = δij
∫

d4p

(2π)4i
e−ip(x−y)

(
1

m− /p− iε

)
αβ

〈0|T{Aaµ(x)Abν(y)}|0〉 = δab
∫

d4k

(2π)4i
e−ik(x−y) 1

k2 + iε

[
gµν − ξ

kµkν
k2

]
(2.52)

Interaction:

L = L0 + LI

LI = gψ̄Aaµt
aγµψ − gfabc(∂αAaµ)Aα,bAµ,c − 1

4
g2(feabAaµA

b
ν)(fecdAµ,cAν,d) (2.53)

Vertices:

a, µ

= igγµt
a

a, µ

b, ν c, ρ

k

p q
= gfabc

[
gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν

]

c, ρ d, σ

a, µ b, ν
= −ig2

[
fabef cde(gµρgνσ − gµσgνρ)

+ facef bde(gµνgρσ − gµσgνρ)
+ fadef bce(gµνgρσ − gµρgνσ)

] (2.54)
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For example:

〈Ω|T{Adα(x)Aeβ(y)Afλ(z)}|Ω =

= i

∫
d4w〈0|T{T{Adα(x)Aeβ(y)Afλ(z)LI(w)}|0〉

= i

∫
d4w〈0|T{Adα(x)Aeβ(y)Afλ(z)

[
− gfabc(∂ρAaµ(w))Aρ,b(w)Aµ,c(w)

]
}|0〉

k

p q

x

y z

w

:=

∫
d4p

(2π)4

∫
d4q

(2π)4

∫
d4k

(2π)4
e−ikx−ipy−iqz(2π)4δ(4)(p+ q + k)

× gαα′

k2

gββ′

p2

gλλ′

q2
· (Vertex)α

′β′γ′

def (2.55)

Note ∂ρ −→ −ikρ if the momentum points into the diagram (Einlaufender Impuls).

Set of Feynman rules defines a quantum theory, but is it selfconsistent?

2.4 Faddeev-Popov ghost fields

� In QED, selfconsistency requires that the amplitudes satisfy Ward identities

kµ ·

 k

k

p
i

ik

j

 = 0 (2.56)

for arbitrary photon momenta and for electrons on mass shell p2 = m2.

=⇒ electromagnetic charge is conserved in quantum theory

=⇒ photon remains massless

=⇒ results of calculations do not depend on gauge parameter, etc.

� In QCD, gluons are charged, so maybe we have to impose a condition k2 = 0 but otherwise

we expect that Ward identities must hold true.

2.4.1 Reminder: Photon polarization vectors

Consider a real photon k2 = 0. Let

kµ = {k, 0, 0, k} (2.57)
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The four-vector Aµ(k) of a real photon can be decomposed in the basis

e(1)
µ = {0, 1, 0, 0} e(2)

µ = {0, 0, 1, 0}

e(+)
µ =

1√
2
{1, 0, 0, 1} e(−)

µ =
1√
2
{1, 0, 0,−1} (2.58)

Only first two possibilities (transverse polarizations) are physical because the other two can be

disposed of by the choice of gauge:

� Lorentz gauge

∂µAµ(x) = 0 =⇒ kµAµ(k) = 0

=⇒ Aµ(k) = e(−)
µ A−(k) not allowed [kµe(−)

µ = 2] (2.59)

� For the special case k2 = 0 Lorentz condition does not specify the gauge uniquely

0 = kµAµ(k) = kµA′µ(k) = kµ(Aµ + kµλ(k))

=⇒ Aµ(k) = e(+)
µ A+(k) ∼ kµ can be gauged away (2.60)

Thus, emission of “plus” or “minus” photons cannot influence any observable quantities

Note: it does not mean that we always take Lorentz gauge.
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2.4.2 Reminder: Current conservation and Ward Identity in QED

• U(1) gauge symmetry ⇒ conserved current (Noether theorem)

jµ(x) = −eψ̄(x)γµψ(x) , ∂µj
µ(x) = 0

LQED = −1

4
FµνF

µν + ψ̄(i/∂ −m)ψ − jµ(x)Aµ(x) (2.61)

• Photon emission in QED:

k; e iM(k) = iMµ(k)ε∗µ(k)

Mµ(k) =

∫
d4x eikx〈f |ĵµ(x)|i〉 (2.62)

• Ward Identity = Current conservation in quantum theory:

0 = kµM
µ(k) =

∫
d4x 〈f |ĵµ(x)|i〉

(
−i ∂

∂xµ

)
eikx = i

∫
d4x eikx〈f |∂µĵµ(x)|i〉 (2.63)

• Unitarity (conservation of probability) in quantum mechanics:

d

dt

∫
d3x |Ψ(x, t)|2 = 0 ⇐= Hamiltonian is a hermitian operator (2.64)

• Unitarity in QED: unphysical photons cannot be produced in collisions of “physical” particles

Total cross section for photon emission:

σ ∼
∑
phys.
polar.

|M |2 =
∑
phys.
polar.

ε(λ),∗
µ ε(λ)

ν MµMν,∗ = |M1|2 + |M2|2 (2.65)

However

kµM
µ = 0 =⇒ k0M

0 − k3M
3 = 0 =⇒ M0 = M3 (2.66)

Therefore can write also∑
phys.
polar.

ε(λ),∗
µ ε(λ)

ν MµMν,∗ = |M1|2 + |M2|2 + |M3|2 − |M0|2 = −gµνMµMν,∗ =
∑
all

polar.

ε(λ),∗
µ ε(λ)

ν MµMν,∗

(2.67)

i.e. the sum over transverse polarizations is equal to the sum over all polarizations.

Accepted terminology: The QED S-matrix is unitary
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2.4.3 Quark-antiquark annihilation into a pair of gluons

Let us check what happens in QCD on a simple example:

k1
p’

k2

p’ k1

k2
p

kp’

k2

k1

pp

(3)(2)(1)

a

b

a

b b

a

c

3

q(p) + q̄(p′)→ ga(k1) + gb(k2) (2.68)

• The first two diagrams together:

iMµν
1,2ε
∗
µ(k1)ε∗ν(k2) = ε∗µ(k1)ε∗ν(k2)

× (ig)2v̄(p′)

{
γµta

i

/p− /k2 −m
γνtb + γνtb

i

/k2 − /p′ −m
γµta

}
u(p) (2.69)

Replace

ε∗ν(k2) −→ k2ν (2.70)

Obtain

iMµν
1,2ε
∗
µ(k1)k2ν = ε∗µ(k1)(ig)2v̄(p′)

{
γµta

i

/p− /k2 −m
/k2t

b + /k2t
b i

/k2 − /p′ −m
γµta

}
u(p) (2.71)

Thanks to Dirac equation can replace

(/p−m)u(p) = 0, in the first term /k2u(p) = (/k2 − /p+m)u(p)

v̄(p′)(/p
′ +m) = 0, in the second term v̄(p′)/k2 = v̄(p′)(/k2 − /p′ −m) (2.72)

The propagators cancel and we get

iMµν
1,2ε
∗
µ(k1)k2ν = ε∗µ(k1)(ig)2v̄(p′)

{
− iγµ[ta, tb]

}
u(p)

= −g2ε∗µ(k1)v̄(p′)γµu(p)fabctc (2.73)
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• The third diagram:

iMµν
3 ε∗µ(k1)ε∗ν(k2) = ε∗µ(k1)ε∗ν(k2) (2.74)

× (ig)v̄(p′)γρt
cu(p)

−i
k2

3

gfabc
[
gµν(k2 − k1)ρ + gνρ(k3 − k2)µ + gρµ(k1 − k3)

]
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now replace ε∗ν(k2) −→ k2ν

and use k1 + k2 + k3 = 0 −→ k2 = −k1 − k3 (2.75)

Then

ε∗ν(k2)[∗ ∗ ∗] −→ k2ν [∗ ∗ ∗]

= kµ2 (k2 − k1)ρ + kρ2(k3 − k2)µ + gρµ(k1 − k3) · k2

= (−k1 − k3)µ(−2k1 − k3)ρ + (−k1 − k3)ρ(2k3 + k1)µ + gρµ(k1 − k3) · (−k1 − k3)

= gρµk2
3 − k

ρ
3k

µ
3 − g

ρµk2
1 + kρ1k

µ
1 (2.76)

Hence

iMµν
3 ε∗µ(k1)k2ν = ε∗µ(k1)(ig)v̄(p′)γρt

cu(p)
−i
k2

3

gfabc
[
gρµk2

3 − k
ρ
3k

µ
3 − g

ρµk2
1 + kρ1k

µ
1

]
Assume k2

1 = 0 (on-shell) and ε∗µ(k1)kµ1 = 0 (physical polarization). Then:

• the last two terms vanish

• the second term vanishes as well:

(−kρ3)v̄(p′)γρu(p) = v̄(p′)[(/p
′ +m) + (/p−m)]u(p) = 0 (2.77)

• the first term gives:

iMµν
3 ε∗µ(k1)k2ν = ε∗µ(k1)g2v̄(p′)γµu(p)fabctc (2.78)

and exactly cancels the contribution of the first two diagrams!

Happy end? — No! — a disaster in loop diagrams (true quantum effects)

qν ·

( )
︸ ︷︷ ︸ /= 0

↘ all polarizations in intermediate state (2.79)

Gluons with unphysical polarizations can be produced −→ unitarity is broken:

2 Im /=

∫
d (phase space)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(2.80)

2.4.4 Faddeev-Popov ghosts

Solution: Faddeev, Popov (1967):

Modify QCD Lagrangian

LQCD −→ LQCD + c̄a(x)
(
− ∂µDab

µν

)
cb(x)

Dab
µ =∂µ + fabcAcµ covariant derivative in adjoint representation (2.81)
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ghost field ca(x): • spin-0 field (scalar)

• a = 1, 2, . . . , 8

(adjoint representation, like gluon)

• Fermi-statistics (!?)

{c(~x, t), c̄(~y, t)} = 0
(new) Feynman rules:

ba =
iδab

p2 + iε

a c

p

b, µ

= −gfabcpµ (2.82)

� Derivation uses path integral formalism ⇒ QFT lectures in SS

� The role of ghosts is to subtract “wrong” gluon polarizations, hence “wrong” spin-statistics

relation

� Ward identities are modified by terms including ghosts ⇒ Slavnov-Taylor identities

� We will see how this works in practical calculations (exercises)

3 Renormalization and Regularization in QED

Two big issues in quantum field theories:

• Make all expressions mathematically well defined — Regularization

• Make sense of the theory that contains infinities — Renormalization

3.1 Vacuum polarization

pp kk
k � p

Πµν = −e2
0

∫
d4k

(2π)4i
Tr

{
γµ

1

m− /k
γν

1

m− /k + /p

}

= −e2
0

∫
d4k

(2π)4i

Tr
[
γµ(m+ /k)γν(m+ /k − /p)

]
(m2 − k2 − iε)(m2 − (k − p)2 − iε)

(3.1)

The trace:

Tr = m2Tr [γµγν ] + Tr [γµ/kγν(/k − /p)]

= 4m2gµν + 4[kµ(k − p)ν + (kν(k − p)µ − gµνk · (k − p)] (3.2)
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Main trick (Feynman):

1

A ·B
=

1∫
0

dα
1

[αA+ (1− α)B]2
(3.3)

Γ(a)Γ(b)

Aa ·Bb
=

1∫
0

dααa−1(1− α)b−1 Γ(a+ b)

[αA+ (1− α)B]a+b
(3.4)

Use for A = m2 − k2 − iε and B = m2 − (k − p)2 − iε

The denominator:

α (m2 − k2) + (1− α) [m2 − (k − p)2] = m2 − αk2 − (1− α)k2 + 2(1− α)(kp)− (1− α)p2

= m2 − [k − (1− α)p]2 + (1− α)2p2 − (1− α)p2

= m2 − [k − (1− α)p]2 − α(1− α)p2 (3.5)

Useful notation for future:

ᾱ := 1− α (3.6)

Thus we obtain

Πµν = −4e2
0

∫ 1

0
dα

∫
d4k

(2π)4i

gµν [m2 − k(k − p)] + kµ(k − p)ν + (kν(k − p)µ
[m2 − [k − ᾱp]2 − αᾱp2 − iε]2

(3.7)

Change of integration variable: k → k′ = k − ᾱp; d4k ≡ d4k′

The main advantage: denominator only depends on k′2; in the numerator k → k′ + ᾱp:

gµν [m2 − (k′ + ᾱp)(k′ − αp)] + (k′ + ᾱp)µ(k′ − αp)ν + (k′ + ᾱp)ν(k′ − αp)µ (3.8)

! Can delete all linear terms in k′ because∫
d4k′

k′ρ
[k′2 +X]2

= 0 no preferred direction in space (3.9)

Thus, changing notation back to k′ → k

Πµν = −4e2
0

∫ 1

0
dα

∫
d4k

(2π)4i

gµν [m2 − k2 + αᾱp2)] + 2kµkν − 2αᾱpνpν
[m2 − k2 − αᾱp2 − iε]2

(3.10)

The integral with two powers kµkν can only be ∼ gµν :∫
d4k

kµkν
[k2 +X]2

= I(p2) gµν

⊗ gµν : ∫
d4k

k2

[k2 +X]2
= 4I(p2) (3.11)
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Therefore ∫
d4k

kµkν
[k2 +X]2

=
1

4
gµν

∫
d4k

k2

[k2 +X]2

or effectively
[
kµkν ⇒ 1

4
gµνk

2
]

under the integral (3.12)

Thus, finally

Πµν = −4e2
0

∫ 1

0
dα

∫
d4k

(2π)4i

[
pµpν

−2αᾱ

[m2 − k2 − αᾱp2 − iε]2
+O(gµν)

]
(3.13)

Time has come to calculate the integral. Analytic continuation (Wick rotation):

k0 = ik4
k0

(3.14)

In this case

d4k = dk0d
3~k = idk1dk2dk3dk4 = id4kE

k2 = k2
0 − ~k2 = − (k2

1 + k2
2 + k2

3 + k2
4) = −k2

E (3.15)

! Space and euclidian time coordinates build a usual Euclidian space (in 4 dim.)

! All factors “i” cancel

Πµν = −4e2
0

∫ 1

0
dα

∫
d4kE
(2π)4

[
pµpν

−2αᾱ

[m2 + k2
E − αᾱp2 − iε]2

+O(gµν)

]
(3.16)

Euler: ∫
dNk f(k2) =

∫
dΩN

∞∫
0

kN−1dk f(k2) =
2πN/2

Γ(N/2)︸ ︷︷ ︸∫
dΩN

1

2

∞∫
0

dk2 kN−2 f(k2) (3.17)

In our case (N=4)

Πµν = 8e2
0

∫ 1

0
dα

1

(2π)4
π2

∞∫
0

dk2 k2

[
αᾱpµpν

[m2 + k2 − αᾱp2 − iε]2
+O(gµν)

]
(3.18)

?! The integral is divergent at k2 →∞ (UV divergence)

• The simplest regularization is to introduce a cutoff∫ ∞
0

dk2 =⇒
∫ M2

0
dk2 (3.19)
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We assume that M2 � p2,m2, in this case∫ M2

0
dk2 k2

[k2 +m2 − αᾱp2]2
= − M2

M2 +m2 − αᾱp2
+ ln

M2 +m2 − αᾱp2

m2 − αᾱp2

' −1 + ln
M2

m2 − αᾱp2
(3.20)

and

Πµν = −8pµpν
e2

0

16π2

∫ 1

0
dααᾱ

[
1 + ln

m2 − αᾱp2 − iε
M2

]
+O(gµν) (3.21)

Gauge invariance ⇒ Ward identity implies

pµΠµν = pνΠµν = 0 =⇒ Πµν = (gµν − pµpν)Π(p2) (3.22)

If this property holds, the calculation of O(gµν) contribution is not necessary. One obtains

Π(p2) =
2α0

π

∫ 1

0
dααᾱ

[
1 + ln

m2 − αᾱp2 − iε
M2

]

=
α0

9π

[
−2 + 3 ln

m2

M2
− 12m2

p2
+ 3

(
1 +

2m2

p2
J ln

J + 1

J − 1

)]
, J =

√
1− 4m2

p2

Π(0) =
α0

3π

[
1 + ln

m2

M2

]
(3.23)

We will discuss how to make sense of the dependence on M2 in great detail. Before that, there is

still another issue to address:

Introducing a cutoff we have solved our mathematical problem to make integrals well defined, but

at a high cost: It is easy to see that this procedure actually breaks gauge invariance.

Indeed, the complete expression for Πµν is

Πµν = −4e2
0

∫ 1

0
dα

∫
d4kE
(2π)4

[
pµpν

−2αᾱ

[m2 + k2
E − αᾱp2]2

+ gµν
m2 + 1

2k
2
E + αᾱp2

[m2 + k2
E − αᾱp2]2

]
(3.24)

Contribution of k2
E � p2,m2 is therefore of the form

Πµν = −4e2
0

∫ 1

0
dα

∫
d4kE
(2π)4

[
pµpν

−2αᾱ

k4
E

+
1

2
gµν

1

k2
E

]
(3.25)

The second contribution is quadratically divergent, hence ∼M2, not ∼ lnM2

Note also that ∫ M2
d4k

(2π)4 /=

∫ M2
d4(k + p)

(2π)4
(3.26)

that we used above and also in the proof of the Ward identity (for scalar QED).
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Let us recall how it works on our case:

pp kk
k � p

Πµν = −e2
0

∫
d4k

(2π)4i
Tr

{
γµ

1

m− /k
γν

1

m− /k + /p

}

pµΠµν = −e2
0

∫
d4k

(2π)4i
Tr

{
/p

1

m− /k
γν

1

m− /k + /p

}
(3.27)

Write

/p = (m− /k + /p)− (m− /k) (3.28)

Then, using cyclic property of the trace

pµΠµν = −e2
0

∫
d4k

(2π)4i
Tr

{
1

m− /k
γν − γν

1

m− /k + /p

}
(3.29)

This vanishes if one can change integration variable from p to p− k.

L7

There exist other, better, regularizations that avoid this problem.

• Pauli-Villars regularization:

m M 1

m2 − k2
− 1

M2 − k2
(3.30)

— subtract the same diagram with a “heavy” electron with mass M

• Dimensional regularization (’t Hooft, Veltman, 1971-73), Nobel prize 1999

Lessons:

• Calculations of loop diagrams only make sense with a certain UV regularization

• It is possible to choose regularization to maintain Lorentz and gauge invariance

• However, all results depend on an (unphysical) number — the UV cutoff; what to do?

3.2 Photon self-energy and wave function

Free photon propagator in Feynman gauge

D(0)
µν (x) =

∫
d4k

(2π)4i

gµν
k2 + iε

e−ikx , D(0)
µν (k) =

gµν
k2 + iε

(3.31)

Exact photon propagator

Dµν(k) = (3.32)



3 RENORMALIZATION AND REGULARIZATION IN QED 32

The last pictured contribution is the repetition of the second one; can happen separated by large

time interval

Such contributions are called “one-particle reducible”, they are simple and can be summed up

One defines photon self energy as the sum of all 1PI diagrams (amputated):

Πµν(k) = (3.33)

Then

Dµν(k) = (3.34)

or

Dµν(k) = D(0)
µν (k) +D(0)

µµ1
(k)Πµ1µ2(k)D(0)

µ2ν(k) + . . . (3.35)

⇒ Dyson equation:

↙ exact!
Dµν(k) = D(0)

µν (k) +D(0)
µµ1

(k)Πµ1µ2(k)Dµ2ν(k) (3.36)

Using D
(0)
µν (k) = gµν/k

2 this yields an equation

k2Dµν(k) = gµν + Πµ
µ2(k)Dµ2ν(k) =⇒

[
k2gµµ1 −Πµµ1

]
Dµ1ν = gµν (3.37)

Let (Lorentz invariance)

Πµν(k) = gµν a1(k2) + kµkν a2(k2)

Dµν(k) = gµν d1(k2) + kµkν d2(k2) (3.38)

Using first the expansion for Πµν :[
k2 − a1(k2)

]
Dµν − kµkµ1Dµ1ν a2(k2) = gµν (3.39)

and second for Dµν , obtain

gµν =
[
k2 − a1

]
d1 gµν +

[
k2 − a1

]
kµkν d2 − kµkν d1a1 − k2d2a2 kµkν (3.40)

Collecting the terms ∝ gµν :

1 =
[
k2 − a1

]
d1 =⇒ d1(k2) =

1

k2 − a1(k2)
(3.41)

Therefore

Dµν(k) =
gµν

k2 − a1(k2) + iε
+O(kµkν) (3.42)
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If a1(k2 = 0)/=0 we are in a big trouble because photon acquires a mass (or just disappears).

Indeed

Dµν(x) =

∫
d4k

(2π)4i

gµν
k2 − a1(k2) + iε

e−ikx =

∫
d3k

(2π)3
ei
~k~x

∫
dk0

(2π)i

gµνe
−ik0x0

k2
0 − ~k2 − a1(k2) + iε

(3.43)

Einstein’s relation k0 = |~k| (or k0 =
√
m2 + ~k2) emerges when the k0 integral is taken by residues.

Thus

— If the pole position is shifted (from zero), particle acquires a mass

— If there is no pole but, say, a cut (e.g. 1/
√
k0 −m) there is no particle at all (dissipation)

! Gauge invariance saves the day (as always)

kµΠµν = 0 ⇒ kµ
[
gµν a1(k2) + kµkν a2(k2)

]
= 0 ⇒ a1(k2) = −k2a2(k2) (3.44)

We used this relation in the previous Section:

Πµν(k) =
(
gµνk

2 − kµkν
)

Π(k2) , a1(k2) = k2Π(k2) , a2(k2) = −Π(k2) (3.45)

or

Dµν(k) =
gµν

k2[1−Π(k2)]
(3.46)

Thus, unless Π(k2) ∼ 1/k2, (Higgs mechanism) the photon remains massless in quantum theory.

For k2 → 0 (almost real photon) we can write

Dµν(k)
k2→0

=
Z3gµν
k2 + iε

, Z3 =
1

[1−Π(0)]
(3.47)

that is, the pole of the propagator remains at k2 = 0, but the residue at the pole changes.

Recall that the photon propagator arise from the product of free photon wave functions and gµν
originates from the sum over polarizations:

−gµν =
∑
λ

e(λ)∗
µ (k)e(λ)

ν (k) + unphysical polarizations (3.48)

Therefore effectively

gµν → Z3gµν =⇒ e(λ)
ν (k) →

√
Z3 e

(λ)
ν (k) (3.49)

Interpretation:

The physical photon spends part of its life as a e+e− pair (or more complicated state).

Its wave function is a sum of many components

Ψphys
photon = Ψγ + Ψe+e− + Ψe+e−γ + . . . (3.50)

If we require one physical photon in space∫
d3x |Ψphys

photon(x)|2 = 1 =⇒
∫
d3x |Ψγ(x)|2 = Z3 < 1 (3.51)
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Redefinition of the normalization of polarization vectors (eµe
µ = −1) is not convenient.

Better keep Z3 factors explicitly in which case they also enter the relation between the Green

function and scattering matrix:

T λ1,...,λn(k1, . . . , kn) =e(λ1)
µ1

. . . e(λn)
µn G̃µ1,...,µn

amp (k1, . . . , kn)
∣∣∣
on−shell

⇒
(√

Z3 e
(λ1)
µ1

)
. . .
(√

Z3 e
(λn)
µn

)
G̃µ1,...,µn
amp (k1, . . . , kn)

∣∣∣
on−shell

(3.52)

— an extra
√
Z3 factor for each external photon line

Last but not least, we can rewrite the expression for the propagator in the following way:

Dµν(k) =
gµν

k2[1−Π(0)− (Π(k2)−Π(0))]
:=

Z3gµν

k2[1−Π(r)(k2)]
:= Z3D

(r)
µν (k) (3.53)

where

Z3 =
1

1−Π(0)
photon WF renormalization constant

Π(r)(k2) =
Π(k2)−Π(0)

1−Π(0)
photon renormalized self-energy (3.54)

By construction Π(r)(k2) = O(k2) so that for k2 → 0 the propagator is that of a free photon (up

to the Z3 factor)

Let us use the expressions that we have just derived.

To O(α) accuracy:

Z3 =
1

1−Π(0)
' 1 + Π(0) +O(α2) =

1− α
3π ln

µ2
MS
m2 MS

1− α
3π

[
ln M2

m2 − 1
]

cutoff

Π(r) =
Π(k2)−Π(0)

1−Π(0)
' Π(k2)−Π(0) +O(α2)

= −2α0

π

∫ 1

0
dααᾱ

{[
ln

M2

m2 − αᾱk2
− 1

]
−
[
ln
M2

m2
− 1

]}

= −2α0

π

∫ 1

0
dααᾱ

[
ln

m2

m2 − αᾱk2

]
← in both schemes (3.55)

Thus:

• The renormalization constant Z3 depends on the regularization and scheme

• The renormalized propagator does not depend on regularization

We have been able to localize the problem of divergences in photon propagator — include all of

them in one constant. Let us see whether we can do the same for other cases.
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3.3 Electron mass and wave function renormalization

Exact electron propagator

S(p) =
(3.56)

Define electron self-energy as the sum of all 1PI (amputated) diagrams:

��(p) = (3.57)

E.g.

k
p� k pp� � =

∫
d4k

(2π)4i
eγµ

m0 + /p− /k
m2

0 − (p− k)2 − iε
eγν

gµν

k2 + iε
(3.58)

Then

S(p) = S0 S0 S0��
=

1

m0 − /p
+

1

m0 − /p

(
− Σ

) 1

m0 − /p
+ . . .

=
1

m0 − /p

[
1 +

(
−Σ

1

m0 − /p

)
+

(
−Σ

1

m0 − /p

)2

+ . . .

]

=
1

m0 − /p

[
1

1 + Σ 1
m0−/p

]
=

1

m0 − /p+ Σ(p)
(3.59)

⇐ To the last step:

One can show that

Σ(p) = Σ1(p2) · I + /pΣ2(p2) = Σ(/p) ← /p
2 = p2 (3.60)

Therefore Σ(p)/p = /pΣ(p).

Mass of a particle corresponds to the pole position in the propagator. L8

In order to find position of the pole it is convenient to project the matrix S(p) on the free electron

state.

Let m be the “true” mass, and um(p) the corresponding Dirac spinor. i.e.

(/p−m)um(p) = 0 (3.61)
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Then

1

m0 − /p+ Σ(/p)
um(p) =

1

m0 −m+ Σ(m)
um(p) (3.62)

Vanishing of the denominator implies the equation for m:

m0 −m+ Σ(m) = 0 =⇒ m = m(m0, e0) (3.63)

Since m0 is not directly observable, it makes sense to eliminate it in favor of m = 0.511 MeV:

S(p) =
1

m0 − /p+ Σ(/p)
=

1

m− /p+ Σ(/p)− Σ(m)
(3.64)

As we discussed for the photon, the residue at the pole is also important

↙ ū(p, λ)u(p, λ) = 2m

S(x− y) ∼
∑
λ

∫
d3p

(2π)3
Ψe(x)Ψ̄e(y) S0(p) =

1

m0 − /p
(3.65)

In the present case we can write

S(p) =
1

(m− /p)(1− Σ′(m)) + [Σ(/p)− Σ(m)− (/p−m)Σ′(m)]︸ ︷︷ ︸
O((/p−m)2) (3.66)

so that close to mass shell

S(p)
/p→m
=

1

(1− Σ′(m))
· 1

(m− /p)
(3.67)

Define

Z2 =
1

1− Σ′(m)

Σ(r) =
1

1− Σ′(m)

[
Σ(/p)− Σ(m)− (/p−m)Σ′(m)

]
(3.68)

Then

S(p) =
Z2

m− /p+ Σ(r)(p)
= Z2 S

(r)(p) (3.69)

— renormalized electron self-energy and renormalized propagator

— Z2 is called electron WF renormalization constant

Note that

Σ(r)(/p)
/p→m
= O

(
(/p−m)2

)
(3.70)
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Therefore for slow electrons ~p� 0.5 MeV/c

〈Ω|T{ψ(x)ψ̄(y)}|Ω〉
∣∣∣
x0>y0

=

∫
dp0d

3~p

(2π)4
e−ip(x−y) iZ2

/p−m

=
∑
s

∫
d3p

(2π)32Ep

[√
Z2u(p, s)e−iEpx0+i~p·~x]︸ ︷︷ ︸ [√Z2ū(p, s)eiEpy0−i~p·~y]︸ ︷︷ ︸

Ψ~p(~x, t) Ψ∗~p(~y, t) (3.71)

Interpretation: (similar to photon)

The physical electron is accompanied by photons (or e+e− pairs).

Its wave function is a sum of many components

Ψphys
electron = Ψe + Ψeγ + Ψeγγ + . . . (3.72)

If we require one physical electron in space∫
d3x |Ψphys

electron(x)|2 = 1 =⇒
∫
d3x |Ψe(x)|2 = Z2 < 1 (3.73)

Redefinition of the normalization of Dirac spinors (ūu = 2m) is not convenient.

Better keep Z2 factors explicitly in which case they also enter the relation between the Green

function and scattering matrix.

— an extra
√
Z2 factor for each external fermion (electron or positron) line

One can show that at least in one-loop calculation (→ exercises)

• Σ(p) is UV divergent and must be calculated using a certain regularization

• All UV divergences are localized in Z2 and the relation m = m(m0, e0); the renormalized self

energy and propagator are finite

3.4 Renormalized interaction vertex

The three-particle Green function corresponding to photon emission contains both 1PI and 1PR

contributions:

(3.74)

We define the vertex function as the sum of all 1PI (amputated) Feynman diagrams:

Γµ(p1, p2) = (3.75)

It is convenient to separate the leading term

Γµ(p1, p2) = γµ + Λµ(p1, p2) (3.76)
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For p2
1 → m2, p2

2 → m2 Lorentz + gauge inv. ⇒ Λµ ∼ γµ or ∼ σµνqν .

If in addition q = p2 − p1 → 0 then σµνq
ν → 0 and only ∼ γµ is possible:

Λµ(/p1
→ m, /p2

→ m) = γµΛ(m,m)

Adding and subtracting

Γµ(p1, p2) = γµ
[
1 + Λ(m,m)

]
+
[
Λµ(p1, p2)− γµΛ(m,m)

]
=
[
1 + Λ(m,m)

] [
γµ +

Λµ(p1, p2)− γµΛ(m,m)

1 + Λ(m,m)

]
(3.77)

Define

Z1 =
1

1 + Λ(m,m)

Λ(r)
µ =

Λµ(p1, p2)− γµΛ(m,m)

1 + Λ(m,m)
(3.78)

Then

Γµ(p1, p2) = Z−1
1

[
γµ + Λ(r)

µ

]
:= Z−1

1 Γ(r)
µ (p1, p2) (3.79)

By construction, Λ
(r)
µ vanishes when electrons are close to the mass shell and the photon momentum

goes to zero. In this limit the exact vertex function looks as the leading-order one apart from the

Z−1
1 factor.

One-loop calculation:

• Γ(p1, p2) is UV divergent and must be calculated using a certain regularization

• All UV divergences are localized in Z1; the renormalized vertex is finite

3.5 Effective charge and renormalizability

Consider electron-electron scattering at very small angles t→ 0

Main contribution comes from the diagrams where the electrons are connected by one photon line:pZ2 pZ2
pZ2 pZ2

D��
e0��

e0��
Γµ = Z−1

1 Γ(r)
µ

Dµν = Z3D
(r)
µν =

√
Z3

√
Z3D

(r)
µν

(3.80)
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Combine all Z-factors with e0: ⇒

D(r)��
e�(r)�

e�(r)�
e = e0Z2Z

−1
1

√
Z3

If t = (p1 − p2)2 → 0:

— Γ
r)
µ → Γ

0)
µ , D

(r)
µν → D

(0)
µν ⇐ LO diagram with e0 replaced by e;

— These diagrams ∼ 1/t, hence dominate at t→ 0: dσ/dΩ ∼ 1/ sin4 θ/2;

⇒ e is the true electric charge that enters Coulomb law!

More complicated diagrams:

pZ2
pZ2 Z3

e0Z�11

e0Z�11
Z3

e0Z�11

e0Z�11
pZ2

pZ2Z2

Z2 always e0Z2Z
−1
1

√
Z3 in each vertex

Thus:

• all physical amplitudes (Green functions on mass shell) can be written in terms of

m(m0, e0), e(m0, e0), D(r)
µν (m, e), S(r)(m, e),Γ(r)

µ (m, e)

• The renormalized propagators and interaction vertex expressed in terms of renormalized mass

and electric charge are finite, i.e. do not depend on regularization of UV divergences to all orders

in perturbation theory [to LO D
(r)
µν (m, e) = D

(r)
µν (m0, e0)].

• The UV divergences only affect the relation between renormalized (physical) and “bare” mass

and coupling. If m, e are substituted by their experimental values, UV divergences disappear from

all expressions

• A quantum field theory with such properties is called renormalizable

In a different language:

A QFT is always defined with an UV cutoff: |kµ| < M (divergences, ignorance of true theory

at short distances). How such a theory make sense? Let

Theory 1 = {m0, e0,M}

Theory 2 = {m′0, e′0,M ′} (3.81)
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and require that the parameters are adjusted such that

m(e0,m0,M) = m(e′0,m
′
0,M

′)

e(e0,m0,M) = e(e′0,m
′
0,M

′) (3.82)

This means that the bare mass and charge depend on the cutoff:

e0 = e0(M) , m0 = m0(M) (3.83)

Accepted terminology “The theory is defined at the scale M”

A theory in which such tuning is possible is called “a renormalizable theory”

• special for QED:

Z1 = Z2 =⇒ e = e0

√
Z3 [⇐ Ward–Takahashi Identity] (3.84)

3.6 ∗ ∗ ∗ Generalized Ward Identity ∗ ∗ ∗

Electron is not the only electrically charged particle:

e± : me ' 0.511 MeV, µ± : mµ ' 106 MeV, p, p̄ : mp ' 940 MeV, . . . (3.85)

They have exactly the same electric charge, why?

We could put all “bare” charges equal e0 by hand, but what happens after renormalization?

The propagators depend on the mass, so they are all different:S(e)(p)
S(�)(p)
S(p)(p)

electron/positron e+e−

muon/antimuon µ+µ−

proton/antiproton p, p̄

(3.86)

Hence self-energies and Z2-factors are also different:Z(e)2 (p) Z(�)2 (p) Z(p)2 (p) (3.87)

and similarly we have three different Z
(e)
1 , Z

(µ)
1 Z

(p)
1 .

In contrast, there is only one Z3 which contains a sum over all charged particles:

Z3 = (3.88)

Therefore

e(e) = e0 (Z
(e)
1 )−1 Z

(e)
2

√
Z3,

e(µ) = e0 (Z
(µ)
1 )−1 Z

(µ)
2

√
Z3, etc. (3.89)
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(?!) Why e(e) = e(µ) (experiment)?

This result follows from the generalized Ward identity (below) which implies that for every charged

particle in QED

Z1 = Z2 i.e. Z
(e)
1 = Z

(e)
2 , Z

(µ)
1 = Z

(µ)
2 (3.90)

As a consequence

e(e) = e(µ) = e(p̄) = . . . = e0

√
Z3 ⇐= universal coupling (3.91)

Generalized Ward identity

p1
p2k�� =

• For real particle /p1
= m, /p2

= m

kµΓµ(p1, p2) = 0 , k = p1 − p2

• For virtual particles /p1 /=m, /p2 /=m

kµΓµ(p1, p2) = S−1(p2)− S−1(p1)

(3.92)

Let us first show that Z1 = Z2 follows from this result and then prove it.

In the limit kµ → 0, /p1,2
→ m

Γµ = Z−1
1 [γµ + Λ(r)(p1, p2)] → Z−1

1 γµ

S(p1) =
Z2

m− /p1
+ Σ(r)(p1)

→ Z2

m− /p1

(3.93)

Therefore in this limit

kµΓµ → Z−1
1 /k = Z−1

1 (/p1
− /p2

)

= Z−1
1

[
(m− /p2

)− (m− /p1
)
]

= Z−1
1

[
S−1(p2)− S−1(p1)

]
Z2 (3.94)

It follows that

Z−1
1 Z2 = 1 −→ Z1 = Z2 (3.95)

Now let us prove the generalized Ward identity itself.

1) Leading order O(1)

Γ(0)
µ ≡ γµ , kµΓ(0)

µ = /p1
− /p2

= (m− /p2
)− (m− /p1

) = S−1
0 (p2)− S−1

0 (p1)

(3.96)
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2) Next-to-Leading order O(e2)

p1 p2
k

q
p1 � q p2 � q

Λ(1)
µ = e2

0

∫
d4q

(2π)4i
γα

1

m0 − /p2
+ /q

γµ
1

m0 − /p1
+ /q

γβ
gαβ
q2

(3.97)

Write

kµγµ = (p1 − p2)µγµ = (m0 − /p2
+ /q)− (m0 − /p1

+ /q) (3.98)

Then

kµΛ(1)
µ = e2

0

∫
d4q

(2π)4i
γα

1

m0 − /p1
+ /q

γα
1

q2
− e2

0

∫
d4q

(2π)4i
γα

1

m0 − /p2
+ /q

γα
1

q2

= p1 p1p1 � q
q

p2 p2p2 � q
q

=
[
− Σ(1)(p1)

]
−
[
− Σ(1)(p2)

]
(3.99)

On the other hand

S−1(p) = m0 − /p+ Σ(p)
O(e2)
=⇒ S−1(p2)− S−1(p1) = /p1

− /p2
+ Σ(1)(p2)−Σ(1)(p1) (3.100)

This is exactly what we want to prove.

Another form of the same identity:

Consider the limit k = p1 − p2 → 0

kµΓµ(p1, p2) = S−1(/p1
− /k)− S−1(/p1

) = −dS
−1(p1)

d/p1

/k

⇒ Γµ(p1, p1) = −dS
−1(p1)

d/p1

γµ = −dS
−1(p1)

dpµ1

↖ γµ = γν
dpν1
dpµ1

=
d/p1

dpµ1
(3.101)

Thus

Γµ(p, p) = − dS−1

dpµ
(3.102)

This is an exact relation to all orders in perturbation theory.

3.7 Renormalization group (QED)

An explicit calculation gives (QED lectures)

Photon self energy, one loop:

Π(k) = 2
α0

π

∫ 1

0
duu(1− u)

[
ln
m2

0 − u(1− u)k2 − iε
Λ2
UV

+ 1

]
(3.103)
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For large momenta

m2
0 � |k2| � Λ2

UV (3.104)

this expression simplifies to logarithmic accuracy to

Π(k) = −α0

3π
ln

Λ2

−k2 − iε
+O(1) , α0 =

e2
0

4π
(3.105)

Let us clarify the meaning of renormalization procedure on this simple example. L9

Start with

Dµν =
gµν

k2 + iε

1

1−Π(k2)
=

gµν
k2 + iε

1

1 + α0
3π ln Λ2

−k2

(3.106)

and rewrite

1

1 + α0
3π ln Λ2

−k2

=
1

1 + α0
3π ln Λ2

m2 − α0
3π ln −k

2

m2

=
1

1 + α0
3π ln Λ2

m2

× 1

1−
α0
3π

ln −k
2

m2

1+
α0
3π

ln Λ2

m2

=
Z3

1− Z3
α0
3π ln −k

2

m2

=
Z3

1− α
3π ln −k

2

m2

(3.107)

where

Z3 = Z3(Λ,m) =
1

1 + α0
3π ln Λ2

m2

(3.108)

and I used that

e =
√
Z3e0 =⇒ α = Z3α0 (3.109)

Thus we obtain

Dµν = Z3D
(r)
µν

D(r)
µν =

gµν
k2 + iε

1

1− α
3π ln −k

2

m2

(3.110)

� D
(r)
µν = D

(r)
µν (e,m) as we want

� This is a good approximation so far as

α

3π
ln
−k2

m2
� 1 , α =

1

137
(3.111)

Question: L9

What to do if α << 1 but α ln −k
2

m2 ∼ 1?

— [In QED of academic interest, in QCD (αQCD ∼ 0.3) important]

— One can show that two-loop diagrams produce α2 ln2 −k2

m2 , three-loop α3 ln3 −k2

m2 etc

We can try to reorganize the perturbation theory:
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� Fixed-order perturbation theory (usual):

1-st order: α

2-nd order: α2, etc.

� Resummed perturbation theory:

LO (Leading Order) : α ln
k2

m2
, α2 ln2 k2

m2
, . . . , (α ln

k2

m2
)n

NLO (next-to-LO) : α2 ln
k2

m2
, α3 ln2 k2

m2
, . . . , α(α ln

k2

m2
)n (3.112)

but would need to calculate leading (subleading etc.) parts of Feynman diagrams to all orders.

A very powerful approach — the renormalization group

3.7.1 The running coupling, β-function

The idea:

Renormalization procedure is, basically, splitting the large logarithms in two parts:

ln
−k2

Λ2
= ln

−k2

m2︸ ︷︷ ︸ + ln
m2

Λ2︸ ︷︷ ︸
↙ ↘

Π(r),Σ(r),Λ(r) Z − factors (3.113)

What we achieve by doing this:

1. Dependence on Λ disappears from physical observables; only enters e = e(e0,m0,Λ)

2. Renormalized e,m are the charge and mass for free electrons, as measured in low-energy expts.

Renormalized Π(r),Σ(r),Λ(r) are zero for free particles

=⇒ Renormalized propagators = free propagators for k2 = 0, p2 = m2.

Note that property (1.) is crucial, (2.) is convenient

Let us change the prescription of how we renormalize:

ln
−k2

Λ2
= ln

−k2

M2︸ ︷︷ ︸ + ln
M2

Λ2︸ ︷︷ ︸
↙ ↘

Π(r),Σ(r),Λ(r) Z − factors (3.114)

where M is an arbitrary mass parameter. For simplicity we will assume

m�M � Λ (3.115)

In other words

Π(r)(k2) := Π(k2)−Π(k2 = 0)

=⇒
Π(r)(k2) := Π(k2)−Π(−k2 = M2) (3.116)



3 RENORMALIZATION AND REGULARIZATION IN QED 45

and similar

Λ(r)
µ (p1, p2) := Λµ(p1, p2)− Λµ(p2

1 = p2
2 = (p1 − p2)2 = −M2)

Σ(r)(p) := Σ(r)(p)− Σ(/p = M)− (/p−M)Σ′((/p = M) (3.117)

What happens in this situation?

• We must always specify the value of M explicitly, i.e.

Π(r) = Π(r)(k2,M2, e(M),m(M)) etc.

• The first property remains valid

• The second property is lost; replaced by

Renormalized propagators (vertices) = free propagators (vertices) for −k2 = M2, −p2 = M2

←↩ Accepted terminology: “the theory is renormalized on the scale M”

We can overtake all results with a simple substitution m→M :

Z3(Λ,M, α0) =
1

1 + α0
3π ln Λ2

M2

≡ Z3(M)

Π(r)(k) = − α

3π
ln
M2

−k2
D(r)
µν (k) =

gµν
k2

1

1− α
3π ln −k

2

M2

α(M) =
α0

1 + α0
3π ln Λ2

M2

≡ Z3(M)α0 , αCoulomb ' α(M = m) (3.118)

� ! If we choose M ∼ |k| there are no large logs in the renormalized propagator

— Problem solved? Not quite: we do not know the value of α(M) for large M

— What happens when we change M1 →M2?

Consider

α(M1) =
α0

1 +
α0

3π
ln

Λ2

M2
1

α(M2) =
α0

1 +
α0

3π
ln

Λ2

M2
2

(3.119)

• both expressions are valid if ln(Λ2/M2
1,2)� 1/α

Idea: eliminate α0:

α(M2) =
α0

1 +
α0

3π
ln

Λ2

M2
1

+
α0

3π
ln
M2

1

M2
2

=
α0

1 +
α0

3π
ln

Λ2

M2
1

× 1

1 +

α0

3π
ln
M2

1

M2
2

1 +
α0

3π
ln

Λ2

M2
1

=
α(M1)

1 +
α(M1)

3π
ln
M2

1

M2
2

(3.120)
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• this relation is valid if ln(M2
1 /M

2
2 )� 1/α; Λ can be arbitrary as it falls out

What to do if M2
1 ≪M2

2 ?

— Split the interval in smaller ones, M2
1 ≤ µ2

1 ≤ µ2
2 ≤ . . . ≤M2

2

— Apply the above relation for each smaller interval!

An intelligent way to do this: a differential equation

1

α(M)
=

1

α0

(
1 +

α0

3π
ln

Λ2

M2

)
=⇒

M
d

dM

1

α(M)
= − 1

α2(M)
M

d

dM
α(M) = − 2

3π
(3.121)

or

M
d

dM
α(M) = +

2

3π
α2(M) (3.122)

A very important concept:

Beta-function (Gell-Mann–Low function)

M
d

dM
α(M) = β(α(M)) = β0α

2(M) + β1α
3(M) + β2α

4(M) + . . . (3.123)

We have calculated

βQED0 =
2

3π
> 0 (3.124)

Terminology: the running coupling

Interpretation: QED charge increases at small distances/large scales due to vacuum polarization

M1 M 2

(M)α

3.7.2 Electron propagator at large momenta; Callan-Symanzik and renormalization

group equations

Consider electron propagator for p� m

S(p) =
iZ2

/p−m+ Σ(r)(/p)
, Σ(/p) = /pΣ1(p2) +mΣ2(p2) , p2 = /p

2 (3.125)
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In this calculation we can neglect the electron mass m→ 0, thus

S(p) ' iZ2

/p(1 + Σ
(r)
1 (p2))

= ? (3.126)

First order:

Σbare
1 (p) = =

α0

4π
ln

Λ2

−p2
[exercises] (3.127)

Renormalization:

Σ
(r)
1 (p2,M) = Σ1(p2)− Σ1(−p2 = M2) =

α0

4π
ln
M2

−p2
' α

4π
ln
M2

−p2

Z2(M) =
1

1 +
α0

4π
ln

Λ2

M2

(3.128)

• Both expressions are valid to O(α2)

In general: L10

Sbare(p,Λ, α0) = Z2(Λ,M, α0)Sren(p,M,α(M)) (3.129)

Note that the l.h.s. does not depend on M . Thus

0 = M
d

dM
Sbare =

(
M

d

dM
Z2

)
Sren + Z2

[
M

∂

∂M
+

(
M

d

dM
α(M)

)
∂

∂α

]
Sren (3.130)

We define

M
d

dM
α(M) := β(α) beta-function

1

Z2
M

d

dM
Z2 := 2γ(α) anomalous dimension (3.131)

Callan-Symanzik equation:

[
M

∂

∂M
+ β(α)

∂

∂α
+ 2γ(α)

]
Sren(p,M,α(M)) = 0 (3.132)

• this is an example; the CS equation can written for other objects (later)

• why 2γ(α): the number of external fermion legs (convenient)

In perturbation theory

β(α) = β0α
2 + β1α

3 + . . . β0 =
2

3π

γ(α) = γ0α+ γ1α
2 + . . . γ0 =

1

4π
(3.133)
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The self energy can depend on M through α(M), or dimensionless ratio p/M : L10

Sren(p,M,α) =
i

/p(1 + Σ
(r)
1 (p2,M2, α))

=
i

/p(1 + Σ
(r)
1 (p2/M2, α))

(3.134)

This implies that if we rescale pµ → tpµ and M → tM for fixed α:

Sren(tp, tM, α) = t−1Sren(p,M,α) (3.135)

Euler’s Homogeneous Function Theorem:[
pµ

∂

∂pµ
+M

∂

∂M

]
Sren = (−1)Sren (3.136)

We can use this to convert partial derivatives in M into derivatives in pµ! Obtain

Renormalization Group (RG) equation:

[
pµ

∂

∂pµ
− β(α)

∂

∂α
+ 1− 2γ(α)

]
Sren(p,M,α(M)) = 0 (3.137)

• this is an example; the RG equation can written for other objects (later)

• this is a linear differential equation describing the momentum dependence

General solution:

Sren(p,M,α(M)) =
i

/p
S̃(α(p)) exp

{
2

∫ α(p)

α(M)
dα′

γ(α′)

β(α′)

}

S̃(α(p)) := Sren(p = M,α(M)) boundary condition, only function of α(p)

(3.138)

where α(p) = α(M2 = −p2) is the running coupling

pµ
∂

∂pµ
α(p) = β(α) (3.139)

[insert in the equation and check that it is satisfied]

One-loop approximation:

S̃(α(p)) = 1 , γ(α) = γ0α , β(α) = β0α
2 (3.140)

Then

exp{∗∗} = exp

{
2

∫ α(p)

α(M)
dα′

γ0

β0α′

}
= exp

{
2
γ0

β0
ln

α(p)

α(M)

}

=

(
α(p)

α(M)

)2γ0/β0

=

(
α(p)

α(M)

)3/4

(3.141)
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so that

Sren(p,M,α(M)) =
i

/p

(
α(p)

α(M)

)3/4

(3.142)

If |p| is not very much different from M , can use

α(p) =
α(M)

1 +
α(M)

3π
ln
M2

−p2

(3.143)

In this case(
α(p)

α(M)

)2γ0/β0

=

(
1 +

α(M)

3π
ln
M2

−p2

)−2γ0/β0

=

(
1 +

β0

2
α(M) ln

M2

−p2

)−2γ0/β0

= 1− γ0α(M) ln
M2

−p2
+O(α2 ln2(. . .)) = 1− α(M)

4π
ln
M2

−p2
(3.144)

— in agreement with one-loop calculation

Our new result is also applicable for p2 ≫M2:

The difference:

• The one-loop result valid if

α� 1 , α ln
M2

p2
� 1 (3.145)

• The “RG-improved” result valid if

α� 1 , α ln
M2

p2
= O(1) (3.146)

• At the end can choose M → m if desired.

For a better (NLO) approximation have to calculate three new constants:

β(α) = β0α
2 + β1α

3

γ(α) = γ0α+ γ1α
2

S̃(α(p)) = 1 + s1α(p) (3.147)

— sum up all terms ∼ α(α lnM2/p2)k, k = 0, 1, . . .

4 Dimensional regularization and minimal subtraction

4.1 Polarization operator in dimensional regularization

Basic idea: analytic continuation in the number of space-time dimensions

d = 4 =⇒ d = 4− 2ε , ε→ 0+ (4.1)
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Then

↗ 1−ε<1∫
ddkE =

πd/2

Γ(d/2)

∞∫
0

dk2 (k2)d/2−1 (4.2)

In addition the charge becomes slightly modified

e0 =⇒ µ2−d/2e0 [µ has dimension GeV] (4.3)

in order that and have the same dimension.

Let us calculate Πµν in dimensional regularization. We can start with

Πµν = −4e2
0µ

4−d
∫ 1

0
dα

∫
ddk

(2π)di

1

[m2 − k2 − αᾱp2 − iε]2

×
{
gµν [m2 − k2 + αᾱp2]− 2αᾱpµpν + 2kµkν

}
(4.4)

Master-formulas for loop integrals in d dimensions (see Appendix ??)∫
ddk

Γ(a)

[−k2 −A− iε]a
= iπ

d
2

Γ
(
a− d

2

)
[−A]a−

d
2

(4.5)

∫
ddk

Γ(a)

[−k2 −A− iε]a
kµkν = iπ

d
2

(
−gµν

2

) Γ
(
a− 1− d

2

)
[−A]a−1− d

2

(4.6)

Obtain

Πµν = −4e2
0µ

4−d
∫ 1

0
dα

1

(4π)d/2

{[
gµν [m2 + αᾱp2]− 2αᾱpµpν

] Γ(2− d/2)

[m2 − αᾱp2]2−d/2

+
[
d
gµν
2
− gµν

] Γ(1− d/2)

[m2 − αᾱp2]1−d/2

}
−k2gµν ↗ ↖ 2kµkν (4.7)

In the second term[
d
gµν
2
− gµν

]
= (−gµν)(1− d/2) , (1− d/2)Γ(1− d/2) = Γ(2− d/2) (4.8)

Therefore

Πµν = −4e2
0µ

4−d

(4π)d/2

∫ 1

0
dα

Γ(2− d/2)

[m2 − αᾱp2]2−d/2

{
gµν [��m

2 + αᾱp2]− 2αᾱpµpν − (��m
2 − αᾱp2)gµν

}

= −8e2
0µ

4−d

(4π)d/2

∫ 1

0
dααᾱ

Γ(2− d/2)

[m2 − αᾱp2]2−d/2

(
gµνp

2 − pµpν
)

(4.9)

This indeed has the structure required by gauge invariance! Therefore

Π(p2) = − 8e2
0

(4π)2

∫ 1

0
dααᾱ

[
1

(4π)d/2−2

µ4−dΓ(2− d/2)

[m2 − αᾱp2]2−d/2

]
(4.10)
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Now let us take the limit d = 4− 2ε, ε→ 0:

1

(4π)d/2−2
=

1

(4π)−ε
= eε ln 4π = 1 + ε ln 4π +O(ε2)

µ4−d =µ2ε = e2ε lnµ = 1 + ε lnµ2 +O(ε2)

Γ(2− d/2) =Γ(ε) =
1

ε
· εΓ(ε) =

1

ε
Γ(1 + ε) =

1

ε
(1− εγE) γE ' 0.5772 (4.11)

Thus we obtain[
∗
]

=
1

ε
(1− εγE) (1 + ε ln 4π)

(
1 + ε lnµ2

)(
1 + ε ln

1

m2 − αᾱp2

)

=
1

ε
− γE + ln 4π + ln

µ2

m2 − αᾱp2
+O(ε) (4.12)

Regularization: subtraction of divergent term at ε→ 0 L11

MS : Minimal Subtraction
�
�

��1

ε

MS : Modified Minimal Subtraction
��������1

ε
− γE + ln 4π (4.13)

One often writes µ2
MS or µ2

MS
to distinguish between these two standard choices.

Note that choice of the subtraction scheme can be compensated by the choice of µ:

µ2
MS

= µ2
MS 4π e−γE (4.14)

This is usually referred to as scheme-dependence.

We obtain

ΠMS(p2) = −2α0

π

∫ 1

0
dααᾱ ln

µ2
MS

m2 − αᾱp2

Πcutoff(p2) = −2α0

π

∫ 1

0
dααᾱ

[
ln

M2

m2 − αᾱp2
− 1

]
(4.15)

The two expressions are formally equivalent if we identify

M2 = e µ2
MS

= 2.71828µ2
MS

(4.16)

Last but not least:

In dimensional regularization, e.g.,

Z2 = 1− γ0α0 ln
Λ2

M2
−→ 1− 1

4−D
γ0α0 (4.17)

Therefore, formally

ln
Λ2

M2
−→ 1

4−D
+ const (4.18)

[Details −→ exercises]
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4.2 Asymptotic freedom: QCD Beta–function

αs(µ) ≡ g2(µ)

4π
= Z2

2 (µ)Z−2
1 (µ)Z3(µ)α0 , α0 ≡ α(0)

s

µ
d

dµ
αs(µ) = β(αs) = β0α

2
s + β1α

3
s + . . . (4.19)

Difference to QED:

� Renormalization at k2 → 0, /p→ m makes no sense because of confinement

� Z1 /=Z2, therefore have to calculate everything:

Z3 :

Z2 :

Z1 :

(4.20)

Let

Z3(µ) = 1− δ3α0 ln
Λ2

µ2

Z2(µ) = 1− δ2α0 ln
Λ2

µ2

Z1(µ) = 1− δ1α0 ln
Λ2

µ2
(4.21)

Then

βQCD
0 = 2(δ3 + 2δ2 − 2δ1) (4.22)

� Calculation using explicit UV cutoff is at best inconvenient

=⇒ Dimensional regularization

The simplest case ∣∣∣∣
QCD

= nfTr(tatb) ×
∣∣∣∣
QED, e→−g

(4.23)

where nf is the number of existing quarks u, d, s, . . ., Tr(tatb) = 1/2δab
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Compare:

1) Calculation with a cutoff:

Πcutoff(k2) = 2
α0

π

∫ 1

0
dαα(1− α)

[
ln
m2 − α(1− α)k2

Λ2
− 1

]

=
α0

3π
ln
M2

Λ2
+ finite terms

= α0δ
QED
3 ln

M2

Λ2
+ finite terms (4.24)

=⇒ δ3 is a coefficient of α0 ln 1
Λ2

2) Calculation in dim. reg.:

Πdim.reg.(k2) = 2
α0

π

∫ 1

0
dαα(1− α)

[
− 2

4−D
+ γE − ln 4π + ln

m2 − α(1− α)k2

µ2
− 1

]
=
α0

3π

(
− 2

4−D

)
+ finite terms (4.25)

=⇒ δ3 is a coefficient of α0

(
− 2

4−D

)
In both cases we need a divergent part only, with the correspondence

2

4−D
⇐⇒ ln Λ2

UV (4.26)

Explicit calculation (exercises) gives:�; a �; b
=(k2gµν − kµkν)δab

(
−αs

4π
· 2

3
nf

)
Γ(2−D/2)

=(k2gµν − kµkν)δab
(

+
αs
4π
· 5

3
Nc

)
Γ(2−D/2) (4.27)

Γ(2−D/2) =
1

2−D/2
· (2−D/2)Γ(2−D/2) =

1

2−D/2
Γ(3−D/2) =

2

4−D
+ finite terms

(4.28)

so that

δ3 =
1

4π

(
−5

3
Nc +

2

3
nf

)
(4.29)

Next:

: Σ(p,m = 0) =
α0

4π
/pCF Γ(2−D/2) (4.30)
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where for SU(Nc) ∑
a

tata := CF I , CF =
N2
c − 1

2Nc
→ 4

3
(Nc = 3) (4.31)

S(p) =
1

/p
(

1 +
α0

4π
CF Γ(2−D/2)

) =⇒ Z2 = 1− α0

4π
CF Γ(2−D/2) + . . .

=⇒ δ2 =
1

4π
CF (4.32)

Finally (exercises)

=⇒ δ1 =
1

4π
(CF +Nc) (4.33)

and we obtain (Gross, Wilczek, Politzer, 1973)

βQCD
0 = 2(δ3 + 2δ2 − 2δ1) =

2

4π

[
−5

3
Nc +

2

3
nf︸ ︷︷ ︸+ 2CF︸ ︷︷ ︸ − 2CF − 2Nc︸ ︷︷ ︸

]
δ3 δ2 δ1 (4.34)

• Results for individual δk in Feynman gauge, the sum is gauge-invariant

βQCD
0 =

1

2π

[2

3
nf −

11

3
Nc

]
< 0 βQED

0 =
2

3π
> 0 (4.35)

Asymptotic freedom:

pp –> jets (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2012

Lattice QCD (NNLO)

Z pole fit (N3LO)

τ decays (N3LO)

• Often a different definition is used: L11
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µ
d

dµ
g(µ) = β(g) ,

1

g
β(g) = −b0

αs
4π
− b1

(αs
4π

)2
+ . . .

b0 =
11

3
Nc −

2

3
nf (4.36)

• five terms in this expansion are known (five loops) [Baikov, Chetyrkin, Kühn, 2017]

• A simple parametrization

µ
d

dµ
αs(µ) = β0α

2
s = − b0

2π
α2
s =⇒ µ

d

dµ

1

αs(µ)
= − b0

2π
=⇒ αs(µ) =

2π

b0 ln(µ/ΛQCD)
(4.37)

with ΛQCD ' 200− 250 MeV (not to be mixed with UV cutoff)

One can rewrite this relation as

ΛQCD = µ e−2π/(b0αs(µ)) = ΛUVe
−2π/(b0α0) (4.38)

! The scale parameter arises because a field theory “remembers” about the UV cutoff

This phenomenon is called dimensional transmutation.

! Note that e−1/(β0αs(µ)) has zero perturbative expansion

4.3 Renormalization on a Lagrangian level

All UV divergencies in QED can be isolated in three renormalization constants Z1 (interaction

vertex), Z2 (electron propagator), and Z3 (photon propagator). To obtain a finite result involving

divergent diagrams, the suggested procedure was to calculate the diagrams using bare parameters

m0, e0 with a certain regulator M to make the expressions well-defined (regularization), and reex-

press the results in terms of “physical” parameters m, e (renormalization). The resulting expression

should be finite in the limit ΛUV →∞. A more convenient procedure (especially in higher orders)

is to implement the renormalization on the Lagrangian level.

As an example, consider scalar field theory

L =
1

2
(∂µφ)2

��
���−1

2
m2

0φ
2 − λ0

24
φ4 (4.39)

where we will also disregard the mass term for simplicity. The (exact) propagator of the φ field will

be divergent (similar to electron propagator in QED) and close to the mass shell can be written as∫
d4x eipx〈Ω|φ(x)φ(0)|Ω〉 =

iZ2
φ

p2 −m2
+ terms regular at p2 = m2 (4.40)

We can eliminate the Z2
φ factor from this equation by rescaling the field

φ = Zφ(ε, µ)φr(µ) (4.41)

where µ is the renormalization scale (before I used M). Then obviously∫
d4x eipx〈Ω|φr(x)φr(0)|Ω〉 =

i

p2 −m2
+ terms regular at p2 = m2 (4.42)
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is free from any divergences, by construction. In addition, we will have divergences related to the

vertex function and can isolate them in a similar manner by introducing the renormalized coupling

λ0 = µ2εZλ(ε, µ)λr(µ) (4.43)

The Lagrangian of our theory can then be written in terms of the renormalized field and coupling L12

as

L =
1

2
Z2
φ(∂µφr)

2 − µ2εZλ
λr
24
Z4
φφ

4
r (4.44)

Here we already imply using dimensional regularization and the appearance of the µ2ε factor needs

explanation.

We require that the action of the theory is dimensionless. In four dimensions, this requires [φ] =

1 (field canonical dimension) and the coupling λ is dimensionless. Changing
∫
d4xL 7→

∫
ddxL

requires to modify both. From the kinetic term it follows that we need to assign [φ] = d/2−1 = 1−ε,
and then the bare coupling constant cannot remain dimensionless, we need [λ0] = 4 − d = 2ε.

Following ’t Hooft we introduce the factor µ2ε in the bare coupling in order that the renormalized

coupling λr remains dimensionless. One can write

Z2
φ = 1 + δZ2

φ , µ2εZλZ
4
φ = 1 + δZ (4.45)

and

L =
1

2
(∂µφr)

2 − λr
24
φ4
r +

1

2
δZ2

φ(∂µφr)
2 − δZ λ

24
φ4
r (4.46)

so that the addenda (called counterterms) produces extra contributions that cancel the divergences

that appear in the Feynman diagrams corresponding to the first two terms (identical to original

Lagrangian). In other words, in our old formulation the renormalzation was done by dropping the

divergent 1/ε terms in Feynman diagrams, in the new formulation the divergent terms are cancelled

by adding the contribution of the counterterms.

By definition of the minimal subtraction, the counterterms can only involve poles in 1/ε, so the

they have the following generic structure

Z(ε, µ) = 1 +
1

ε

[
z11a+ z12a

2 + z13a
3 + . . .

]
+

1

ε2

[
z22a

2 + z22a
3 + . . .

]
+

1

ε3

[
z33a

3 + . . .
]

+ . . .

= 1 +
∑
k≤n

znk
an

εk
, a(µ) =

λr(µ)

(4π)2
(4.47)

One obtains by a direct calculation

Z2
φ = 1 +

1

ε

[
− a2

24
+
a3

48

]
+

1

ε2

[
− a3

24

]
+O(a4)

Zλ = 1 +
1

ε

[3a

2
− 17a2

12

]
+

1

ε2

[
− 9a2

4

]
+O(a3) (4.48)

The β-function and the anomalous dimension of the scalar field are defined as follows:

β(a) = µ
d

dµ
a =

da

d lnµ
, γφ =

1

2Z2
φ

µ
d

dµ
Z2
φ =

1

2

d lnZ2
φ

d lnµ
(4.49)
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Let us calculate the β-function first. The starting observation is that the bare coupling does not

depend on the renormalization scale. Thus

0 =
d

d lnµ

[
µ2εZλ(ε, µ)a(µ)

]
= 2εµ2εZλ(ε, µ)a(µ) + µ2ε

(
d

d lnµ
Zλ(ε, µ)

)
a(µ) + µ2εZλ(ε, µ)

da(µ)

d lnµ

= 2εµ2εZλ(ε, µ)a(µ) + µ2εdZλ
da

da(µ)

d lnµ
a(µ) + µ2εZλ(ε, µ)

da(µ)

d lnµ
(4.50)

where I used that Z(ε, µ only depends on µ through powers of a(µ). Using the definition of the β

function and dividing out the factor µ2εZλ(ε, µ) one gets

0 = 2ε a(µ) + a
d lnZλ
da

β(a) + β(a) (4.51)

or

β(a) = − 2ε a(µ)

1 + ad lnZλ
da

= −2ε a(µ)
[
1− ad lnZλ

da
+

(
a
d lnZλ
da

)2

+ . . .
]

(4.52)

Note that the β-function on the l.h.s. of this equation is a finite quantity in the ε → 0 limit (as a

derivative of a finite renormalized coupling), but d lnZλ
da is a sum of poles:

a
d lnZλ
da

=
a

ε
(z11 + 2z21a) +

a2

ε2
[−z2

11 + 2z22] +O(a3) (4.53)

Thus the only way how a finite l.h.s. can arise is that all 1/ε2 and higher power contributions from

the expansion of the Z-factor must cancel (which implies that there are some nontrivial relations

between the coefficients of higher poles), and only the 1/ε term will contribute (and the singularity

cancels thanks to the prefactor ε). Thus we get

β(a) = −2ε a
[
1− 1

ε

(
z11a+ 2z21a

2
)

+O(a3)
]

= −2ε a+ 2z11a
2 + 4z21a

3 +O(a4) (4.54)

From the above expression for Zλ we read off z
(λ)
11 = 3/2 and z

(λ)
21 = −17/12 so that

β(a) = −2ε a+ 3a2 − 17

3
a3 +O(a4) (4.55)

Next, calculate γφ:

γφ =
1

2

d lnZ2
φ

d lnµ
=

1

2

d lnZ2
φ

da
β(a)

=
1

2

{
1

ε

(
2z

(φ)
21 + 3z

(φ)
31 a

)
+ higher poles +O(a2)

}{
−2ε a+ 3a2 − 17

3
a3 +O(a4)

}
(4.56)

Here again, the only way to obtain a finite contribution is from the product of the single pole terms

in the Z2
φ-factor and the −2εa term in the β-function; the higher poles must cancel. Thus

γφ =
1

2
(−2εa)

1

ε

(
2z

(φ)
21 + 3z

(φ)
31 a

)
= −2z

(φ)
11 − 3z

(φ)
21 a

2 =
1

12
a− 1

16
a2 (4.57)

To summarize
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� The β-function in a 4−2ε dimensional theory has a term β(a) = −2εa+O(a2). In renormalized

quantities we set ε→ 0 so that this term can be omitted (at the end of calculation!)

� Only simple pole terms ∼ 1/ε in the Z-factors are important, because all higher-order terms

must cancel in proper combinations. One can show that all higher poles can be restored

without calculation from this condition, they do not contain new physical information.

The construction of the renormalized action/Lagrangian in gauge theories is very similar. We

start with the gauge-fixed QCD action in d = 4− 2ε in terms of bare fields

S =

∫
ddx

[
q̄(/∂ − iµεg0 /A)q +

1

4
F aµνF

µν,a − c̄a(∂µDµc)a +
1

2ξ
(∂µA

a,µ)2
]

(4.58)

Here

F aµν = ∂µA
a
ν − ∂µAaν + µεg0f

abcAbµA
c
ν

Dµc = ∂µc− iµεg0[Aµ, c] Dab
µ = ∂µ + µεg0f

abcAcµ (4.59)

and make the replacements

q → Zqqr , A→ ZAAr , c→ Zccr , g → Zggr , ξ → Zξξr (4.60)

Converting to our previous notation (standard)

Z2 = Z2
q , Z3 = Z2

A , Z−1
1 = ZgZ

−1
A Z−2

q (4.61)

The corresponding anomalous dimensions are defined as

γg = µ∂µ lnZg γq = µ∂µ lnZq γA = µ∂µ lnZA (4.62)

etc. We will use

αs =
g2

4π
, a =

αs
4π

=
g2

(4π)2
(4.63)

The β-functions:

β(a) = µ∂µa = 2a(−ε− γg) = 2a(−ε− β̄(a)) , β̄(a) = β0a+ β1a
2 + . . . , β0 =

11

3
Nc −

2

3
nf ,

βξ(ξ, g) = µ∂µξ = µ∂µξ0Z
−1
ξ = −ξµ∂µ lnZξ = −ξµ∂µ lnZ2

A = −2ξµ∂µ lnZA = −2ξγA . (4.64)

where I used that Zξ = Z2
A since the gauge fixing term is not renormalized.

Note that in Landau gauge ξ = 0 the beta-function βξ vanishes identically for arbitrary coupling.

4.4 ∗ ∗ ∗ The strategy of regions: A simple example ∗ ∗ ∗

Dimensional regularization offers very powerful tools to calculate Feynman diagrams. The strategy

of regions is a technique which allows one to carry out asymptotic expansions of loop integrals

around various limits. The expansion is obtained by splitting the integration in different regions

and appropriately expanding the integrand in each case. We will later formulate an effective theory,
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called SCET, where the different regions will be represented by different effective theory fields. My

presentation follows a book by T.Becher, A.Broggio, A.Ferroglia: Introduction to Soft-Collinear

Effective Theory. For a higher-level discussion see B. Jantzen, arXiv:1111.2589.

Our present goal is only to illustrate the main idea. To this end we consider a simple integral,

which we will expand using different methods, first using a cutoff to separate two different regions

and then with dimensional regularization:

I =

∫ ∞
0

dk
k

(k2 +m2)(k2 +M2)
=

1

M2 −m2
ln
M

m
. (4.65)

We assume m2 �M2 and will discuss an expansion in the small parameter m/M . Obviously

I =
1

M2

(
1 +

m2

M2
+
m4

M4
+ · · ·

)
ln
M

m
. (4.66)

Our goal is to reproduce this result by expanding the integrand in Eq. (4.65) before carrying out

the integration. This is helpful in cases where the full result is not available.

A naive expansion of the integrand

k

(k2 +m2)(k2 +M2)
=

k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
(4.67)

does not work as it gives rise to IR divergent integrals. This was to be expected: If one could simply

Taylor expand the integrand in m/M and integrate term by term, the result would necessarily be

an analytic function of m because the integrals would simply give the Taylor coefficients of the

expansion in m. But the result for I is not analytic in m/M , it contains a logarithm.

The problem with the naive expansion is obviously that it is valid only for k � m2 while the

integration domain in Eq. (4.65) includes a region in which k2 ∼ m2. As a warm up, we can avoid

this problem introducing a scale m� Λ�M to separate the two regions:

I =

∫ Λ

0
dk

k

(k2 +m2)(k2 +M2)︸ ︷︷ ︸
I(I)

+

∫ ∞
Λ

dk
k

(k2 +m2)(k2 +M2)︸ ︷︷ ︸
I(II)

. (4.68)

In the first region we use that k,m�M so that

I(I) =

∫ Λ

0
dk

k

(k2 +m2)(k2 +M2)
=

∫ Λ

0
dk

k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
. (4.69)

In the second region we use m� k,M so that

I(II) =

∫ ∞
Λ

dk
k

(k2 +m2)(k2 +M2)
=

∫ ∞
Λ

dk
k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
. (4.70)

Taking into account the first two terms in I(I) and the leading term only in I(II)

I(I) '
M2 +m2

2M4
ln

(
1 +

Λ2

m2

)
− Λ2

2M4
= − 1

M2
ln
(m

Λ

)
− Λ2

2M4
+O

(
Λ4

M6
,
m2

M4
log

(
Λ

m

))
,

I(II) '
1

2M2
ln

(
1 +

M2

Λ2

)
= − 1

M2
ln

(
Λ

M

)
+

Λ2

2M4
+O

(
Λ4

M6
log

(
M

Λ

))
. (4.71)



4 DIMENSIONAL REGULARIZATION AND MINIMAL SUBTRACTION 60

and summing up

I = I(I) + I(II) = − 1

M2
ln
(m
M

)
+O

(
m2

M4
log

(
M

m

))
, (4.72)

which is the expected result. All terms depending on Λ cancel as they must.

Thus the trick works, but it is well known that the use of hard cutoffs is impractical in cal-

culations of Feynman diagrams (apart from the simplest cases). We want to find out whether a

separation of different integration regions can be achieved using dimensional regularization. To this

end, consider

I =

∫ ∞
0

dk k−ε
k

(k2 +m2)(k2 +M2)
, (4.73)

where we will eventually send ε→ 0 at the end of the calculation.

Using a low-energy expansion of the integrand, k,m�M , as in (4.69)

I(I) =

∫ ∞
0

dk k−ε
k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
. (4.74)

Here, for each term separately, we can choose the dimensional regulator ε > 0 such that the integral

will converge both for k → 0 (IR finite) and for k →∞ (UV finite).

Similarly, by performing a large-energy expansion k � Λ (cf. (4.70)) one obtains

I(II) =

∫ ∞
0

dk k−ε
k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
. (4.75)

and we can choose ε < 0, to avoid IR divergences in the region where k → 0. Taking into account

the first terms only one finds

I(I) =
m−ε

2M2
Γ
(

1− ε

2

)
Γ
(ε

2

)
=

1

M2

(
1

ε
− lnm+O(ε)

)
. (4.76)

I(II) = −M
−ε

2M2
Γ
(

1− ε

2

)
Γ
(ε

2

)
=

1

M2

(
−1

ε
+ lnM +O(ε)

)
. (4.77)

The poles in ε cancel in the sum, and the final result is again as expected!

This looks like magic, because at first sight there are at least two suspect issues:

• First: can we choose ε > 0 in the low-energy region and ε < 0 in the high-energy region and

then combine the two?

— This is legitimate, because dimensionally regularized expressions are defined for arbitrary ε: we

only choose ε > 0 to be able to evaluate I(I) as a standard integral, but by analytic continuation

the resulting function on the right-hand side is uniquely defined for any complex-valued ε and can

be combined with I(II).

• Second: The integration domain in both Eq. (4.74) and Eq. (4.75) is not restricted to a low/high

energy region. Since we integrate the high-energy part over the low-energy region (and vice versa),

one could worry that this leads to a double counting?

— To see that this does not happen, observe that the low-energy integral I(I) ∼ m−ε, while the
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high-energy integral I(II) ∼ M−ε. This statement remains true also for the subleading terms.

Keeping the complete dependence on m and M the result for our integral (for finite ε) is

I =
1

2
Γ
(

1− ε

2

)
Γ
(ε

2

) m−ε −M−ε

M2 −m2
. (4.78)

and the low-energy/high-energy parts just pick up the pieces ∼ m−ε and ∼ M−ε, respectively.

Even though we integrate twice over the full integration domain, there is no double counting, since

the two pieces scale differently: the low-energy integrals can never produce a term M−ε since they

depend analytically on the large scale, and vice-versa.

— Let us see what happens if we insist in restricting the integration domain of the low- and

high-energy region integrals when using dimensional regularization. The integral in the low-energy

region would become in this case

IΛ
(I) =

∫ Λ

0
dk k−ε

k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ . . .

)

=

[∫ ∞
0

dk −
∫ ∞

Λ
dk

]
k−ε

k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ . . .

)
= I(I) −R(I) . (4.79)

To calculate the remainder R(I) we can use that k ≥ Λ� m2 to expand in the small m limit:

R(I) =

∫ ∞
Λ
dk k−ε

k

(k2 +m2)M2

(
1− k2

M2
+ . . .

)

=

∫ ∞
Λ
dk k−ε

k

k2M2

(
1− m2

k2
− k2

M2
+ . . .

)
. (4.80)

Note that in this way we performed two expansions already: First, expanding the integrand in the

limit M →∞ to separate part I(I), and, second, expanding the result for m→ 0.

Similarly, consider the high-energy integral I(II) in Eq. (4.75) with a lower cutoff Λ on the

integration. As above, it can be written as an integral without a cutoff and a remainder

R(II) =

∫ Λ

0
dk k−ε

k

k2(k2 +M2)

(
1− m2

k2
+ . . .

)

=

∫ Λ

0
dk k−ε

k

k2M2

(
1− m2

k2
− k2

M2
+ . . .

)
. (4.81)

In this remainder, we have again expanded the integrand in both the limit of small m and also in

the limit of large M , but in the opposite order as in R(I). However, the two expansions commute

so that the integrands of R(I) and R(II) are identical. Adding up the two pieces, we find that

R = R(I) +R(II) =

∫ ∞
0
dk k−ε

k

k2M2

(
1− m2

k2
− k2

M2
+ . . .

)
. (4.82)

The dependence on Λ disappears, as expected, and the remaining integrals are of the type∫ ∞
0

dk

k

1

kn+ε
=? n = 0,±2, . . . (4.83)
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Integrals of this type are called scaleless integrals as they do not involve dimensionful parameters.

Take n = 0 as example (the leading term). As written, the integral is ill-defined since a nonzero

ε > 0 does not help to eliminate the divergence for k → 0 and k →∞ simultaneously. To define this

integral properly one needs to introduce an additional regulator — e.g. restore the scale separation∫ ∞
0

dk

k
k−ε =

∫ Λ

0

dk

k
k−ε +

∫ ∞
Λ

dk

k
k−ε (4.84)

such that the first and the second pieces can be regularized choosing ε = εIR < 0 or ε = εUV > 0,

respectively:∫ Λ

0

dk

k
k−εIR

∣∣∣
εIR<0

= − 1

εIR
Λ−εIR , and

∫ ∞
Λ

dk

k
k−εUV

∣∣∣
εUV >0

= +
1

εUV
Λ−εUV (4.85)

The main point is that by analytic continuation the resulting functions on the r.h.s. are uniquely

defined for any complex-valued ε so that we can take εIR = εUV at the end, such that the whole

integral vanishes. This observation is crucial for the applications of dimensional regularization:

all scaleless integrals can be put to zero

To summarize, the remainder (4.82) vanishes because it is given by a series of scaleless integrals,

so that there is no double counting. L13

5 Unitarity and Feynman diagrams

5.1 Optical Theorem and cut diagrams

A transition amplitude (probability amplitude) to observe a particular state in a scattering ex-

periment can formally be thought of as a matrix element of the unitary operator in the Hilbert

space

〈q1 . . . qn|S|k1k2〉 ≡ lim
T→∞

〈q1 . . . qn|e−iĤIT |k1k2〉 (5.1)

Unitarity means

S†S = I (5.2)

i.e. ∑
qf

〈k′1k′2|S†|qf 〉〈qf |S|k1k2〉 = 〈k′1k′2|S†S|k1k2〉 = (2π)6δ(3)(k1 − k′1)δ(3)(k2 − k′2) (5.3)

We write

S := I + iT T-matrix

〈A|iT |B〉 := (2π)4δ(4)(pA − pB) iM(B → A) Amplitude (5.4)

Unitarity of the S-matrix implies

S†S = I =⇒ (I− iT †)(I + iT ) = I

=⇒ −i(T − T †) = T †T (5.5)
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� a) Take matrix element 〈p1p2| . . . |k1k2〉

� b) Insert a complete set of states T †T →
∑

qf
T †|qf 〉〈qf |T , i.e.

〈p1p2|T †T |k1k2〉 =
∑
n

 n∏
f=1

∫
d3qf
(2π)3

1

2Ef

 〈p1p2|T †|q1, . . . , qn〉〈q1, . . . , qn|T |k1k2〉 (5.6)

One obtains:

−i
[
M(k1k2 → p1p2)−M∗(p1p2 → k1k2)

]
(2π)4δ(4)(k1 + k2 − p1 − p2) =

=
∑
n

 n∏
f=1

∫
d3qf
(2π)3

1

2Ef

M∗(p1p2 → qf )M(k1k2 → qf )

× (2π)4δ(4)(k1 + k2 −
∑
f

qf )(2π)4δ(4)(k1 + k2 − p1 − p2) (5.7)

where the energy-conservation δ-functions can be cancelled on both sides.

An important special case is (k1, k2) = (p1, p2) (forward scattering)

2 ImM(k1k2 → k1k2) =
∑
n

 n∏
f=1

∫
d3qf
(2π)3

1

2Ef

 |M(k1k2 → qf )|2(2π)4δ(4)(k1 + k2 −
∑
f

qf ) = 4
√
s|pcm|σtot

(5.8)

— The optical theorem

2 Im

k2 k2
k1 k1

=
∑
f

∫
dΠf


k2
k1




k2
k1

 (5.9)

• this is an exact relation

• valid in each order of perturbation theory separately

Example: hadron production in electron-positron annihilation

e�
e+ �q

q

On the quark-gluon level, to leading order:

∫
dΠ2

q
�q = 2 Im (5.10)
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This explains why we always had ln(−k2 − iε): Imaginary part can only occur for k2 > 0 in which

case real decay processes are possible

To the first order in αs we can have quark-antiquark or quark-antiquark-gluon final states:

∫
dΠ2

∣∣∣∣∣
∣∣∣∣∣
2

+

∫
dΠ3

∣∣∣∣∣
∣∣∣∣∣
2

= 2 Im

[ ]
+ O(α2

s) (5.11)

Very importantly, these rules are valid on a diagram-per-diagram level:

2 Im (5.12)

Cut diagrams

Consider phase space integration over one particular fermion line:

∫
d3p

(2π)3

1

2Ep

∑
s

M∗(p, . . .)u(p, s)ū(p, s)M(p, . . .)

=

∫
d4p

(2π)3
δ(p2 −m2)θ(p0)M∗(p, . . .)(/p+m)M(p, . . .) (5.13)

Note that

1

p2 −m2 + iε
= PV

1

p2 −m2
− iπδ(p2 −m2) (5.14)

so that this can be written as

. . . =

∫
d4p

(2π)4
M∗(p, . . .)

[
− 2Im

(/p+m)

p2 −m2 + iε

]
θ(p0)M(p, . . .) (5.15)

Similarly for a gluon (photon) line:∫
d3k

(2π)3

1

2|k|
∑
λ

Mν,∗(k, . . .)ε(λ)
ν (k)ε∗(λ)

µ (k)Mµ(k, . . .)

=

∫
d4k

(2π)3
δ(k2)θ(k0)Mν,∗(k, . . .)(−gµν)Mµ(k, . . .)

=

∫
d4k

(2π)4
Mν∗(k, . . .)

[
− 2Im

−gµν
k2 + iε

]
θ(p0)Mµ(k, . . .) (5.16)

— Thus, expressions for
∫
dΠnM

∗M can be written similar to usual Feynman diagrams, adding

new rules for “cut” propagators — the “cut diagrams”
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— Thanks to the optical theorem, the sum over all cuts gives the total imaginary part for the

particular Feynman diagram contribution to the forward scattering amplitude.

— This statement is actually more general and applies to arbitrary Feynman diagram. The imag-

inary part of a Feynman diagram can be calculated using the following algorithm:

� Cut through the diagram in all possible ways such that cut propagators can simultaneously

be put on shell

� Use k2 + iε prescription for all propagators to the left of the cut and k2 − iε prescription to

the right of the cut

� Use usual vertices to the left and complex conjugated to the right of the cut

� For all cut propagators replace

1

p2 −m2 + iε
=⇒ −2πiδ(p2 −m2) (5.17)

and add positive energy conditions θ(p0) for all lines

� Sum the contributions of all cuts

These rules are often referred to as Cutkosky cutting rules (which they are not)

5.2 ∗ ∗ ∗ Singularities of Feynman diagrams ∗ ∗ ∗

It is easy to convince oneself that various “i” factors in propagators and vertices combine in such

a way that the Feynman diagram is real unless the integrations become singular because the de-

nominators vanish.

• Vanishing of one denominator is not enough because the integration contour can be moved away

• Imaginary parts arise when two poles come together and trap the integration countour so it

cannot be moved

• This phenomenon is called “pinching”

Example: Scalar field theory with quartic interaction λφ4

k1

k2

k2k1+k =

k/2+q

k/2−q

iM =
λ2

2

∫
d4q

(2π)4

1

[(k/2− q)2 −m2 + iε][(k/2 + q)2 −m2 + iε]

(5.18)



5 UNITARITY AND FEYNMAN DIAGRAMS 66

— 1/2 is a symmetry factor for the diagram

—
∫
d4q/[(2π)4i] is real and positive after rotation to Euclidian space; thus M is naturally a real

function

Let k2 > 0, choose

kµ = (k1 + k2)µ = (k0, 0, 0, 0) (5.19)

and consider integration over q0. The integrand has four poles located at

q0 =
1

2
k0 ± (Eq − iε) , q0 = −1

2
k0 ± (Eq − iε) , Eq =

√
~q2 +m2 (5.20)

−k  /2 − E0 q

q
0

0 k  /2 + E0−k  /2 + Eq q

0 q k  /2 − E

We choose to take the integral by closing the contour in the lower half-plane

— Thus have to sum the contributions of two poles at q0 = −1
2k0 +Eq− iε and q0 = +1

2k0 +Eq− iε
— Only q0 = −1

2k0 + Eq − iε can contribute to the imaginary part, neglect the second

Why:

Since Eq > 0, the only pair of poles that can pinch is

1

2
k0 − Eq + iε ↔ − 1

2
k0 + Eq − iε , =⇒ pinch at Eq = 2k0 (5.21)

the rest always stay apart.

Picking the contribution of this pole corresponds to the following replacement in the integral:

1

[(k/2 + q)2 −m2 + iε]
=⇒ −2πiδ+((k/2 + q)2 −m2) (5.22)

This gives:

iM = −2πi
λ2

2

∫
d3~q

(2π)4

1

2Eq

1

[(k0 − Eq)2 − E2
q + iε]

= −2πi
λ2

2

4π

(2π)4

∫ ∞
m

dEqEq|~q|
1

2Eq

1

k0[k0 − 2Eq + iε]
(5.23)

The imaginary part appears because of the singularity at k0 = 2Eq which is exactly the pinching

condition

1

[k0 − 2Eq + iε]
= PV

1

[k0 − 2Eq]
− iπδ(k0 − 2Eq) (5.24)
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Taking ino account this delta-function contribution only, obtain

M ' 1

i
(−2πi)

λ2

2

4π

(2π)4

∫ ∞
m

dEq Eq

√
E2
q −m2

1

2Eq

1

k0
(−iπ)δ(k0 − 2Eq)

=
iλ2

32π

1

k0

√
k2

0 − 4m2θ(k2
0 − 4m2) (5.25)

or

ImM =
λ2

32π

√
1− 4m2

k2
θ(k2 − 4m2) (5.26)

• note that the imaginary part must be positive (related to total cross section).

• This is consistent with +iε prescription in propagators (and can be used to derive it)

Note also that picking up the pole is equivalent to replacing the original propagator by a delta-

function

1

[(k/2− q)2 −m2 + iε]
=⇒ − 2πiδ+((k/2− q)2 −m2) (5.27)

Going back to the original representation we can relabel the momenta in the loop as p1 and p2 and

rewrite the momentum integration as∫
d4q

(2π)4
=

∫
d4p1

(2π)4

∫
d4p2

(2π)4
(2π)4δ(4)(p1 + p2 − k) (5.28)

Then we can summarize our findings as

2i ImM(k) =
λ2

2

∫
d4p1

(2π)4

∫
d4p2

(2π)4
(2π)4δ(4)(p1 + p2 − k)(−2πi)2δ+(p2

1 −m2)δ+(p2
2 −m2)

=
i

2

∫
d3p1

(2π)3

1

2E1

∫
d3p2

(2π)3

1

2E2
|M(k)2|(2π)4δ(4)(p1 + p2 − k) (5.29)

where to our accuracy on the r.h.s. M(k) = λ; factor 1/2 takes into account identity of particles

in the final state.

— the first line above gives a representation as a cut diagram

— the second line is an optical theorem

Last but not least:

Scattering amplitudes can be viewed as analytic functions of invariant energies. In our case

M(s = k2 = (k1 + k2)2) = M(s+ iε) (5.30)

has a cut in the complex s-plane:

s

4m2

physical region
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Two-point functions do not have other singularities apart from unitarity cuts (can be proven).

Landau has given a general classification for singularity structure of arbitrary Feynman diagrams,

hence arbitrary three-point, four-point etc. functions. [important topic, but too much for these

lectures] L14

6 Electron-Positron annihilation

6.1 Total cross section: Leading-order analysis

The best environment to study strong interactions: Electron-positron collisions at high energies

e+(k+) + e−(k−)→ hadrons (6.1)

pro: initial state exactly known, small backgrounds etc.

contra: electrons are more difficult to accelerate as protons because of radiation losses

The simplest quantity:

R(s) =
σtot(e

+e− → hadrons)

σtot(e+e− → µ+ µ−)

e�
e+ �q

q
(6.2)

where

σtot(e
+e− → µ+ µ−) =

4πα2

3s
, α = 1/137 (6.3)

is used for normalization

Heuristic discussion:

� The process involves two time scales (in CM system q = k+ + k− = {q0, 0, 0, 0}, s = q2):

— quark-antiquark pair is produced at times t ∼ 1/q0 (uncertainty principle)

— hadrons are produced when interaction becomes strong T ∼ 1/ΛQCD ∼ 1 fm

� If energy is large, T � t, these two (sub)processes cannot have any quantum interference;

Probability to produce a given hadron state is a product of probabilities to produce a qq̄ pair

times the probability to produce a particular hadronic state

� For a total cross section it suffices to know that when q and q̄ fly apart, some hadronic state

will be produced with probability one

� Thus expect

σtot(e
+e− → hadrons) ' σtot(e+e− → qq̄)

or

R(s) ' Nc

[
e2
u + e2

d + e2
s + . . .︸ ︷︷ ︸ ] , eu = 2/3 , ed = −1/3 , etc.

quarks with mass <
√
s/2 (6.4)
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[Figure taken from: Davier et al., Eur.Phys.J. C27:497-521,2003 ]

� A strong argument for Nc = 3

We can make the two-time-scales argument more precise using optical theorem:

σtot(e
+e− → hadrons) =

1

s
ImM(e+e− → e+e−) (6.5)

[exact expression contains 1/(2
√
spcm), reduces to 1/s for large energies]

M = k�
k+ k+

k�
q q

= e4ū(k−)γµv(k+)
1

s
Πµν(q)

1

s
v̄(k+)γνu(k−) (6.6)

where

Πµν(q) = i

∫
d4x eiqx〈Ω|T{jµ(x)jν(0)}|Ω〉 = (qµqν − q2gµν)Π(q2) , s = q2 (6.7)

and

jµ =
∑
q

eqψ̄qγµψq , eu =
2

3
, ed = −1

3
, . . . e =

√
4πα (6.8)

Note that both momenta and spins of the e+ and e− must coincide in initial and final state.

Neglecting the electron mass and averaging over spin directions obtain

1

2
· 1

2

∑
s,s′

ū(k−, s)γ
µv(k+, s

′) v̄(k+, s
′)γνu(k−, s)

[
qµqν − sgµν

]
Π(s)

= − 1

4
sΠ(s) Tr

[
/k−γ

µ/k+γµ
]

=
1

2
sΠ(s) 4(k− · k+) = s2Π(s) (6.9)
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where I used s = (k− + k+)2 ' 2k− · k+.

Obtain therefore

σtot(e
+e− → hadrons) =

1

s
s2 Im Π(s)

e4

s2
=

1

s
(4πα)2Im Π(s) (6.10)

and

R(s) = 12π Im Π(s) (6.11)

• Let us check this relation in leading order

If quark masses can be neglected, calculations often become easier in coordinate space.

I choose the present example to illustrate this technique

Massless quark propagator

〈0|T{ψi(x)ψ
j
(0)}|0〉 = δij

∫
d4p

(2π)4
e−ipx

i/p

p2 + iε
=

i

2π2

/x

(−x2 + iε)2
(6.12)

Then, ignoring electric charges

Πµν(q) = i

∫
d4x eiqx〈0|T{ψ(x)γµψ(x)ψ(0)γνψ(0)}|0〉

= iNc

(
i

2π2

)2 ∫
d4x eiqx Tr

[
/x

x4
γµ

/x

x4
γν

]

=
−iNc

4π4

∫
d4x

eiqx

x8
· 4
[
2xµxν − gµνx2

]
(6.13)

Fourier integral: ∫
d4x eipx

xµxν
(−x2 + iε)4

=
iπ2

48
ln

(
µ2

−p2 − iε

)[
2pµpν + p2gµν

]
(6.14)

Thus

Πµν(q) =
−iNc

4π4

iπ2

48
ln

µ2

−q2
4
[
2(2qµqν + q2gµν)− 6gµνq

2
]

=
Nc

12π2
ln

µ2

−q2

[
qµqν − q2gµν

]
(6.15)

Finally

Im ln
µ2

−q2 − iε
= π θ(q2) =⇒ Im Π(s) =

Nc

12π
θ(s) (6.16)

thus, up to quark electric charges

R(s) = Nc

[
1 +O(αs)

]
♥ (6.17)
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Corrections are due to radiation of “hard” gluons at small times ∼ 1/q0, so it should be possible

to calculate them in perturbation theory

• the possibility to use perturbation theory at q2 → +∞ is not obvious; we will develop a more

rigorous approach later

6.2 Gluon Bremsstrahlung and jets

6.2.1 Soft and Collinear emission

p + q p
q ε∗(λ)

µ Mµ ∼ ū(p)ε∗(λ)
µ γµ

/p+ /q +m

(p+ q)2 −m2
(6.18)

Assume that a gluon with small energy is emitted at small angle:

pµ = {p0, 0, 0, p} p0 = E � m pµp
µ = m2

qµ = {q0, q sin θ, 0, q cos θ} q0 = ω � E qµq
µ = λ2 ”gluon mass” (6.19)

q
ε

(λ)

θ p

θ << 1

cos θ ' 1− θ2

2

|p| ' E
(

1− m2

2E2

)
|q| ' ω

(
1− λ2

2ω2

)
To this accuracy

2pq = 2Eω − 2|p||q| cos θ = Eω

(
θ2 +

m2

E2
+
λ2

ω2

)
ε∗ · p = E sin θ = E θ (6.20)

and therefore L15

ε∗(λ)
µ Mµ ∼ ε∗ · p

2pq + λ2
∼ 1

ω

θ

θ2 + m2

E2 + λ2

ω2 +�
�λ
2

Eω

(6.21)

The corresponding cross section is

dσ ∼ |ε∗M |2d
3q

2q0
∼ |ε∗M |2ωdωθdθ ∼ dω

ω
· θ2dθ2[
θ2 + m2

E2 + λ2

ω2

]2 (6.22)

One can consider two cases:

1) λ
ω �

m
E :

σ ∼ ln
E

λ
ln
E

m
(6.23)
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2) λ
ω �

m
E :

σ ∼
∫ E

λ

dω

ω
ln
ω

λ
∼ ln2 E

λ
(6.24)

The general pattern (common for QED and QCD)

dσ ∼ dω

ω

dθ

θ
(6.25)

— soft and collinear emission

What is the meaning of the divergence at ω → 0 (called IR-divergence)?

• Wrong question:
— What is the total number of gluons
emitted at a certain angle?

• Correct questions:
— What is the total energy of gluons
emitted at a certain angle?

— What is the total number of gluons
with energy ω > ω0 (e.g. experimental resolution)
emitted at a certain angle?

6.2.2 Total cross section to NLO

Continue our discussion of the e+e− annihilation

Our LO result can/will be modified by gluon emission at short distances ∼ 1/q0. To O(αs) accuracy

there are two effects (cf. Section 4.1):

1) interaction between the outgoing quark and antiquark

2) gluon production

Explicit calculation gives (for mq = 0), Q =
√
s:

σe+e−→q̄q = σ0 + σ0
4

3

αs
π

[
−2 ln2 Q

λ
+ 3 ln

Q

λ
− 7

4
+
π2

6

]

σe+e−→q̄qg = σ0
4

3

αs
π

[
2 ln2 Q

λ
− 3 ln

Q

λ
+

5

2
− π2

6

]
(6.26)

Both expressions do not makes sense:

— what is λ?

— gluons do not exist as free particles



6 ELECTRON-POSITRON ANNIHILATION 73

. . . but the total cross section is well defined:

σtot = σe+e−→q̄q + σe+e−→q̄qg = σ0

[
1 +

αs
π

+O
(αs
π

)2
]

(6.27)

The cancellation of IR divergencies in the sum of contributions of real and virtual emission is

referred to as the “Bloch-Nordsieck cancellation”

6.2.3 Sterman–Weinberg jets

— IR divergencies in QED signal that the question must be put in a more precise way

— IR divergencies in QCD signal that the quantity of interest recieves large contributions at long

distances and cannot be calculated in perturbation theory at all; what to do?

1. Improve the theory. . .

2. Find a class of observables that are not sensitive to contributions of large distances and can

be calculated within the theory that we have at present

Infrared-safe observables, that do not suffer from IR divergences, have a chance to be calculable.

Why did IR divergences cancel in the total cross section of e+e− annihilation?

— because for the total cross section it does not matter if the emitted gluon recombines with the

quark at large distances or flies away:

“To be or not to be” . . .

(gluon)

Sterman and Weinberg formulated a simple criterium for such cancellations:

Large (potenitally divergent) contributions come from emission of soft gluons (small energy) or

collinear gluons (small angles), therefore:

Observables that do not change if:

a) a “soft” gluon is emitted (with ω → 0)
b) a “collinear” gluon is emitted (with θ → 0)

are IR safe and have a chance to be calculable

A jet: Collection of particles (spray, bundle,. . . ) flying in more or less the same direction

(inside a given solid angle δΩ, called jet cone)

Jets are IR-stable because if a collinear particle is emitted it remains inside the jet cone, if a soft

particle is emitted, the energy of the jet does not change.

A two-jet event:

Almost all energy in the c.m. frame qµ = (Q, 0, 0, 0) is deposited in two narrow cones
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Jet 
ones

ÆEÆ� Æ�
Calori
meters

A three-jet event:

Almost all energy in the c.m. frame qµ = (Q, 0, 0, 0) is deposited in three narrow cones

Jet cross sections for given δθ and δE can be calculated in QCD:

σe+e−→3 jets ∼

∣∣∣∣∣∣
∣∣∣∣∣∣
2

θ>θ0
δE<εQ

(6.28)

One obtains

σe+e−→3 jets = σ0
4

3

αs
π

[
4 ln

1

θ0
ln

1

ε
+ 3 ln

1

θ0
− 7

4
+
π2

3

]
σe+e−→2 jets = σtot − σe+e−→3 jets (6.29)

An example of real data collected

from the OPAL detector on the

Large Electron-Positron (LEP) col-

lider at CERN, which ran between

1989 and 2000. Here a Z0 particle

is produced in the collision between

an electron and positron that then

decays into a quark-antiquark pair.

The quark pair is seen as a pair of

hadron jets in the detector.



6 ELECTRON-POSITRON ANNIHILATION 75

• Unphysical IR regulators (gluon mass) substituted by physical parameters of concrete experiment

• Observations of three-jet events (DESY, ca. 1983) gave direct evidence for existence of gluons

Similar:

Jet production in proton-antiproton collisions (Fermilab)

jet 1
jet 2k? p �p

• Need to know quark distributions in protons — later

6.3 Unstable particles
L15

Most of the existing hadrons decay:

Weak decays n→ peν̄e τ ∼ 900s [life time]

Λ→ pπ− τ ∼ 10−10s

Strong decays ρ→ ππ τ ∼ 10−23s (6.30)

The life time τ is defined through the decay rate [half-life = τ ln 2]

τ = 1/Γ (6.31)

where

Γ =
Number of decays per unit time

Number of particles present
(6.32)

The decay rate can be calculated as (in the rest frame of the decaying particle A)

dΓ =
1

2mA
|M(A→ {pf})|2

∏
f

d3pf
(2π)32Ef

 (2π)4δ(4)(PA −
∑

pf ) (6.33)

For comparison:

dσ =
1

2EA 2EB

1

|vA − vB|
|M(A+B → {pf})|2

∏
f

d3pf
(2π)32Ef

 (2π)4δ(4)(PA + PB −
∑

pf )

(6.34)
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In the following I use a shorthand notation

dΠf =

∏
f

d3pf
(2π)22Ef

 (2π)4δ(4)(Pinitial − Pfinal) (6.35)

How can one describe unstable particles in quantum field theory?

— Consider a scalar particle as example

The propagator:

i

p2 −m2
0 + Σ(p2)

= (6.36)

The pole (renormalized) mass:

m2 −m2
0 + Σ(m2) = 0 (6.37)

Renormalized propagator:

i

p2 −m2
0 + Σ(p2)

=
i

p2 −m2 + Σ(p2)− Σ(m2)

=
i

(p2 −m2)[1 + Σ′(m2)] + [Σ(p2)− Σ(m2)− (p2 −m2)Σ′(m2)]

=
iZ

p2 −m2 − Σ(r)(p2)
(6.38)

Here we tacitly assumed that Σ(m2) is a real number. Is this always the case?

Optical theorem:

2 Im Σ(p2) =
∑
f

dΠf |M(P → {pf})|2 (6.39)

φ4 − theory 9m2
QED/QCD m2e
β − decay

n p
e
��e

n m2n
(mp +me)2 < m2n

ρ−meson
� � � m2�

4m2�� (6.40)
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For unstable particles

Σ(m2) = Re Σ(m2) + i Im Σ(m2) (6.41)

One defines the pole mass as

m2 −m2
0 + Re Σ(m2) = 0 (6.42)

In this case

i

p2 −m2
0 + Σ(p2)

=
i

p2 −m2 + Re Σ(p2)− Re Σ(m2) + i Im Σ(p2)

p2→m2

' iZ

p2 −m2 + iZ Im Σ(m2)
, Z = 1/(1 + Re Σ′(m)) (6.43)

We define

Z Im Σ(m2) = mΓ (6.44)

The renormalized propagator close to p2 = m2 is therefore

i

p2 −m2 + imΓ
: g �=2 (6.45)

effectively

m→ m− iΓ/2

(mass acquires a negative imaginary part)

Note that our Γ is indeed the decay rate:

mΓ = Z Im Σ(m2) =
1

2

∑
f

∫
dΠf |M(P → {pf})|2 (6.46)

in agreement with the definition

[extra Z-factor corresponds to
√
Z ·
√
Z for external legs (LSZ formula)]

• Why a negative imaginary part (in the mass) corresponds to a decay?

Wave function of a free particle is a plane wave

φ~p(~x, t) ∼
1√
2E

e−ipµx
µ ∼ e−i(m−i

1
2

Γ)t (6.47)

Total probability to find a particle is then∫
d3~xφ∗(~x, t)i

↔
d

dt
φ(~x, t) ∼ e−Γt = decay (6.48)
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Production cross section:

e�
e+

� �
� σ ∼

∣∣∣∣ 1

s−m2 + imΓ

∣∣∣∣2
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Σ H s L

(6.49)

This shape is called a Breit-Wigner resonance

This is a good approximation if Γ� m; in general case Γ→ Γ(s)

In the review by the Particle Data Group one finds for JPC = 1−−:

ρ(770) : mρ = 775 MeV , Γ = 149 MeV ρ→ ππ(∼ 100%)

ω(782) : mω = 783 MeV , Γ = 8.49 MeV ω → πππ(∼ 90%)

φ(1020) : mφ = 1019 MeV , Γ = 4.26 MeV φ→ KK(∼ 85%) (6.50)

ω does not decay in two pions because it has negative G-parity IG = 0− compared to IG = 1+ for

ρ-meson.

7 Operator Product Expansion

• Motivation:

Find a generalization of the Taylor series for operator products of the type

T{φ(0)φ(x)} ?
=
∑
n

1

n!
xµ1 . . . xµnφ(0)∂µ1 . . . ∂µnφ(0) (7.1)

or, more generally

T{j(0)j(x)} ?
=
∑
n

C(n)(x)On(0) (7.2)

where O(0) are local operators built of fields and derivatives and C(x) are some functions, i.e. for

any states

〈A|T{j(0)j(x)}|B〉 ?
=
∑
n

C(n)(x)〈A|On(0)|B〉 (7.3)

This is useful if the sum can be truncated after a few terms:

— x-dependence is “universal” for all matrix elements

— can use RG methods (later)
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A naive Taylor expansion does not work because the point x = 0 is singular:�(0) �(x)
〈p|T{φ(0)φ(x)}|p〉 ∼ 1 + ag2 lnx2p2 + . . . , a ∈ R (7.4)

The trick is to introduce a factorization scale

lnx2p2 = lnx2µ2
F + ln

p2

µ2
F

, 1/x2 � µ2
F � p2 (7.5)

[Note obvious similarity with renormalization scale] and rewrite

1 + ag2 lnx2p2 + . . . =
(

1 + ag2 lnx2µ2
F

)
︸ ︷︷ ︸

(
1 + ag2 ln p2/µ2

F

)
︸ ︷︷ ︸+ . . .

coef. function operator matrix element (7.6)

Thus, we envisage an expansion of the type

T{j(0)j(x)} =
∑
n

C(n)(x, µF )[On](µF )(0) (7.7)

where the coefficient functions C(n)(x, µF ) contain all x-dependence and thus all singularities at

x → 0, and the operators’ matrix elements have to be calculated with an UV cutoff µF (or other

regulator)

CFs of composite operators have the generic structure

C(x, µf ) ∼ 1 + γg2 ln(−x2µ2
F ) + . . . (7.8)

If |x| → 0, the logarithms eventually become large. If g2 � 1 but g2 ln(−x2µ2
F ) ∼ O(1) one has

to account the whole series of contributions ∼ [g2 ln(−x2µ2
F )]k but can still neglect terms with

∼ g2[g2 ln(−x2µ2
F )]k.

This is the same situation as we had with the polarization operator or electron propagator in QED,

so we can treat this problem using the same methods: The result must be independent on µF =⇒
RG machinery: Callan-Symanzik equation etc.

• Renormalized composite operators

Composite operators are made of renormalized fields and derivatives, e.g.

O = φr(0)∂µ1 . . . ∂µnφr(0) (7.9)

Despite the fact that the operator is written in terms of renormalized fields, its insertion in Green

functions will produce additional divergences because the two fields stand at the same point. We

can get rid of these divergences by introducing additional Z-factor:

[O]r = ZO (7.10)
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Note that unrenormalized O is already scale-dependent because the renormalized fields are. Thus

at first step we rewrite it in terms of bare fields

[O]r = Z Z−2
φ︸ ︷︷ ︸

ZO

φ(0)(0)∂µ1 . . . ∂µnφ
(0)(0) (7.11)

so that

µ
d

dµ
[O]r =

(
µ
d

dµ
ZO

)
φ(0)(0)∂µ1 . . . ∂µnφ

(0)(0) =

(
µ
d

dµ
ZO

)
1

ZO
[O]r (7.12)

Define operator anomalous dimension

1

ZO
µ
d

dµ
ZO =− γO(α) = −γO0 α+ . . . (7.13)

=⇒ Callan-Symanzik equation{
µ
∂

∂µ
+ β(α)

∂

∂α
+ γO(α)

}
[O](µ) = 0 (7.14)

The solution of this equation is, as we have seen

[O](µ1) =

(
α(µ2

1)

α(µ2
2)

)−γO0 /β0

[O](µ2) (7.15)

The operator product expansion can be formulated as the following

Theorem (K. Wilson)

Let [O1](µ) and [O2](µ) be renormalized operators. Then

[O1](µ)(x)[O2](µ)(0) =
∑
n

Cn12(x, µ)[On](µ)(0) (7.16)

where the sum goes over the complete set of renormalized operators [On](µ) with suitable quantum

numbers and Cn12(x, µ) are (complex valued) functions.

Each of the operators in the OPE satisfies its own Callan-Symanzik equation:{
µ
∂

∂µ
+ β(α)

∂

∂α
+ γ1,2

}
[O]

(µ)
1,2 = 0

{
µ
∂

∂µ
+ β(α)

∂

∂α
+ γn

}
[O](µ)

n = 0 (7.17)

Since the µ-dependence of the two sides of the OPE must agree, the CFs have to satisfy a similar

equation: {
µ
∂

∂µ
+ β(α)

∂

∂α
+ γ1 + γ2 − γn

}
Cn12(x, µ) = 0 (7.18)
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Let d1, d2 and dn be the dimensions of the operators [O1,2,n](µ), respectively. Since dimensions in

all terms in the OPE must be the same, the CFs have to be of the form

Cn12(x, µ) =

(
1

|x|

)d1+d2−dn
C̃(x · µ) (7.19)

where C̃ is a dimensionless function that depends on the product xµ only.

The general solution (cf. electron propagator)

Cn12(x, µ) =

(
1

|x|

)d1+d2−dn
C̃n12(α(1/|x|)) exp


α(1/|x|)∫
α(µ)

dα′
1

β(α′)

[
γn(α′)− γ1(α′)− γ2(α′)

]
'
(

1

|x|

)d1+d2−dn
C̃n12

(
α(1/|x|)
α(µ)

)−(γn0−γ1
0−γ2

0)/β0

(7.20)

Special case: It can happen that β(α) = 0 or at least β(α∗) = 0 for a particularly chosen α∗ (critical

point, e.g. point of phase transition in condensed matter). In this case the solution is

Cn12(x) = C̃n12

(
1

|x|

)D1+D2−Dn
,

D1 = d1 + γ1(α∗)

D2 = d2 + γ2(α∗)

Dn = dn + γn(α∗)

(7.21)

This explains why γn are called anomalous dimensions.

• Example: [φ2] in the φ4 theory

We continue with the example from Section 4.3. The Lagrangian in terms of the renormalized

field and coupling is

L =
1

2
Z2
φ(∂µφr)

2 − µ2εZλ
λr
24
Z4
φφ

4
r (7.22)

where

Z2
φ = 1 +

1

ε

[
− a2

24
+
a3

48

]
+

1

ε2

[
− a3

24

]
+O(a4) a(µ) =

λr(µ)

(4π)2

Zλ = 1 +
1

ε

[3a

2
− 17a2

12

]
+

1

ε2

[
− 9a2

4

]
+O(a3) (7.23)

where from

β(a) =
da

d lnµ
= −2εa+ 3a2 − 17

3
a3 +O(a4) ,

γφ =
1

2

d lnZ2
φ

d lnµ
=

1

12
a− 1

16
a2 +O(a3) (7.24)

Now consider a composite operator built of two renormalized fields.

O(x) = φr(x)φr(x) (7.25)
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Its insertion in Green functions will produce additional divergences because the two fields stand at

the same point. We can get rid of these divergences by introducing additional Z-factor

[φr(0)φ(0)r]
(µ)
r = Z2φr(0)φr(0) (7.26)

which can be calculated as a sum of divergent terms 1/ε, etc., in the sum of 1PI diagrams

Explicit calculation gives (A. N. Vasil’ev, The field theoretic renormalization group in critical

behavior theory and stochastic dynamics, Boca Raton, USA: Chapman & Hall/CRC (2004), p 277)

Z2 = 1 +
1

ε

(
1

2
a− 1

4
a2

)
+

1

ε2

(
1

2
a2

)
+O(a3) (7.27)

so that

Zφ2 = Z2Z
−2
φ = 1 +

1

ε

(
1

2
a− 1

4
a2 +

1

24
a2

)
+

1

ε2

(
1

2
a2

)
+O(a3) (7.28)

and

γφ2 = −
d lnZφ2

d lnµ
= −

d lnZφ2

da
β(a)

= −
{

1

ε

(
1

2
− 5

12
a

)
+ higher poles +O(a2)

}{
−2ε a+ 3a2 − 17

3
a3 +O(a4)

}
(7.29)

The only way to obtain a finite contribution is from the product of the single pole terms in the

Zφ2-factor and the −2εa term in the β-function; the higher poles must cancel. Thus

γφ2 = −(−2εa)
1

ε

(
1

2
− 5

12
a

)
= a− 5

6
a2 (7.30)

• Final remarks:

� This scheme of calculations is the same for all theories; in QCD one of course has to substitute

Zφ by quark or gluon field renormalization constants for the operators built of quarks and

gluons, respectively.

� If two (or more) operators have the same quantum numbers, they can mix with each other,

meaning that counterterms to one of these operators can have contributions of all other

operators. Hence the Z-factors become matrices instead of numbers.

� Operators with several open Lorentz indices should be decomposed in irreducible reps. of

the Lorentz group which can be considered separately as they do not mix with each other.

(Matrices of Z-factors are block-diagonal).
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8 Electron-Positron annihilation II

8.1 OPE analysis and QCD sum rules

We have found that

R(s) =
σtot(e

+e− → hadrons)

σtot(e+e− → µ+ µ−)
= 12π Im Π(s) (8.1)

where

Πµν(q) = i

∫
d4x eiqx〈Ω|T{jµ(x)jν(0)}|Ω〉 = (qµqν − q2gµν)Π(q2) , s = q2 (8.2)

Our program is now:

1. Find a way to relate Π(s) at large s to T{jµ(x)jν(0)} at small |x|

2. Study T{jµ(x)jν(0)} using OPE

8.1.1 Dispersion relations

Causality =⇒ Π(q2) is an analytic function of q2 with a cut at positive real q2 = s > 4m2
π.

It is easy to see that the expansion of T{jµ(x)jν(0)} in powers of |x| produces a series in 1/q after

the Fourier transform, but convergence properties of this series can depend on the direction in the

complex q2 plane.

There are reasons to suspect that convergence becomes bad (no uniform convergence) for q2 ap-

proaching the cut at real positive values.

Example 1: (extreme)

Assume Π(q2) has a contribution

Π(q2) = . . .+ eq
2

(8.3)

For q2 < 0 it is exponentially suppressed, will not be seen in OPE in any finite order, but it explodes

at q2 > 0

Example 2: (more realistic)

Assume Π(q2) has a contribution

Π(q2) = . . .+K0(
√
−q2 − iε)

q2 → −∞ : K0(
√
−q2) ' const.×

(
1

−q2

)−1/4

e−
√
−q2

q2 → +∞ : K0(
√
−q2) ' const.×

(
1

q2

)−1/4

ei
√
q2−iπ/4 (8.4)

For q2 < 0 it is exponentially suppressed, will not be seen in OPE in any finite order, but produces

an oscillating correction ∼ 1/
√
q2 at q2 > 0

Thus, it is believed that the OPE has to work at q2 → −∞ (called Euclidian region) but there
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might be subtleties for q2 → +∞ which so far nobody was able to quantify.

The trick is to connect these two regions using dispersion relations L18

q2

2q  = −Q2

q2

(8.5)

If the integral over the large circle can be neglected

Π(q2) =
1

2πi

∮
ds

Π(s)

s− q2
=

1

2πi

∞∫
0

ds

s− q2

[
Π(s+ iε)−Π(s− iε)

]
︸ ︷︷ ︸

2i Im Π(s) (8.6)

so that

Π(q2) =
1

π

∞∫
0

ds

s− q2
Im Π(s) =

1

12π2

∞∫
0

ds

s− q2
R(s) (8.7)

— a dispersion relation.

Unfortunately it does not work that way, because for large q2 we derived Π(q2) ∼ ln(q2). A simple

estimate shows that in this case the large circle contribution does not vanish.

A possible way out: do the same for the derivative:

d

dq2
Π(q2) =

1

12π2

∞∫
0

ds

(s− q2)2
R(s) (8.8)

or write a dispersion relation with a subtraction:

Π(q2) = Π(0) + q2 1

12π2

∞∫
0

ds

s− q2

1

s
R(s) (8.9)

How to use this:

� Choose large Q2 = −q2, much larger than hadron masses

� Calculate the r.h.s. inserting exp. data and integrating numerically

� Calculate the l.h.s. in QCD using PT and/or OPE

� Compare and draw conclusions
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8.1.2 Operator product expansion

We want to write

〈Ω|T{jµ(x)jν(0)}|Ω〉 =
∑
n

Cnµν〈Ω|On|Ω〉 (8.10)

Which operators can contribute? ⇐= Gauge and Lorentz invariance

Only gauge-invariant scalar operators can have nonzero vacuum expectation value (VEV):

1) Unity Operator I dI = 0 , dj = 3 ⇒ CI ∼
1

x6

2) Quark Condensate 〈Ω|ψ̄ψ|Ω〉 dψ̄ψ = 3 , dj = 3 ⇒ Cψ̄ψ ∼
1

x3

3) Gluon Condensate 〈Ω|GAµνGµν;A|Ω〉 dGG = 4 , dj = 3 ⇒ CGG ∼
1

x2

4) Mixed Condensate 〈Ω|ψ̄gσµνGµνψ|Ω〉 dψ̄Gψ = 5 ⇒ Cψ̄Gψ ∼
1

x1

5) 〈Ω|(ψ̄Γψ)2|Ω〉 d(ψ̄ψ)2 = 6 ⇒ C(ψ̄ψ)2 ∼ lnx

etc. (8.11)

After Fourier trafo∫
d4x eiqxCI(x) ∼ q2 = (qµqν − q2gµν) · O(q0) (8.12)

so that the corresponding contribution to Π(q2) is O(q0) [In reality it is ln q2/µ2]

Similar ∫
d4x eiqxCGG(x) ∼ 1

q2
, etc. (8.13)

Therefore OPE takes the form

Π(q2) = C̃I︸︷︷︸+
mψ

q4
C̃ψ̄ψ〈ψ̄ψ〉+

1

q4
C̃GG〈G2〉+ . . .

↘ pert. theory (8.14)

where C̃i are dimensionless functions (may contain ln q2/µ2)

Explicit calculation (Shifman, Vainstein, Zakharov 1979)

Π(q2) =
1

4π2
ln

µ2

−q2

[
1 +

αs(−q2)

π
+ . . .

]
+
mu +md

6q4
〈ψ̄ψ〉

+
1

12q4

〈αs
π
G2
〉

+
224

81q6
αs · π〈ψ̄ψ〉2 + . . . (8.15)

• in NLO, all coefficient functions receive corrections in αs(|q2|)

• Perturbation theory is correct to O(1/q4) accuracy: There exist no gauge-invariant operators
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with dimension two.

• Leading corrections beyond perturbation theory involve two parameters

〈ψ̄ψ〉 ' −(250 MeV)3〈αs
π
G2
〉
' 0.012− 0.020 GeV4 (8.16)

• Interpretation: (background field)

Separate formally all field operators in “fast” and “slow” components:

φ(x) =

 ∫
|k|>µ

d3k

(2π)32Ek
+

∫
|k|<µ

d3k

(2π)32Ek

[â†(k)eikx + â(k)e−ikx
]

= φfast(x) + φslow(x) (8.17)

so for quarks and gluons

ψ(x) =ψfast(x) + ψslow(x) , Aµ(x) = Aµfast(x) +Aµslow(x) (8.18)

Fast and slow components can be viewed as independent fields in the Lagrangian. One can, for

example, consider “slow” fields as given external fields (think of a magnet in a lab) and develop

a Feynman diagram technique for calculation of fast field propagation in the background of given

slow fields (think of an electron propagating and emitting photons inside a magnet)

By this reason, fast and slow fields are often referred to as “quantum” and “classical”

Integrations over the fast (“quantum”) fields in QCD can be done in perturbation theory; they

correspond to the coefficient functions in the OPE (by construction, see scalar examples) and the

result is expressed in terms of slow (“classical”) fields in the vacuum, which cannot be described

perturbatively.

Vacuum condensates are parametrizations of average properties of nonperturbative vacuum fields

— a variant of the mean field aproach adapted for QFT.

8.1.3 QCD sum rules

Experiment:

s

R(s)

0.8 1.5 GeV

where the peak corresponds to the ρ-meson. Let us calculate this contribution.

Πµν(q) =

∫
d4x eiqx〈Ω|T {jµ(x)jν(0)}|Ω〉

=

∫
d4x eiqx

[
θ(x0)〈Ω|jµ(x)|ρ〉〈ρ|jν(0)}|Ω〉+ θ(−x0)〈Ω|jν(0)|ρ〉〈ρ|jµ(x)}|Ω〉

]
(8.19)
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Define L19

〈Ω|jµ(0)|ρ(λ)(p)〉 = m2
ρ

√
2

gρ
ε(λ)
µ , λ = 1, 2, 3 , ε(λ)

µ pµ = 0 (8.20)

Note that a ρ-meson can have three polarizations, two transverse ones and one longitudinal

The contribution of interest corresponds to a simple Feynman diagram

ρ =
∑
λ

m2
ρ

√
2

gρ
ε(λ)
µ ·

1

m2
ρ − q2

ε(λ)∗
ν m2

ρ

√
2

gρ
(8.21)

The sum over polarizations can be done using∑
λ

ε(λ)
µ ε(λ)∗

ν = −gµν +
qµqν
m2
ρ

(8.22)

Obtain

. . . = m4
ρ

2

g2
ρ

1

m2
ρ − q2

(
−gµν +

qµqν
m2
ρ

)
=

2m2
ρ

g2
ρ

1

m2
ρ − q2

(
−gµνm2

ρ + qµqν
)

=
2m2

ρ

g2
ρ

1

m2
ρ − q2

(
−gµνq2 + qµqν

)
+ term ∼ gµν without the pole (8.23)

? Is this extra term in contradiction with gauge invariance

— no, it will be cancelled by contributions of other states

Thus

Π(q2)
∣∣∣
ρ−meson

=
2m2

ρ

g2
ρ

1

m2
ρ − q2 − iε

(8.24)

and therefore

Rρ(s) = 12π Im Π(s) = 12π2
2m2

ρ

g2
ρ

δ(s−m2
ρ) (8.25)

In this derivation we assumed that ρ is a stable state (for simplicity);

taking into account decays ρ→ ππ will modify the δ-function to a Breit-Wigner resonance.

Idea: (Shifman, Vainstein, Zakharov)

Consider a simplified model of the spectrum

s

R(s)

0.8 1.5 GeV m
ρ
2

0
s

Nc

R(s)

with free parameters m2
ρ, gρ and s0
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Then on the one hand

Πmodel(q2) =
1

12π2

µ2∫
ds

s− q2
Rmodel(s) =

2m2
ρ

g2
ρ

1

m2
ρ − q2

+
1

12π2

µ2∫
s0

ds

s− q2
·Nc (8.26)

and on the other hand

ΠQCD(q2) =
Nc

12π2
ln

µ2

−q2
+

1

12q4

〈αs
π
G2
〉

+
224

81q6
αs · π〈ψ̄ψ〉2 + . . . (8.27)

The sum rule:

Πmodel(q2) ' ΠQCD(q2) for moderately large negative q2 (8.28)

Why moderatively large:

For small q2 need many terms in the OPE, for large q2 loose sensitivity to resonance

First trick: The pert. term in the OPE can be written as (µ2 � q2)

Nc

12π2
ln

µ2

−q2
=

Nc

12π2

µ2∫
0

ds

s− q2
=

s0∫
0

+

µ2∫
s0

(8.29)

Subtracting the
∫ µ2

s0
part from the both sides obtain

2m2
ρ

g2
ρ

1

m2
ρ − q2

:=
Nc

12π2

s0∫
0

ds

s− q2
+

1

12q4

〈αs
π
G2
〉

+
224

81q6
αs · π〈ψ̄ψ〉2 (8.30)

This must work for q2 ∼ −(1− 2) GeV2, =⇒ three parameters m2
ρ, gρ and s0

Second trick: Borel transformation q2 →M2 = Borel parameter

B

[
1

m2 − q2

]
⇒ 1

M2
e−m

2/M2

B

[
1

(−q2)n

]
⇒ 1

(n− 1)!

1

M2n
(8.31)

Why:

— Contributions of higher mass states are suppressed exponentially e−s/M
2

instead of 1/(s− q2)

— Higher-order 1/q2n terms in the OPE are suppressed by 1/(n− 1)! factors

=⇒ SVZ sum rule

2m2
ρ

g2
ρ

e−m
2
ρ/M

2 1

M2
:=

Nc

12π2M2

s0∫
0

ds e−s/M
2

+
1

12M4

〈αs
π
G2
〉
− 112

81M6
αs · π〈ψ̄ψ〉2 (8.32)
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A numerical analysis:

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.00

0.01

0.02

0.03

0.04

lhs = solid

rhs = dashed

m2
ρ ' 0.5− 0.6 GeV2

g2
ρ ' 28± 2

s0 ' 1.5± 0.5 GeV2

(8.33)

in fair agreement with experiment.

• A large subfield of research inside QCD

• Original SVZ paper is one of the most cited in HEP,

has 5607 citations as of 30.11.2022

8.2 τ–decay and duality

Heavy τ -lepton: (e, µ, τ) mτ = 1.777 GeV

The Standard Model: �� �� �� �� �� ��W� W� W���ee �ud �usVud Vus
mW = 80.4 GeV � mτ , hence for low energies

1

m2
W − q2

' 1

m2
W

=⇒ Effective four-fermion interaction (Fermi)

τ → eντ ν̄e : Leff = − GF√
2

[
ēγµ(1− γ5)νe

][
ν̄τγµ(1− γ5)τ

]
τ → hadrons : Leff = − Vud

GF√
2

[
d̄γµ(1− γ5)u

][
ν̄τγµ(1− γ5)τ

]
+ . . . (8.34)

Explicit calculation yields (exercises):

Γ(τ → eντ ν̄e) =
G2
Fm

5
τ

192π3
(8.35)

We expect, qualitatively

Rτ =
Γ(τ → hadrons)

Γ(τ → eντ ν̄e)
'
(
|Vud|2 + |Vus|2

)
·Nc (8.36)
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This quantity can be measured very precisely, let us try to calculate it in QCD.

For simplicity set Vud → 1, Vus → 0 and neglect quark masses mu,d → 0

Using unitarity (optical theorem)

Γ(τ → hadrons) '

∣∣∣∣∣∣∣ � �� ∣∣∣∣∣∣∣
2

' 2 Im
� ��

(8.37)

where the shaded blob is given by

Πτ
µν = i

∫
d4x eiqx〈Ω|T {d̄(x)γµ(1− γ5)u(x) ū(0)γν(1− γ5)d(0)}|Ω〉

= (qµqν − gµνq2)Πτ (q2) (8.38)

[transversality holds for mu = md = 0, add an extra ∼ gµν function otherwise]

Explicit calculation yields (exercises):

Rτ = 12π

m2
τ∫

0

ds

m2
τ

(
1− s

m2
τ

)2(
1 +

2s

m2
τ

)
Im Πτ (s) (8.39)

which can be compared with e+e− annihilation cross section

Re+e−(s) = 12π Im Πe+e−(s) (8.40)

The extra s-integration corresponds to neutrino energy in the final state L20

The trick:

write

2i Im Πτ (s) = Πτ (s+ iε)−Πτ (s− iε) (8.41)

and transform the integration contour to a circle of radius m2
τ in the complex plane:

m2�
Im s

m2�
Re s

Thus

Rτ =
12π

2i

∮
C

ds

m2
τ

(
1− s

m2
τ

)2(
1 +

2s

m2
τ

)
Πτ (s) (8.42)

In this form
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� Integration contour is far away from s = 0, |s| = m2
τ � Λ2

QCD; thus perturbation theory (+

OPE corrections) can be used, apart from possibly a small region close to the real axis

� Luck: The contribution from the dangerous region s → m2
τ suppressed by the factor(

1− s/m2
τ

)2
� Luck: The LO contributioon ofthe gluon condensate ∼ 1/s2 = 1/q4 vanishes upon integra-

tion (accident)

=⇒ a very accurate prediction possible

OPE:

Π(s) =
1

4π2
ln
µ2

−s

[
1 + a1αs(s) + a2α

2
s(s) + a3α

3
s(s)

]
+
[
1 + b1αs(s)

] 1

12s

〈αs
π
G2
〉

+
[
c0 + c1αs(s)

]
παs〈ψ̄ψ〉2 (8.43)

Experiment:

Rτ = 3.4771± 0.0084 HFAG, http://www.slac.stanford.edu/xorg/hfag/ (8.44)

Abbas et al. '12

Pich '11

Cvetic et al. '10

Menke '09

Caprini and Fischer '11

Davier et al.'08

Baikov et al.'08

Maltman and Yavin '08

Beneke-Jamin 08

Narison '09

World Average HBethkeL '11

This work HFOPTL
This work HCIPTL

ΑsHm
Τ

2L

0.30 0.35 0.40 0.45

Recent αs determinations from τ -

decays using different hypothesises

for the resummation of high or-

ders in perturbation theory. Ta-

ble taken from: D. Boito et al.

[arXiv:1212.0091]

The trick that we used here is rather general.

Let Π(s) be a certain two-point correlation function. Then R(s) ∼ Im Π(s) for small s ∼ Λ2
QCD

cannot be calculated in perturbation theory, but the integral∫ s0

0
dsw(s) Im Π(s) (8.45)

where w(s) is a smooth function is often calulable (or at least can be estimated).

E.g. for the total cross section of e+e− annihilation

s

R(s)

0.8 1.5 GeV

⇐ the area is the same

Accepted terminology: A resonance is “dual” to the q̄q pair in the “interval of duality” s0
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9 Deep–Inelastic Lepton–Nucleon Scattering

9.1 Elastic Lepton–Nucleon Scattering

Elastic scattering of electrons from protons (neutrons):

e(k) +N(p)→ e(k′) +N(p′)

e(k0)e(k)
N(p) N(p0)

Differential cross section for unpolarized particles (Rosenbluth)

dσ

dΩ
=

α2
em

4E2 sin4 θ
2

1

1 + (2E/m) sin2 θ
2

[(
F 2

1 −
q2

4m2
F 2

2

)
cos2 θ

2
− q2

2m2

(
F1 + F2

)2
sin2 θ

2

]
(9.1)

where

E : electron energy in the lab frame

m : nucleon mass

θ : scattering angle in the lab frame

q = k − k′ = p′ − p : momentum transfer; Q2 ≡ −q2 = 4E2sin2 θ
2

and (definition):

〈N(p′)|jem
µ (0)|N(p)〉 := ū(p′)

[
γµF1(Q2) +

i

2m
σµνq

νF2(Q2)

]
u(p) (9.2)

The functions F1(Q2) and F2(Q2) are called Dirac and Pauli form factors, respectively

F p1 (0) = 1 , Fn1 (0) = 0 , electric charge

F p2 (0) = 2.792847µN , Fn2 (0) = −1.913043µN magnetic moment µN = e~/2mN

(9.3)

In a non-relativistic theory form factor is a Fourier transform of the charge/current distribution:

F (~q2) =

∫
d3x ei~q~x ρ(~x) (9.4)

Hence a deviation from F (Q2) = const signals that a particle has internal structure

For Q2 ≤ 1 GeV2 (Hofstadter)

F1,2 '
1

[1 +Q2/Q2
0]2

with Q2
0 ' 0.71 GeV2 (9.5)

⇐= corresponds to the proton radius ca. Rp ' 0.85 fm

Studies of form factors at large Q2 � 1 GeV2 is an active research topic (theory complicated)
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Recent results from Jefferson Laboratory: [Arrington et al., arXiv:1102.2463]

9.2 Deep-Inelastic Scattering and Bjorken scaling

In 1968 J. Bjorken proposed a different type of experiment: Sum over all hadronic final states

e(k) +N(p)→ e(k′) +X(p′)

e(k) e(k0)

�(q)

N (p)
g X(p0)

⇐= the Deep-Inelastic Lepton-Hadron Scattering (DIS)

• “Sum over all states” in practice means that hadrons are not identified (measured);

the only detected particle is the scattered electron in the final state

— one measures its scattering angle θ and energy E′

L21
Kinematic variables

� m: the nucleon mass

� E = pk
m : beam electron energy (in L.S. pµ = {m, 0, 0, 0})

� E′ = pk′

m : scattered electron energy (in L.S.)

� θ: electron scattering angle (in L.S.)

q = k − k′ = p′ − p Q2 = −q2 = 4EE′ sin2 θ

2

� ν = pq
m : energy transfer to the hadronic system (in L.S.)

� y = ν/E: energy transfer/maximum energy transfer (in L.S.) 0 < y < 1

� W 2 = (p+ q)2: invariant mass squared of the hadronic system
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� xB = Q2

2pq = Q2

2mν : Bjorken’s scaling variable 0 < x < 1

Kinematic bound:

W 2 = m2 + 2mν −Q2 ≥ m2 =⇒ xB ≤ 1

Elastic scattering corresponds to xB = 1 in which case 2mν = Q2

The Bjorken limit

W →∞ , Q2 →∞ such that xB =
Q2

2pq
= const.

The transition amplitude for a given final state is

iM(eN → eX) = (−ie)ū(k′, λ′)γµu(k, λ)
−i
q2

(ie)〈X(p′)|jµ(0)|N(p)〉 (9.6)

where

jµ(x) = euū(x)γµu(x) + edd̄(x)γµd(x) + . . . (9.7)

The cross section summed over hadronic states is then

dσ =
1

2s

d3k′

(2π)32|k′|
1

2

∑
λ,λ′

∑
X

∫
dΠX |iM(eN → eX(p′)|2(2π)4δ4(p+ q − p′) (9.8)

↖ As usual, we sum over spins of final state electrons and average over spins of initial electrons.

This corresponds to the simplest experimental setup where spin is not measured

Thus

dσ

d3k′
=

1

2s

1

(2π)32|k′|
1

2

∑
λ,λ′

ū(k, λ)γµu(k′, λ′)ū(k′, λ′)γνu(k, λ)
e4

Q4
(2π)Wµν(p, q) (9.9)

where

(2π)Wµν(p, q) =
∑
X

∫
dΠX〈N(p)|jµ(0)|X(p′)〉〈X(p′)|jν(0)|N(p)〉(2π)4δ4(p+ q − p′) (9.10)

Using the optical theorem

Wµν(p, q) =
1

π
ImTµν(p, q) (9.11)

where

Tµν = i

∫
d4x eiqx〈N(p)|T {jµ(x)jν(0)|}|N(p)〉 (9.12)

is called the forward Compton amplitude:

iM(γN → γN) = e2ε∗µ(q)εν(q)Tµν , q2 = 0 (9.13)
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We will use this representation later

Conservation of the electromagnetic current (Ward identity) implies

qµWµν(p, q) = qνWµν(p, q) = 0 (9.14)

Therefore Wµν(p, q) must have the form

Wµν(p, q) =

(
−gµν +

qµqν
q2

)
W1(pq,Q2) +

(
pµ − qµ

pq

q2

)(
pν − qν

pq

q2

)
W2(pq,Q2)

+ iεµναβq
αpβW3(pq,Q2) (9.15)

Parity conservation in strong and electromagnetic interactions =⇒ W3(ν,Q2) = 0

The scalar functions W1,2 depend on the invariants W (pq,Q2) or equivalently W (xB, Q
2)

They are called structure functions

Further we have

1

2

∑
λ,λ′

[ū(k, λ)γµu(k′, λ′)][ū(k′, λ′)γνu(k, λ)] =
1

2
Tr [/kγµ/k

′
γν ] = 2[kµk

′ν + kνk
′µ − gµν(kk′)] (9.16)

and

d3k′ = |k′|2d|k′| dφ d cos θ = (E′)2dE′dΩ′ (9.17)

so that after some algebra

dσ

dE′d cos θ
=

8πα2
emE

′2

Q4

{
1

m
W1(ν,Q2) sin2 θ

2
+
m

2
W2(ν,Q2) cos2 θ

2

}
(9.18)

Thus W1(ν,Q2) and W2(ν,Q2) can be measured experimentally from the E′, θ of scattered electrons

A more convenient representation

(E′, cos θ) → (xB, y) (9.19)

Since

s =(p+ k)2 ' 2mE y =
2pq

2pk
=
E − E′

E
xB =

4EE′ sin2 θ
2

2m(E − E′)
(9.20)

obtain

sin2 θ

2
=
m2xB
s

y

1− y
∂(xB, y)

∂(E′, cos θ)
=

2E′

2m(E − E′)
=

2E′

ys
(9.21)

and neglecting terms O(m/E)

dσ

dxdy
=
πα2

ems

Q4

[
2xBy

2W1(ν,Q2) + y(1− y)sW2(ν,Q2)
]

(9.22)
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The prediction by Bjorken was that in the synchronous high-energy and high-Q2 limit

W1(ν,Q2) = F1(xB) +O(1/Q2)

1

4
ysW2(ν,Q2) = F2(xB) +O(1/Q2) (9.23)

— the Bjorken scaling

confusing notation: Structure functions F1 and F2 are not Dirac F1 and Pauli F2 form factors !!

As we will see, this behaviour indicates the existence of free pointlike charged particles in hadrons

9.3 The Parton Model

The physical picture of DIS becomes more transparent in a special reference frame, the Breit frame:

We choose

qµ =


0

0

0

−Q

 pµ =


√
p2
z +m2

0

0

pz

 (9.24)

• Since q0 = 0, electron has the same energy before and after the collision (in this frame)

• Since pq = Qpz and xB = Q2/(2pq) it follows that pz = Q/(2xB)→∞ in the Bjorken limit

Assume that nucleon is a bound states of pointlike (small-size) constitients — partons

(e.g. quarks and gluons).

— In nonrelativistic QM such a state would be described by a wave function Ψ(x1, . . . , xn).

— In a relativistic theory this description is lost, in general, because the number of partons is not

conserved

Z-graphs:

time

2 partons 4 partons 2 partons
However, in a fast moving hadron all longitudinal distances are contracted and all processes are

slowed down by the Lorentz factor γ = 1/
√

1− v2/c2

• For an observer in the Breit frame the proton “looks” like a pancake

• An interaction between partons in the proton rest frame requires time τ0 ∼ R/c;
it becomes t ' τ0

pz
m →∞ in Breit frame — partons do not have time to “talk” to each other

Thus: L22

� A fast-moving hadron can be viewed as a collection of partons which fly in the same direction
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� Since the partons have no time to interact, each of them can be considered as free and carrying

a fixed momentum fraction of the proton

� A “hard” external probe (virtual photon) can only interact with one parton (unless parton

density is very large)

� Scattering processes on different partons do not interfere quantum-mechanically; the cross

section is given by a sum of cross sections on individual partons

The overall picture that arises in this way has become known as the QCD parton model

In our case (DIS)

e

p


t

z
ele
tron


�(q)`
`0

parton (quark) momentum in the proton:

`µ = (ξpz, 0, 0, ξpz) (9.25)

parton momentum after the collision:

`′µ = `µ + q = (ξpz, 0, 0, ξpz −Q) (9.26)

parton remains to be on-shell:

0 = `′2 = (ξpz)
2 − (ξpz −Q)2 = 2ξpzQ−Q2 =⇒ ξ =

Q

2pz
(9.27)

since pz = Q/(2xB) (see above) we obtain

ξ =
Q

2pz
=
Q

2

2

Q
xB =⇒ ξ = xB (9.28)

— parton momentum fraction is equal to the Bjorken variable

The parton content of the nucleon is described by parton distributions. Let

Ff (ξ)dξ f = q, q̄, g (9.29)

be the number of quark, antiquark and gluon partons with momentum fractions in the interval

between ξ and ξ + dξ
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The deep-inelastic cross section from a proton (in the parton model) is given by the incoherent sum

of the DIS cross sections from the partons:

σe(k)N(p)→e(k′)X =
∑
f

∫ 1

0
dξ Ff (ξ)σe(k)f(ξp)→e(k′)f(ξp+q) (9.30)

This formula can be illustrated by the following picture:

=
∑
f

ele
tron� quark
ross se
tion

Quantum-mechanical intepretation:

Transition amplitide between two states is proportional to the overlap between the wave functions:

F|1〉→|2〉(q) =

∫
d3x e−iqxΨ1(x)Ψ∗2(x) =

∫
d3x e−iqx

∫
d3p

(2π)3

∫
d3p′

(2π)3
eipx−ip

′xΨ1(p)Ψ∗2(p′)

=

∫
d3p

(2π)3
Ψ1(p)Ψ∗2(p+ q) ∼ 1/|q|k or ∼ e−R|q| for large q (9.31)

If we sum over the final states this suppression disappears:∑
|2〉

|F|1〉→|2〉(q)|2 =
∑
|2〉

∫
d3p

(2π)3
Ψ1(p)Ψ∗2(p+ q)

∫
d3p′

(2π)3
Ψ∗1(p′)Ψ2(p′ + q)

=

∫
d3p

(2π)3

∫
d3p′

(2π)3
Ψ1(p)Ψ∗1(p′) (2π)3δ3(p− p′) = 1 (9.32)

where I used the completeness condition∑
|2〉

Ψ∗2(p+ q)Ψ2(p′ + q) = (2π)3δ3(p− p′) (9.33)

Thus the cross section becomes much larger and, crucially, we can calculate it without any knowl-

edge of the “true” eigenstates of the Hamiltonian:∑
|2〉:eigenstates of H

|F|1〉→|2〉(q)|2 =
∑

|2〉:plane waves

|F|1〉→|2〉(q)|2 (9.34)

Example: photodisintegration cross section for deuteron

In our context: we can neglect interaction of hit quark with the remnant partons in the final state
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Electron-quark scattering

— a close analogue to electron-muon scattering (QED):e(k) e(k0)
q(`) q(`0) dσ

dΩCM
=

1

64π2ŝ
|M |2 =

α2e2
q

2ŝ

ŝ2 + û2

t̂2

where

`µ ' ξpµ quark four-momentum

`2 = `′2 = 0 , k2 = k′2 = 0

Mandelstam variables for the electron-quark scattering:

ŝ = (k + `)2 = (k + ξp)2 = 2ξ(kp) + ��p
2 ' ξ(k + p)2 = ξs

t̂ = (k′ − k)2 = −Q2

û = (k − `′)2 = −ŝ− t̂ , ⇐= ŝ+ t̂+ û = 0 (9.35)

In the physical region for the electron-quark scattering

ŝ ≥ |t̂| =⇒ ξs ≥ Q2 (9.36)

In the CM system:

dΩCM = dφ d cos θCM t̂ = −1

2
ŝ(1− cos θCM) (9.37)

Therefore

dσ

dt
= (2π)︸︷︷︸ ·2ŝ · α2e2

q

2ŝ

ŝ2 + û2

t̂2
=

2πα2e2
q

Q4

ŝ2 + û2

ŝ2∫
dφ (9.38)

The last factor can be rewritten as (ŝ2 + û2)/ŝ2 = 1 +
[
(−ŝ− t̂)/ŝ

]2
= 1 +

(
1−Q2/(ξs)

)2
It follows that

dσDIS

dQ2
=
∑
f

∫ 1

0
dξ Ff (ξ)e2

f

2πα2

Q4

[
1 +

û2

ŝ2

]
θ(ξs−Q2)

:=

∫ 1

0
dxB

dσDIS

dxBdQ2
(9.39)

Since ξ = xB this means that

dσDIS

dxBdQ2
=
∑
f

e2
fFf (xB)

2πα2

Q4

[
1 +

û2

ŝ2

]
θ(xBs−Q2) (9.40)
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It remains to express everything in terms of xB, y variables:

y :=
2pq

2pk
=

2p(k − k′)
2pk

· ξ
ξ

=
2`(k − k′)

2`k
=
ŝ+ û

ŝ

=⇒ û

ŝ
= −(1− y)

Q2 =
Q2

2pq
· 2pq

2pk
· 2pk = xB · y · s

=⇒ dxBdQ
2 =

dQ2

dy
dxBdy = xBs dxBdy

=⇒ dσDIS

dxBdy
= xBs

dσDIS

dxBdQ2
(9.41)

We obtain

dσDIS

dxBdy
=

∑
f

e2
fxBFf (xB)

 2πα2s

Q4

[
1 + (1− y)2

]
(9.42)

On the other hand, we derived before

dσDIS

dxBdy
=
πα2

ems

Q4

[
2xBy

2W1(ν,Q2) + y(1− y)sW2(ν,Q2)
]

(9.43)

so that for F1 ≡W1, F2 ≡ (ys/4)W2

F2(xB) = xBF1(xB) =
∑
f

e2
fxBFf (xB) (9.44)

� The structure functions F1 and F2 do not depend on y (or Q2) (Bjorken scaling)

� Let

u(xB) : u-quark momentum fraction distribution

d(xB) : d-quark momentum fraction distribution

. . . (9.45)

The structure function F1 is given by the sum of quark distributions weighted with electric

charges squared:

F1(xB) =
4

9
u(xB) +

1

9
d(xB) + . . . (9.46)

� The structure function F2 is expressed in terms of F1 through the Callan-Gross relation

F2(xB) = xBF1(xB) (9.47)
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Let

R(xB) =
F2(xB)− xBF1(xB)

F2(xB)
(9.48)

One can show (exercise) that in the parton model

R(x) =

{
0, if all charged partons have spin 1/2

1, if all charged partons have spin zero
(9.49)

=⇒ Experimental confirmation that partons have spin 1/2 (quarks)

Typical values: Shown: new ZEUS FL (a) and R (b) measurements (solid points) in compar-

ison with H1 measurements (open points) and NNLO HERAPDF
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[Figure taken from: Zhiqing Zhang, for the H1, ZEUS Collaborations, arXiv:1412.6328 ]

The power of the parton model is that it is applicable for many reactions. Example:

L23

The Drell-Yan Process

N(p1) +N(p2) → µ+(k1) + µ−(k2) +X

or

N(p1) +N(p2) → Higgs(M) +X (9.50)
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�+
��

Higgs Bjorken limit:

s = (p1 + p2)2 →∞ ,

M2 = (k1 + k2)2 →∞ ,

M2/s = const

— Two “pancakes” approach each other at larger velocity and collide

In the parton model

dσ

dM2
(NN → µ+µ− +X) =

∑
q

∫ 1

0
dξ1 F

N
q (ξ1)

∫ 1

0
dξ2 F

N
q̄ (ξ2)

dσ

dM2
(qq̄ → µ+µ− +X)

=
8πα2

9M4

∑
q

e2
q

∫ 1

0
dξ1 F

N
q (ξ1)

∫ 1

0
dξ2 F

N
q̄ (ξ2)δ

(
ξ1ξ2 −

M2

s

)
(9.51)

Most importantly, FNq,q̄(ξ) are the same functions as in DIS, so that e.g. Higgs cross section can be

predicted

10 Factorization and Parton Distributions

Aim of this section is to provide a QCD derivation of the parton model and go beyond it.

Let us summarize what we know about DIS

Tµν = i

∫
d4x eiqx〈N(p)|T {jµ(x)jν(0)|}|N(p)〉

Wµν(p, q) =
1

π
ImTµν(p, q)

where

(2π)Wµν(p, q) =
∑
X

∫
dΠX〈N(p)|jµ(0)|X(p′)〉〈X(p′)|jν(0)|N(p)〉(2π)4δ4(p+ q − p′) (10.1)

can be expressed in terms of the structure functions (observable quantities)

Wµν(p, q) =

(
−gµν +

qµqν
q2

)
F1(xB, Q

2) +

(
pµ − qµ

pq

q2

)(
pν − qν

pq

q2

)
2

pq
F2(xB, Q

2) (10.2)
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Parton model suggests that we can separate (factorize) the DIS cross section in two subprocesses:

↗ electron-quark cross section

- - - - - - - - - - - - - -

↘ quark momentum fraction distribution

QCD quarks interact by exchanging gluons; we will have more complicated Feynman diagrams like

Where to draw the line?

— The first possibility: gluon is just an “other” parton in the nucleon, part of “X”

— The second possiblity: gluon exchange is a correction to the electron-quark cross section

The guiding principle is whether the gluon is emitted at short distances or long time ago, as part

of the preparation of the parton wave function. It is easy to see, however, that the integral over

gluon momenta is logarithmicq
k ∼ αs

∫ Q

m

d4k

k4
∼ αs lnQ2/m2

Logarithmic integrals are specific in that there is no dominant integration region — the answer

comes from contributions of all momenta, both large (∼ Q) and small (∼ m).

This situation is similar to what we have seen in the operator product expansion.

Thus we need to make an explicit separation by introducing an intermediate factorization scale,

schematically

ln
Q2

m2
= ln

Q2

µ2
F

+ ln
µ2
F

m2
, Q2 � µ2

F � m2 (Λ2
QCD) (10.3)

and rewrite, in the sum with the LO diagram

1 + aαs ln
Q2

m2
+ . . . =

(
1 + aαs ln

Q2

µ2
F

)
︸ ︷︷ ︸

(
1 + aαs ln

µ2
F

m2

)
︸ ︷︷ ︸+ . . .

e−q cross section parton distribution (10.4)
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In this way, the space-time picture of the parton model is recovered at the cost that the parton

cross sections and parton distributions become scale dependent :

dσeN =
∑
f

∫ 1

0
dξ Ff (ξ, µF ) dσef (µf ) (10.5)

or

F1,2(xB, Q
2) =

∑
f

e2
f

∫
dξ c1,2(xB, ξ,

Q2

µ2
f

)Ff (ξ, µf ) (10.6)

The scale-dependence of parton distributions can be studied using renormalization group.

After this is done, we can choose µ2
f = Q2 so that the coefficient functions will be calculable as a

series in αs(Q
2) without large logarithms.

To the leading order we will obtain e.g.

F1(xB, Q
2) =

4

9
u(xB, Q

2) +
1

9
d(xB, Q

2) + . . . (10.7)

Thus we will develop a systematic approach:

� We predict that Bjorken scaling is violated by (small) logarithmic effects

� We can calculate the Q2 dependence of the structure functions to arbitrary accuracy in

perturbation theory (in principle)

� We can generalize this method to other processes, e.g. Drell-Yan or Higgs production

10.1 Leading-order calculation

As I discussed already in connection with vacuum condensates, the scale separation can be intro-

duced at the level of quantum fields in the Lagrangian:

Separate formally all field operators in “fast” and “slow” components:

φ(x) =

 ∫
|k|>µ

d3k

(2π)32Ek
+

∫
|k|<µ

d3k

(2π)32Ek

[â†(k)eikx + â(k)e−ikx
]

= φfast(x) + φslow(x) (10.8)

so for quarks and gluons

ψ(x) =ψfast(x) + ψslow(x) , Aµ(x) = Aµfast(x) +Aµslow(x) (10.9)

Fast and slow fields are often referred to as “quantum” and “classical” and can be viewed as

independent fields in the Lagrangian:

ψq(x) ≡ ψfast(x) , ψc(x) ≡ ψslow(x) (10.10)

For gauge fields one requires

Aµq (x) −→ V (x)Aµq (x)V †(x)

Aµc (x) −→ V (x)

(
Aµc (x) +

i

g
∂µ

)
V †(x) (10.11)

under gauge transformations. This has two advantages:
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� Renormalization is simplified because Aµq transforms homogeneously

(→ gAµq is not renormalized)

� If the integrals over all “quantum” fields are taken (loops), the result must be gauge-invariant

under the transformations of “classical” fields. Hence one can use different gauge conditions

for “quantum” and “classical” fields.

Propagators of quantum fields are formally defined with an IR cutoff, e.g. in Feynman gauge

〈0|T {Aµq (x)Aνq (0)}|0〉 =

∫
|k|>µ

d4k

(2π)4
e−ikx

igµν

k2 + iε
(10.12)

but the cutoff dependence only matters if the integrals are IR divergent (and in this case can be

regularized dimensionally)

Classical and quantum fields are orthogonal:

〈0|T {Aµq (x)Aνc (0)}|0〉 = 0 (10.13)

and all interaction vertices must contain at least two quantum fields


 q
q

q 

q

q q



q q
q

Let us do the leading-order calculation using this logic (we expect to reproduce the parton model).

L24

Tµν = i

∫
d4x eiqx〈N |T {ψ(x)γµψ(x)ψ(0)γνψ(0))|}|N〉

= i

∫
d4x eiqx〈N |T {ψc(x)γµψq(x)ψq(0)γνψc(0))|}|N〉

+ i

∫
d4x eiqx〈N |T {ψq(x)γµψc(x)ψc(0)γνψq(0))|}|N〉

+ i

∫
d4x eiqx〈N |T {ψq(x)γµψq(x)ψq(0)γνψq(0))|}|N〉+ . . . (10.14)


 
 
 
 


(massless) quark propagator in coordinate space:

〈0|T {ψq(x)ψq(0)}|0〉 =

∫
|k|>µ

d4p

(2π)4
e−ipx

i/p

p2 + iε
' i

2π2

/x

[−x2 + iε]2
(10.15)
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Thus to LO

Tµν = i
i

2π2

∫
d4x

eiqx

x4
〈N |
[
ψ̄c(x)γµ/xγνψc(0)− ψ̄c(0)γν/xγµψc(x)

]
|N〉 (10.16)

In what follows we will omit the subscript “classical”; just remember that all matrix elements

include small frequencies, less than µ.

• First, use

γµ/xγν = xµγν + xνγµ − gµν/x+ iεµρνσx
ργ5γ

σ (10.17)

The matrix element of γ5γ
σ must be a pseudovector

〈N |ψ̄(x)γ5γ
σψ(0)|N〉 ∼ Sρ [nucleon spin vector]

For unpolarized nucleons

1

2

∑
s

〈N(p, s)| . . . |N(p, s)〉

such matrix elements vanish

• Second, the relevant matrix elements have the following general structure:

〈N |ψ̄(x)γσψ(0)|N〉 ∼ pσf1(px, x2) + xσf2(px, x2) (10.18)

If Q2 → ∞ (Bjorken limit) the second structure and also terms in the expansion of f1(px, x2) in

powers of x2 produce corrections ∼ 1/Q2 and can be neglected

Indeed, one can easily derive∫
d4x

eiqx

x4
xα = 2π2 qα

q2∫
d4x

eiqx

x2
xα = 8π2 qα

q4
←− note extra 1/q2 (10.19)

If x2 = 0 the MEs are functions of one variable (px) and can be written in the form of a Fourier

integral

〈N |ψ̄(x)γσψ(0)|N〉
∣∣∣
x2=0

= 2pσ
∫ 1

−1
du eiupxF (u)

〈N |ψ̄(0)γσψ(x)|N〉
∣∣∣
x2=0

= 〈N |ψ̄(−x)γσψ(0)|N〉
∣∣∣
x2=0

= 2pσ
∫ 1

−1
du e−iupxF (u) (10.20)

[why
∫ 1
−1du: the function F (u) vanishs outside of u ∈ (−1, 1); will motivate later; formal proof

complicated]
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We obtain:

Tµν = − 1

2π2
2

∫
d4x

x4

1∫
−1

duF (u)

{
eiupx+iqx

[
xµpν + xνpµ − gµνpx

]
− e−iupx+iqx

[
xµpν + xνpµ − gµνpx

]}

= −2

1∫
−1

duF (u)

{
1

(q + up)2 + iε

[
(q + up)µpν + (q + up)νpµ − gµνp · (q + up)

]

− 1

(q − up)2 + iε

[
(q − up)µpν + (q − up)νpµ − gµνp · (q − up)

]}
(10.21)

Let p2 = m2
N → 0, then

(q + up)2 = q2 + 2uqp = −Q2 + 2uqp = 2qp(u− xB)

(q − up)2 = 2qp(−u− xB) (10.22)

so that

Tµν = −2
1

2qp

1∫
−1

duF (u)

{
1

u− xB + iε

[
(q + up)µpν + (q + up)νpµ − gµνpq

]

− 1

−u− xB + iε

[
(q − up)µpν + (q − up)νpµ − gµνpq

]}
(10.23)

Next

Im
1

u− xB + iε
= −πδ(u− xB) , Im

1

−u− xB + iε
= −πδ(u+ xB) (10.24)

so that

1

π
ImTµν =

1

qp

{
F (xB)

[
(q + xBp)µpν + (q + xBp)νpµ − gµνqp

]
− F (−xB)

[
(q + xBp)µpν + (q + xBp)νpµ − gµνqp

]}
(10.25)

Finally, we can rewrite

(q + xBp)µpν + (q + xBp)νpµ − gµνqp = pq

(
−gµν +

qµqν
q2

)
+ 2xB

(
pµ + qµ

1

2xB

)(
pν + qν

1

2xB

)
(10.26)

and thus

1

π
ImTµν =

[
F (xB)− F (−xB)

]{(
−gµν +

qµqν
q2

)
+

2xB
pq

(
pµ + qµ

1

2xB

)(
pν + qν

1

2xB

)}
(10.27)
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or

F1(xB, Q
2) = F (xB)− F (−xB)

F2(xB, Q
2) = xBF1(xB, Q

2) (10.28)

thus reproducing the parton model, with the identification

F (xB) = Fq(xB) : quark distribution

−F (−xB) = Fq̄(xB) : antiquark distribution (10.29)

Thus:

� We are on the right track, but:

� Our definition of parton distributions is not gauge invariant. Result gauge dependent?

� We used free quark propagator in this calculation. In reality the quark propagates inside the

nucleon and could interact with “clasical” fields theerein. Can we neglect this interaction or

not?

Note that this is a reformulation of the question whether we can neglect the final state

interaction

10.2 Light-cone expansion of the quark propagator in the background field

Quark propagator in the background field

?

Light-cone expansion:

S(x) =
1

x4
S1(x,Aµ) +

1

x2
S2(x,Aµ) + lnx2S3(x,Aµ) + . . . (10.30)
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Only the most singular term ∼ 1/x4 is relevant in the present context

——— = ψ(x)ψ(0) =
i

2π2

/x

x4

= ψ(x)ig

∫
d4z ψ(z)Aµ(z)γµψ(z)ψ(0)

= ig

(
i

2π2

)2 ∫
d4z

/x− /z
(x− z)4

Aµ(z)γµ
/z

z4
ū = 1− u

= − ig

4π4

1∫
0

duu(1− u)

∫
d4z Aµ(z)(/x− /z)γµ/z

Γ(4)

[(z − ux)2 + uūx2]4

= − ig

4π4

1∫
0

duuū

∫
d4z Aµ(z + ux)(ū/x− /z)γµ(/z + u/x)

Γ(4)

[z2 + uūx2]4
(10.31)

Since there is no dependence on z · x in the denominator, the expansion of the field L25

Aµ(z + ux) = Aµ(ux) + zν∂νAµ(ux) + . . . (10.32)

will produce subleading terms that are less singular at x2 → 0.

We need ∫
d4z

Γ(4)

[z2 +A]4
= −iπ2 1

A2∫
d4z

Γ(4)

[z2 +A]4
zαzβ = −iπ2

(
1

2
gαβ

)
1

A
(10.33)

After some algebra one obtains

. . . = − g

4π2

1∫
0

du

{
2xµ
x4

Aµ(ux)/x−
1

2x2

[
∂αAβ(ux)

(
uγαγβ/x−ū/xγβγα

)
+xξuū/x∂

2Aξ(ux)
]}

+O(lnx2)

(10.34)

Here we only need the first term:

i/x

2π2x4

[
1 + ig

1∫
0

duxµA
µ(ux)

]
(10.35)

The leading contributions are easy to calculate to all orders in the field. One obtains

i/x

2π2x4
Pexp

[
ig

1∫
0

duxµA
µ(ux)

]
(10.36)

where

Pexp
[
∗ ∗
]

= 1 + ig

1∫
0

duxµA
µ(ux) + (ig)2

1∫
0

du

u∫
0

dv xµA
µ(ux)xνA

ν(vx) + . . . (10.37)
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The fields cannot be interchanged because

Aµ ≡ Aaµt
a = Aaµ

λa

2
3× 3 matrix in color space (10.38)

[full analogy with time-ordered exponent in QM time-dependent perturbation theory]

A convenient shorthand notation:

[x, y] = Pexp

[
ig

1∫
0

du (x− y)µA
µ(ux+ ūy)

]
ū = 1− u (10.39)

Thus we obtain the quark propagator in the background gluon field (Gross, Treiman ’71)

S(x) = ψq(x)ψq(0) =
i/x

2π2x4
[x, 0]c +O

(
1

x2

)
(10.40)

10.3 Parton model revisited

Now go back to the calculation of the DIS cross section. The first contribution becomes

Tµν = i

∫
d4x eiqx〈N |T {ψc(x)γµψq(x)ψq(0)γνψc(0))|}|N〉+ . . .

= i
i

2π2

∫
d4x

eiqx

x4
〈N |ψ̄c(x)γµ/xγν [x, 0]cψc(0)|N〉 (10.41)

The calculation remains the same, but the operators become decorated with a gauge-link factor

(called Wilson line) connecting the quark fields. Thus a better definition of the parton distribution

is

〈N(p)|ψ̄(x)γσ[x, 0]ψ(0)|N(p)〉
∣∣∣
x2=0

= 2pσ
∫ 1

−1
du eiupxF (u) (10.42)

Let us check that the operator on the l.h.s. is gauge invariant. For simplicity I consider abelian

gauge trafos (like in QED):

ψ̄(x)γσeig
∫ 1
0 du xµA

µ(ux)ψ(0) −→ ψ̄(x)γσe−iα(x)e
ig

∫ 1
0 du xµ(Aµ(ux)+ 1

g
∂µα(ux))

eiα(0)ψ(0) (10.43)

Thus the extra term under the exponent is

−iα(x) + iα(0) + i

1∫
0

duxµ∂µα(ux) (10.44)

Euler’s Homogeneous Function Theorem implies

xµ
∂

∂xµ
α(ux) = u

d

du
α(ux) (10.45)
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Therefore

1∫
0

duxµ∂µα(ux) =

1∫
0

duxµ
∂

∂(uxµ)
α(ux) =

1∫
0

du
1

u
u
d

du
α(ux) = α(x)− α(0) (10.46)

and all α-dependent terms cancel as they should

Another possibility to see gauge invariance: Let x→ 0 (all components); then

ψ̄(x) = ψ̄(0)[1 + xµ
←
∂ µ + . . .]

[x, 0] = 1 + ig

∫ 1

0
duxµA

µ(ux) + . . . = 1 + igxµA
µ(0) + . . . (10.47)

Thus to first order

ψ̄(x)Γ[x, 0]ψ(0) = ψ̄(0)Γψ(0) +xµψ̄(0)Γ[
←
∂ µ +igAµ]ψ(0) = ψ̄(0)Γψ(0) +xµψ̄(0)Γ

←
Dµ ψ(0) (10.48)

— the expansion of nonlocal operators with Wilson lines goes over covariant derivatives. This is

true to all orders:

ψ̄(x)Γ[x, 0]ψ(0) =
∑
n

1

n!
xµ1 . . . xµnψ̄(0)Γ

←
Dµ1 . . .

←
Dµn ψ(0) (10.49)

The parton model is largerly based on intuition that fast moving hadrons are Lorentz-contracted,

similar to what we know about rigid bodies. But is it really obvious?

Example I: Assume that a proton can be modelled as a point-like charge which is a source of a

scalar potential (Yukawa with mass zero)

φ(~x) =
q

|~x|
←− for proton at rest (10.50)

The field is certainly spherically symmetric in this frame.

Making a Lorentz transformation (boost along the x3-direction) we obtain

φ′(x′) =
q

[x2
⊥ + γ2(vt′ − x′3)2]1/2

x2
⊥ = x2

1 + x2
2 (10.51)

where γ = 1/
√

1− v2. As γ → ∞ the field vanishes as 1/γ except for a narrow strip (pancake)

around x′3 ' vt′, as expected.

Example II: A Coulomb potential in Eigenkoordinatensystem (QED)

Aµ(~x) =
qδµ0

|~x|
←− for proton at rest (10.52)
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Then

A′0(x′) =
qγ

[x2
⊥ + γ2(vt′ − x′3)2]1/2

A′3(x′) =
−qvγ

[x2
⊥ + γ2(vt′ − x′3)2]1/2

A′⊥(x′) = 0 (10.53)

In this case for γ →∞ both A′0(x′) and A′3(x′) ∼ const(?!) Where is my pancake???

The resolution of this paradox is that

for γ →∞ A′µ(x′) ∼ q∂µ ln(vt′ − x′3)

— can be removed by a gauge transformation. Thus, although the four-potential is not Lorentz-

contracted, the electric and magnetic fields are contracted to a pancake, e.g.

E′3(x′) =
−qγ(vt′ − x′3)

[x2
⊥ + γ2(vt′ − x′3)2]3/2

(10.54)

The parton model is recovered in a certain gauge where the Wilson line can be neglected

xµAµ(ux) = 0 (10.55)

where xµ is the 4-vector in the direction of the outgoing (struck) quark.

light-cone gauge nµAµ(x) = 0 , n2 = 0

Fock-Schwinger gauge xµAµ(x) = 0 , Aµ(0) = 0 (10.56)

10.4 The DGLAP Evolution equation

10.4.1 Preliminary remarks

Let us look at our definition of the parton distribution more closely. We have

〈N(p)|ψ̄c(x)γσ[x, 0]ψc(0)|N(p)〉
∣∣∣
x2=0

= 2pσ
∫ 1

−1
du eiupxF (u, µ) (10.57)

where I restored the subscript “classical” and added the argument µ to F (u, µ) to remind that only

low-frequency part of the fields is included. The role of the cutoff is that it allows the limit x2 → 0

to be taken.

Consider the similar matrix element with “full” fields and finite x2: L26

〈N(p)|ψ̄(x)γσ[x, 0]ψ(0)|N(p)〉
∣∣∣
x2p2�1

= 2pσ
∫ 1

−1
du eiupxF̃ (u, x2) (10.58)

The only UV divergences in this ME are due to field and coupling renormalization: adding
√
Z2

for each quark field and expressing the result in terms of the renormalized coupling the result is

finite. However, the limit x2 → 0 cannot be taken. Schematically

〈N(p)|ψ̄(x)γσ[x, 0]ψ(0)|N(p)〉
∣∣∣
x2p2�1

∼ 1 + cαs ln
1

x2p2
+ . . . (10.59)
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The role of the cutoff in the fields is that it regularizes additional UV divergences that appear in

the x2 → 0 limit:

〈N(p)|ψ̄c(x)γσ[x, 0]ψc(0)|N(p)〉
∣∣∣
x2=0

∼ 1 + cαs ln
µ2

p2
+ . . . (10.60)

The dependence on µ will be compensated by the similar dependence of the Feynman diagrams for

Tµν in higher orders:

These diagrams (for quark legs on-shell) would be IR divergent if we forget that only frequencies

above µ are included in “quantum” fields. The sum is schematically

1 + cαs ln
1

µ2x2

Fourier−→ 1 + cαs ln
Q2

µ2
(10.61)

In order to avoid large logarithms in the coefficient functions we should set the scale µ ∼ Q.

Therefore our leading-order result to the structure functions actually involves parton distributions

at the scale ∼ Q

F1(xB, Q
2) = F (xB, µ = Q)− F (−xB, µ = Q) =

4

9
u(x,Q) +

4

9
ū(x,Q) +

1

9
d(x,Q) +

1

9
d̄(x,Q) + . . .

(10.62)

and we expect that Bjorken scaling will be violated by logarithmic corrections corresponding to the

scale-dependence of parton distributions.

To calculate this dependence, split “slow” fields that appear in the operator matrix elements in

— “moderately slow” , with frequencies µ0 < |k| < µ

— “very slow”, with frequencies |k| < µ0

We can treat “moderately slow” fields as “quantum”, that is involved the loops and “very slow” as

“classical” external fields

Integrating over the “moderately slow” fields we obtain operator matrix elements of “very slow”

operators corresponding to parton distributions at the scale µ0:

[operator at the scaleµ] ∼ (1 + cαs ln
µ

µ0
) [operator at the scaleµ0] (10.63)

and obtain the finite-difference equation

[operator at the scaleµ]− [operator at the scaleµ0] ∼ cαs ln
µ

µ0
[operator at the scaleµ0] (10.64)
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which we will rewrite as a differential renormalization group equation which is our goal.

A technicality:

as we know, a calculation with momentum cutoffs is very awkward. One scale can be introduced

via the dimensional regularization but for the second scale we need another regulator.

A convenient choice: use

— finite x2 as a substitute for µ2 ∼ 1/|x2| (larger scale);

— dimensional regularization for µ2
0 (smaller scale, thus an IR divergence) and, simultaneously,

the remaining UV divergences (coupling and field renormalization)

[One can prove that both IR and UV divergences can be regularized dimensionally]

10.4.2 One-loop calculation

To avoid an open vector index consider the operator multiplied by extra xσ so that

〈N(p)|ψ̄(x)/x[x, 0]ψ(0)|N(p)〉 = 2(px)

∫ 1

−1
du eiupxF (u) +O(x2) (10.65)

Let us calculate the diagram corresponding to gluon emission from the Pexp.

We write

Aµ(z) = Aµq (z) +Aµc (z) (10.66)

and consider the first term in the expansion of Pexp[. . . ] in the “quantum” gluon field

[x, 0] = [x, 0]c + ig

1∫
0

du [x, ux]cxµA
µ
q (ux)[ux, 0]c (10.67)

We choose

Aµq : Feynman gauge

Aµc : Fock-Schwinger gauge [x, 0]c = [x, ux]c = [ux, 0]c = 1 (10.68)

Then

←→ ψc(x)ig

1∫
0

du xµA
µ
q (ux)/xψq(0)

[
ig

∫
ddz ψq(z) /Aq(z)ψc(z)

]
(10.69)

Use

ψa(z)ψb(0) = δab
i

2πd/2
/z

Γ(d/2)

[−z2 + iε]d/2

AAµ (ux)ABν (z) = −δABgµν
1

4πd/2
Γ(d/2− 1)

[−(ux− z)2 + iε]d/2−1
(10.70)
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leading to

. . . = (ig)2

1∫
0

du

∫
ddzψ̄c(x)/x

i

2πd/2
−1

4πd/2
tA(−/z)

Γ(d/2)

[−z2]d/2
Γ(d/2− 1)

[−(ux− z)2]d/2−1
/xtAψc(z) (10.71)

Next, combine the propagators

Γ(d/2)

[−z2]d/2
Γ(d/2− 1)

[−(ux− z)2]d/2−1
=

1∫
0

dv vd/2−2v̄d/2−1 Γ(d− 1)

[−(z − uvx)2 − x2u2v̄v]d−1
(10.72)

and shift the integration variable z → z + uvx to obtain

. . . =
−ig2

8πd
CF

1∫
0

du

1∫
0

dv

∫
ddz

vd/2−2v̄d/2−1Γ(d− 1)

[−z2 − x2u2v̄v]d−1
ψ̄c(x)/x(/z + uv/x)/xψc(z + uvx) (10.73)

We are looking for the contributions of the type

ln
1

x2µ2
←− Γ(d/2− 2)

[x2µ2]d/2−2
, g2 → g2µ4−d (10.74)

Note:

• do not need terms with positive powers of x2 ⇒ can expand the field

ψc(z + uvx) = ψ(uvx) + zα∂
αψ(uvx) + . . .

• argument of the Gamma-function: Γ(d/2 − 2) stands for IR divergence, Γ(2 − d/2) stands for

UV divergence.

Why: ∫
ddk

k4
=? ←

{
choose d < 4 to suppress the large-k region (UV)

choose d > 4 to suppress the small-k region (IR)
(10.75)

One can regularize IR or UV divergence “by hand” so that only the other one remains:∫
ddk

(k2 + a2)2
=iπd/2

Γ(2− d/2)

[−a2]2−d/2
finite for d < 4

∫
ddk

k4
e2ika =iπd/2

Γ(d/2− 2)

[−a2]d/2−2
finite for d > 4 (10.76)

In general situation the identification — UV or IR — is not simple, one needs to consider each case

separately.

Using generic integrals ∫
dz

Γ(α)

[−z2 − a2]α
= −iπd/2 Γ(α− d/2)

[−a2]α−d/2∫
dz

Γ(α)

[−z2 − a2]α
zµzν = −iπd/2

(
−gµν

2

) Γ(α− d/2− 1)

[−a2]α−d/2−1
(10.77)
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obtain L27

. . . =
−ig2

8πd
CF (−iπd/2)

1∫
0

du

1∫
0

dv vd/2−2v̄d/2−1

{
x2uvψ̄c(x)/xψc(uvx)

Γ(d/2− 1)

[−x2u2vv̄]d/2−1

+ ψ̄c(x)/xγµ/x∂νψc(uvx)
(
−gµν

2

) Γ(d/2− 2)

[−x2u2vv̄]d/2−2

}

=
g2CF
8πd/2

1∫
0

du

1∫
0

dvψ̄c(x)

{
Γ(d/2− 1)

[−x2]d/2−2
u3−d/x+

1

2

Γ(d/2− 2)

[−x2u2]d/2−2
/xγµ/xv̄∂

µ

}
ψc(uvx) (10.78)

The first term:

1∫
0

du

ud−3
: finite for d < 4 ⇒ UV divergence atu→ 0 (10.79)

=⇒ contributes to coupling/field renormalization, irrelevant for us

In the second term can replace
1

2
/xγµ/x∂

µ → /x(x∂) +O(x2)

so it becomes

g2CF
8πd/2

1∫
0

du

1∫
0

dv v̄
Γ(d/2− 2)

[−x2u2]d/2−2
ψ̄c(x)/x(x∂)ψc(uvx) (10.80)

The familiar trick:

(x∂)ψc(uvx) = xµ
∂

∂(uvxµ)
ψc(uvx) =

1

uv
u
d

du
ψc(uvx) =

1

v

d

du
ψc(uvx) (10.81)

The dependence on u in [−x2u2]d/2−2 can be neglected to logarithmic accuracy (ln 1/(x2µ2)+ const)

leaving us with

1∫
0

du
d

du
ψc(uvx) = ψc(vx)− ψc(0) (10.82)

Thus the result is

←→ g2CF

8πd/2
Γ(d/2− 2)

[−x2µ2
IR]d/2−2

1∫
0

dv
v̄

v

[
ψ̄c(x)/xψc(vx)− ψ̄c(x)/xψc(0)

]
(10.83)
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where I restored the IR scale µIR dependence coming from g2 → g2µ4−d.

Other contributions:

←→ g2CF
8πd/2

Γ(d/2− 2)

[−x2µ2
IR]d/2−2

1∫
0

dv
v

v̄

[
ψ̄c(vx)/xψc(0)− ψ̄c(x)/xψc(0)

]

←→ g2CF
8πd/2

Γ(d/2− 2)

[−x2µ2
IR]d/2−2

1∫
0

du

u∫
0

dv ψ̄c(ux)/xψc(vx)

←→ only UV divergences, coupling renormalization in Pexp

←→
√
Z2 ·

√
Z2 field renormalization |x2| → µ2

IR

(10.84)

The final result:

ψ̄(x)/xψ(0) = ψ̄c(x)/xψc(0) +
g2CF
8πd/2

Γ(d/2− 2)

[−x2µ2
IR]d/2−2

1∫
0

du

u∫
0

dv K(u, v) ψ̄c(ux)/xψc(vx) (10.85)

where

K(u, v) = δ(ū)
[ v̄
v

]
+

+ δ(v)
[u
ū

]
+

+ 1− 1

2
δ(ū)δ(v) (10.86)

The “plus-distribution”: ∫ 1

0
dv
[ v̄
v

]
+
f(v) :=

∫ 1

0
dv

v̄

v
[f(v)− f(0)]

∫ 1

0
du
[u
ū

]
+
f(u) :=

∫ 1

0
du

u

ū
[f(u)− f(1)] (10.87)

It remains a little bit of cosmetics.

� We are only interested in matrix elements between the states with the same momenta. In

this case

〈N(p)|ψ̄(ux)/xψ(vx)|N(p)〉 = 〈N(p)|e+iP̂ vxψ̄((u− v)x)/xψ(0)e−iP̂ vx|N(p)〉

= 〈N(p)|ψ̄((u− v)x)/xψ(0)|N(p)〉 (10.88)
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where P̂ is the momentum operator: P̂µ|N(p)〉 = pµ|N(p)〉
Thus e.g.

1∫
0

du

u∫
0

dv ψ̄((u− v)x)/xψ(0) =

1∫
0

du

u∫
0

dt ψ̄(tx)/xψ(0) =

1∫
0

dt (1− t)ψ̄(tx)/xψ(0)(10.89)

� Expanding at d = 4− ε

g2

8πd/2
CF

(
−2

ε

)[
1− 2

ε
ln

1

−x2µ2
IR

]
−→ αs

2π
CF ln

1

−x2µ2
IR

+ const. (10.90)

Remember that the goal of the calculation was to change the definition of the “classical” field

from the cutoff µ2
1 ≡ 1/− x2 ∼ Q2 to a lower cutoff µ2

2 ≡ µ2
IR < µ2

1. Thus we get, for x2 = 0

[ψ̄(x)/xψ(0)]µ2
1

= [ψ̄(x)/xψ(0)]µ2
2

+
αsCF

2π
ln
µ2

1

µ2
2

1∫
0

duK(u) [ψ̄(ux)/xψ(0)]µ2
2

(10.91)

with

K(u) = 2
[u
ū

]
+

+ ū− 1

2
δ(ū) (10.92)

This relation is valid if

αs(µ2) ln
µ2

1

µ2
2

� 1

� The last step, we have to take the matrix element 〈N | . . . |N〉. Consider quark contribution:

〈N(p)|[ψ̄(x)/x[x, 0]ψ(0)]µ2 |N(p)〉 = 2(px)

∫ 1

0
dξ eiξpxF (ξ, µ2) (10.93)

We obtain

���2(px)

∫ 1

0
dξ eiξpx

[
F (ξ, µ2

1)− F (ξ, µ2
2)
]

=
αsCF

2π
ln
µ2

1

µ2
2

1∫
0

duK(u)���2(px)

∫ 1

0
dξ eiuξpxF (ξ, µ2

2)

(10.94)

Next, insert

1 =

1∫
0

dv δ(v − uξ)

in the integral on the r.h.s.:

1∫
0

duK(u)

∫ 1

0
dξ eiuξpxF (ξ) ·

1∫
0

dv δ(v − uξ) =

1∫
0

dv eivpx
1∫

0

duK(u)

∫ 1

0
dξ F (ξ) δ(v − uξ)︸ ︷︷ ︸

1

u
F
(v
u

)
θ(u− v)

=

1∫
0

dv eivpx
1∫
v

du

u
K(u)F

(v
u

)
(10.95)
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and finally

Fq(v, µ
2
1)− Fq(v, µ2

2) =
αs
2π
CF ln

µ2
1

µ2
2

1∫
v

du

u
K(u)Fq

(v
u
, µ2

2

)
(10.96)

or

µ2 d

dµ2
Fq(v, µ

2) =
αs(µ)

2π
CF

1∫
v

du

u
K(u)Fq

(v
u
, µ2
)

(10.97)

— the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation

Accepted notation:

Pq→q(u) ≡ CFK(u) = CF

[
1 + u2

[1− u]+
+

3

2
δ(1− u)

]
(10.98)

� We could consider antiquarks instead of quarks, replacing
∫ 1

0 dξe
iξpxF (ξ)→

∫ 0
−1 dξe

iξpxF (ξ).

To this order in perturbation theory there will be no difference:

Pq̄→q̄(u) = Pq→q(u) (10.99)

— quarks and antiquarks have autonomous (and the same) scale dependence to leading order.

10.5 Solution of the DGLAP equation

The DGLAP equation can be solved by numerical integration, but a better approach is to consider

moments:

MN
q (Q2) =

∫ 1

0
dxB x

N−1
B Fq(xB, Q

2) (10.100)

Taking moments

µ2 d

dµ2

1∫
0

dv vN−1Fq(v, µ
2) =

αs(µ)

2π

1∫
0

dv vN−1

1∫
v

du

u
Pqq(u)Fq

(v
u
, µ2
)

=
αs(µ)

2π

1∫
0

duPqq(u)uN−1

u∫
0

dv

u

(v
u

)N−1
Fq

(v
u
, µ2
)

=
αs(µ)

2π

1∫
0

duPqq(u)uN−1

1∫
0

dt tN−1Fq

(
t, µ2

)
; t =

v

u
(10.101)

Thus we obtain

µ2 d

dµ2
MN
q (µ2) = − αs(µ)

2π
γNqqM

N
q (µ2) (10.102)

where L28
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γNqq = −
1∫

0

duPqq(u)uN−1 = −CF

1∫
0

duuN−1

{
2
[u
ū

]
+

+ ū− 1

2
δ(ū)

}

= −CF

2

1∫
0

du
u

ū
(uN−1 − 1) +

(
1

N
− 1

N + 1

)
− 1

2

 (10.103)

The remaining integral:

1∫
0

du
1

1− u
(uN − u) =

1∫
0

du
1

1− u
(uN − 1 + 1− u) = −

1∫
0

du
1− uN

1− u
+ 1

= −
1∫

0

du (1 + u+ . . .+ uN−1) + 1 = −
N∑
j=1

1

j
+ 1 = −

N∑
j=2

1

j
(10.104)

We obtain

γNqq =
4

3

{
2

N∑
j=2

1

j
− 1

N(N + 1)
+

1

2

}
Gross, Wilczek ’73 (10.105)

The solution of Eq. (10.102) is then

MN
q (Q2) =

(
αs(Q

2)

αs(µ2
0)

)2γNqq/b

MN
q (µ2

0) ; b =
11

3
Nc −

2

3
nf (10.106)

Check:

Q2 d

dQ2
MN
q (Q2) =

1

[αs(µ2
0)]2γ

N
qq/b

MN
q (µ2

0)
2γNqq
b

[αs(Q
2)]2γ

N
qq/b−1Q2 d

dQ2
αs(Q

2) (10.107)

The β-function:

µ
d

dµ
αs(µ) = β(αs) = − 1

2π
bα2

s +O(α3
s)

Q2 d

dQ2
=

1

2
Q
d

dQ
←− extra factor 1/2 (10.108)

Thus we obtain

Q2 d

dQ2
MN
q (Q2) = − 1

2π
γNqqαs(Q

2) ·
(
αs(Q

2)

αs(µ2
0)

)2γNqq/b

MN
q (µ2

0)︸ ︷︷ ︸ OK

MN
q (Q2) (10.109)

Since αs(Q
2) decreases with Q2, the moments MN

q (Q2) decrease as well: the quark looses momen-

tum because of gluon radiation
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The parton distributions can be reconstructed from the moments using inverse Mellin transform

Fq(x) =
1

2πi

1/2+i∞∫
1/2−i∞

dN x−NMN
q (10.110)

The example below shows the so-called valence u-quark distribution

xuv(x,Q
2) = x

[
u(x,Q2)− ū(x,Q2)

]
(10.111)

This is, however, not the end of the story. . .

[ψ(x)/xψ(0)]µ2
1

= [ψ(x)/xψ(0)]µ2
2

+
αs
2π
CF ln

µ2
1

µ2
2

1∫
0

duKqq(u) [ψ̄(ux)/xψ(0)]µ2
2

+
αs
2π
CF ln

µ2
1

µ2
2

1∫
0

duKqg(u)xνxα[Fµν(ux)Fµα(0)]µ2
2
(10.112)

— our calculation is not complete

10.6 Gluon parton distribution

The definition:

xµxν〈N(p)|[GAµξ(x)[x, 0]ABG
B
νξ(0)]µ2 |N(p)〉 x2=0

= 2(px)2

1∫
−1

du eiupxuFg(u, µ
2) (10.113)

• There exist no “antigluons”:

Fg(u) = Fg(−u) (10.114)
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• The gauge link is in adjoint representation:

[x, 0] = Pexp

{
ig

∫ 1

0
duxµAµ(ux)

}
Aµ = AAµ

(
TA
)
BC

, (TA
)
BC

= −ifABC ←− 8× 8 matrix (10.115)

Explicit calculation:

+ . . . −→ Pqq

−→ Pqg

+ . . . −→ Pgg

−→ Pgq (10.116)

Obtain the system of coupled equations:

Q2 d

dQ2
Fg(x,Q

2) =
αs(Q)

2π

1∫
x

dy

y

{
Pgq(y)

∑
q

[
Fq(

x

y
,Q) + Fq̄(

x

y
,Q)

]
+ Pgg(y)Fg(

x

y
,Q)

}

Q2 d

dQ2
Fq(x,Q

2) =
αs(Q)

2π

1∫
x

dy

y

{
Pqq(y)Fq(

x

y
,Q) + Pqg(y)Fg(

x

y
,Q)

}

Q2 d

dQ2
Fq̄(x,Q

2) =
αs(Q)

2π

1∫
x

dy

y

{
Pqq(y)Fq̄(

x

y
,Q) + Pqg(y)Fg(

x

y
,Q)

}
(10.117)

where

Pqq(y) = CF

[
1 + y2

[1− y]+
+

3

2
δ(1− y)

]

Pgq(y) = CF

[
1 + (1− y)2

y

]
Pqg(y) =

1

2

[
y2 + (1− y)2

]
Pgg(y) = 2Nc

[
1− y
y

+
y

(1− y)+
+ y(1− y) +

1

12

(
11

3
Nc −

2

3
nf

)
δ(1− y)

]
(10.118)
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• Gluons only couple to Fq(x) + Fq̄(x) (sum of quarks and antiquarks). Thus we obtain

— a separate equation for Fq(x)− Fq̄(x) which is the same as we had before, and

— a coupled system of two equations for Fq(x) + Fq̄(x) and Fg(x)

For example for the moments

Q2 d

dQ2

(
MN
q −MN

q̄

)
= − αs(Q)

2π
γNqq

(
MN
q −MN

q̄

)
Q2 d

dQ2

(
MN
q +MN

q̄

2MN
g

)
= − αs(Q)

2π

(
γNqq γ

N
qg

γNgq γ
N
gg

)(
MN
q +MN

q̄

2MN
g

)
(10.119)

• A proton can be viewed as a collection of three “valence quarks” that carry the quantum numbers,

extra quark-antiquark pairs that are called “sea quarks(antiquarks)”, and gluons

valen
e quark
sea quark
sea antiquark q(x) = qv(x) + qs(x) , q̄(x) = q̄s(x) (10.120)

Then

Fqv(x) = Fq(x)− Fq̄(x) (10.121)

can be interpreted as the valence quark distribution.

(The number of valence quarks)/3 = baryon charge, so we expect that for any Q2

1∫
0

dx [Fq(x,Q
2)− Fq̄(x,Q2)] = 3 (10.122)

This is consistent with the evolution equation since

Q2 d

dQ2

1∫
0

dx [Fq(x,Q
2)− Fq̄(x,Q2)] = −αs(Q)

2π
γN=1
qq︸ ︷︷ ︸

1∫
0

dx [Fq(x,Q
2)− Fq̄(x,Q2)]

↑= 0! (10.123)
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Measured reaction rates (reduced cross sections)

for neutral current processes, as a function of

the scaling variable Q2 for different values of x,

the proton momentum fraction carried by the

partons. These results represent the combined

analysis of H1 and ZEUS. Scaling violations, i.e.

a Q2 - dependence of the rates, are clearly ob-

served.

Presented by V. Radescu at Int. Conference

DIS2009, April 2009, Madrid, Spain

Parton distribution functions of the proton as

obtained by the HERA Structure Functions

Working Group, at a scale of Q2 = 10 GeV2.

The PDFs (solid lines) are shown separately for

the gluon (xg), the sea quarks (xS), (both scaled

down for visibility by a factor of 20), and the

valence quarks up xuv and down xdv. The un-

certainties are indicated by the coloured bands.

Presented by V. Radescu at Int. Conference

DIS2009, April 2009, Madrid, Spain

Why is the gluon distribution so large for x→ 0?

Pgg(y) ' 2Nc
1

y
(10.124)

The DGLAP equation is not in danger since it involves a cutoff y > x, but this behavior implies

that

Fg(x)
x→0
≥ 1

x
(10.125)
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so that the number of gluons in the proton is infinite:

1∫
0

dxFg(x) =∞ (10.126)

Let us see why this happens. For Q2
1 ∼ Q2

0 and small x

Fg(x,Q
2
1)− Fg(x,Q2

0) ' 3αs
π

ln
Q2

1

Q2
0

1∫
x

dy

y

1

y
Fg(

x

y
,Q2

0) (10.127)

Try an ansatz

Fg(x,Q
2
0) = const (10.128)

Then

Fg(x,Q
2
1) = const

(
1 +

3αs
π

1

x
ln
Q2

1

Q2
0

)
(10.129)

←− the gluon distribution cannot be “flat” at x→ 0, our ansatz was bad.

Second try:

Fg(x,Q
2
0) = const · 1

x
, or xFg(x,Q

2
0) = const (10.130)

In this case obtain

xFg(x,Q
2
1) = const

(
1 +

3αs
π

ln
1

x
ln
Q2

1

Q2
0

)
= xFg(x,Q

2
0)

(
1 +

3αs
π

ln
1

x
ln
Q2

1

Q2
0

)
(10.131)

One can show that this structure is general: In the limit x → 0 and Q2 → ∞ each power of αs is

accompanied by two logarithms:

1 + c1αs ln
1

x
ln
Q2

1

Q2
0

+ c2

(
αs ln

1

x
ln
Q2

1

Q2
0

)2

+ . . . (10.132)

It is possible to sum this series to all orders (the so-called double-log approximation)

xFg(x,Q
2)
∣∣∣x→0
Q2∞

∼ exp

√
48

b
ln
αs(Q2

0)

αs(Q2)
ln

1

x
(10.133)

What to do if x→ 0 but Q2/Q2
0 ∼ 1?

In higher orders

αs
2π
Pgg(x)

∣∣∣
x→0

=
3αs
πx

[
1 + 9ζ(3)

(
αs
π

ln
1

x

)3

+
81

20
ζ(5)

(
αs
π

ln
1

x

)5

+O

[(
αs
π

ln
1

x

)6
]]
(10.134)

←↩ this series is known to all orders ←− BFKL equation

Resummation ∑
k

(αs ln 1/x)k xFg(x,Q
2) ∼ x−12 ln 2αs

π (10.135)

Too strong! What stops this rise? — Active field of research
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11 To be continued


