Exercises on Quantum Chromodynamics problem sheet 9

Worksheet : QCD analysis of the tau hadronic width.

The τ lepton is the only lepton heavy enough to decay into hadrons. Our final goal will be to calculate the ratio of decay rates

$$
\begin{equation*}
R_{\tau}=\frac{\Gamma\left(\tau \rightarrow \nu_{\tau} X\right)}{\Gamma\left(\tau \rightarrow \nu_{\tau} e^{-} \bar{\nu}_{e}\right)} \tag{1}
\end{equation*}
$$

where X is an arbitrary hadronic final state (that is, the sum over all states).
The decay rate (decay width) of an unstable particle (here: τ) into a certain final state can in general be calculated as an integral of the corresponding amplitude squared over the relevant phase space:

$$
\begin{equation*}
\Gamma=\frac{1}{2 m_{\tau}} \int\left(\Pi_{f} \frac{d^{3} p_{f}}{(2 \pi)^{3} 2 E_{f}}\right)(2 \pi)^{4} \delta^{(4)}\left(p_{\tau}-\sum_{f} p_{f}\right)\left|\mathcal{M}\left(\tau \rightarrow\left\{p_{f}\right\}\right)\right|^{2} \tag{2}
\end{equation*}
$$

where $p_{\tau}^{\mu}=(m, \overrightarrow{0})$ is the four-momentum in the rest frame of the τ lepton. In the calculation of three-particle phase space integrals that you will encounter in this exercise it is usually a good idea to reduce them to two-particle ones. This can be done by treating two of the final state particles (say the first and the second) as one effective "paricle" whith mass $s=\left(p_{1}+p_{2}\right)^{2}$ and doing the s integration at a later step. In all calculations that follow you should neglect masses of quarks and leptons in the final state.

Problem 1

The contribution to the effective Lagrangian of weak interactions that is responsible for the leptonic decay $\tau \rightarrow \nu_{\tau} e^{-} \bar{\nu}_{e}$ has the form

$$
\begin{equation*}
L_{e f f}=-\frac{G_{F}}{\sqrt{2}}\left[\bar{e} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{e}\right]\left[\bar{\nu}_{\tau} \gamma_{\mu}\left(1-\gamma_{5}\right) \tau\right] \tag{3}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\Gamma\left(\tau \rightarrow \nu_{\tau} e^{-} \bar{\nu}_{e}\right)=\frac{G_{F}^{2} m_{\tau}^{5}}{192 \pi^{3}} \tag{4}
\end{equation*}
$$

Problem 2

Consider, for simplicity, the contribution to the hadronic decays $\tau \rightarrow \nu_{\tau} X$ that is generated by the contribution to the effective Lagrangian involving u and d quarks and omitting the corresponding CKM angle:

$$
\begin{equation*}
L_{e f f}=-\frac{G_{F}}{\sqrt{2}}\left[\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u\right]\left[\bar{\nu}_{\tau} \gamma_{\mu}\left(1-\gamma_{5}\right) \tau\right] \tag{5}
\end{equation*}
$$

Show that the ratio R_{τ} can be calculated (for this contribution) as

$$
\begin{equation*}
R_{\tau}=12 \pi \int_{0}^{m_{\tau}^{2}} \frac{d s}{m_{\tau}^{2}}\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left(1+\frac{2 s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi(s) \tag{6}
\end{equation*}
$$

where (we assume massless quarks)

$$
\begin{align*}
\Pi_{\mu \nu}(q) & =i \int d^{4} x e^{i q x}\langle 0| T\left\{\bar{d}(x) \gamma_{\mu}\left(1-\gamma_{5}\right) u(x) \bar{u}(0) \gamma_{\nu}\left(1-\gamma_{5}\right) d(0)\right\}|0\rangle \tag{7}\\
& =\left(q_{\mu} q_{\nu}-g_{\mu \nu} q^{2}\right) \Pi\left(q^{2}\right) \tag{8}
\end{align*}
$$

Comment: The QCD analysis of hadronic tau decays provides one with the most exact determination of the strong coupling constant.
At the scale of the Z - boson mass one obtains

$$
\begin{equation*}
\alpha_{s}\left(M_{Z}\right)=0.11795 \pm 0.00076 \tag{9}
\end{equation*}
$$

see Beneke, Jamin JHEP 0809:044,2008 [arXiv: 0806.3156]

