Exercises on Quantum Chromodynamics problem sheet 7

Worksheet : Anomalous dimension.

Problem 1

Calculate the renormalization factors $Z_{\mathcal{O}},[\mathcal{O}]_{r}=Z_{\mathcal{O}} \mathcal{O}$ for the operators

$$
\mathcal{O}=\bar{q}(0) q(0), \quad \mathcal{O}_{\nu}=\bar{u}(0) \gamma_{\nu} u(0)
$$

To this end find the divergent part of the diagram

Figure 1: operator diagram
where the crossed circle stands for the operator. Convince yourself that the divergent part does not depend on the external momenta p, q and quark masses m_{q}. It means that in order to simplify the calculation one of the momenta and the quark masses can be put to zero. Why cannot we put all quantities to zero simultaneously, $q=p=m_{q}=0$?

Problem 2

Calculate the anomalous dimension of the operators \mathcal{O} and \mathcal{O}_{ν}

$$
\gamma_{\mathcal{O}}=\mu \frac{d}{d \mu} \log \left(Z_{\mathcal{O}} Z_{q}^{-} 2\right)
$$

where Z_{q} is the quark field renormalization constant (in Feynman gauge)

$$
Z_{q}=1-\frac{\alpha_{s}}{\pi} \frac{1}{8 \varepsilon} C_{F}+O\left(\alpha_{s}^{2}\right) .
$$

Check that the anomalous dimension of the operator \mathcal{O}_{ν} (the vector current) vanishes.

