Exercises on Quantum Chromodynamics problem sheet 6

Worksheet : QCD vertex corrections.

On this exercise sheet you compute the corrections to the quark-gluon vertex in QCD.

Problem 1

Calculate the Quark contribution and extract the pole part at $D \rightarrow 4$.

Figure 1: quark contribution

Problem 2

Calculate the Gluon contribution and extract the pole part at $D \rightarrow 4$.

Figure 2: gluon contribution

Problem 3

QCD β-function: Earning your reward!
From our previous computation on sheet 5 we can extract

$$
\begin{equation*}
Z_{2}=1-\frac{\alpha_{s}(\mu)}{4 \pi} \frac{1}{\epsilon} C_{F}+\mathcal{O}\left(\alpha_{s}^{2}\right) \tag{1}
\end{equation*}
$$

in the so called $\overline{\mathrm{MS}}$-scheme.
From adaption from QED to QCD your computation for the electron self-energy yields

$$
\begin{equation*}
Z_{3}=1+\frac{\alpha_{s}(\mu)}{4 \pi} \frac{1}{\epsilon}\left(\frac{5}{3} C_{A}-\frac{4}{3} n_{f} T_{f}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right) \tag{2}
\end{equation*}
$$

Lastly, in this sheets computation you should have found

$$
\begin{equation*}
Z_{1}=1-\frac{\alpha_{s}(\mu)}{4 \pi} \frac{1}{\epsilon}\left(C_{F}+C_{A}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right) \tag{3}
\end{equation*}
$$

Take these results for granted, and recall that

$$
\begin{equation*}
g_{0}=\mu^{\varepsilon} Z_{1} Z_{2}^{-1} Z_{3}^{-\frac{1}{2}} g(\mu) \tag{4}
\end{equation*}
$$

is scale-independent(!), to compute the first coefficient of the QCD β-function $\left(\beta_{0}\right)$:

$$
\begin{equation*}
\beta\left(\alpha_{s}(\mu)\right)=\mu \frac{d \alpha_{s}(\mu)}{d \mu}=-\beta_{0} \frac{\alpha_{s}^{2}}{2 \pi}+\mathcal{O}\left(\alpha_{s}^{2}\right) \tag{5}
\end{equation*}
$$

in 4 dimentions $(\varepsilon \rightarrow 0)$. You should obtain $\beta_{0}=\frac{11}{3} C_{A}-\frac{4}{3} n_{f} T_{f}$.

