Exercises on Quantum Chromodynamics problem sheet 5

Worksheet : Gluon self-energy.

On this exercise sheet you will have to calculate the one-loop diagrams contributing to the gluon propagator in QCD. Good luck.

Problem 1

Calculate the Quark loop contribution, i.e. the diagram

Figure 1: quark loop diagram
Or you take the result from QED lectures.
The QCD result can be obtained by minor modifications and is

$$
\Pi_{\mu \nu}^{a, b}=-\frac{a_{s}}{\pi} \delta^{a b}\left(p^{2} g^{\mu \nu}-p^{\mu} p^{\nu}\right)(4 \pi)^{2-D / 2} \frac{\Gamma(2-D / 2)}{\left(-p^{2}\right)^{2-D / 2}} \frac{\Gamma(D / 2)}{\Gamma(D)}
$$

Problem 2

Calculate the contribution of the gluon loop in dimension D and extract the pole part at $D \rightarrow 4$:

Figure 2: gluon loop diagram

Problem 3

Calculate the contribution of the ghost loop in dimension D and extract the pole part at $D \rightarrow 4$:

Figure 3: ghost loop diagram

Problem 4

Calculate the contribution of the diagram with a four-gluon coupling in dimension D.

Figure 4: four-gluon-vertex loop diagram
This calculation involves the following sublety. The integrals over the type

$$
\int \frac{d^{D} p}{p^{2}}
$$

can be consistently put to zero in dimensional regularization despite the fact theat the integral diverges quadratically as $D \rightarrow 4$.
Let us consider this integral at $D \rightarrow 2$:

$$
\begin{equation*}
\int \frac{d^{2} p}{p^{2}} \tag{1}
\end{equation*}
$$

The integral diverges both for large and small p. The divergence for small p has nothing to do with ultraviolet renormalization and has to be treated separately. For instance, let us define the integral (1) as

$$
\begin{equation*}
\int \frac{d^{2} p}{p^{2}+m^{2}} \tag{2}
\end{equation*}
$$

at $m^{2} \rightarrow 0$. This integral diverges in the ultraviolet region only. We regularize it shifting $D=2 \rightarrow 2-2 \varepsilon$. Then

$$
\begin{equation*}
\int \frac{d^{2 p-2 \varepsilon}}{p^{2}+m^{2}} \approx \frac{1}{\varepsilon} m^{2 \varepsilon}+\log m^{2} \tag{3}
\end{equation*}
$$

The pole in ε is removed by renormalization while the singularity at $m \rightarrow 0$ remains. This, so-called infrared singularity should be treated separately and its fate depends on the particular problem. Such singularities will be discussed later in the lectures.

Problem 4

Check that the sum of all diagrams is transverse, i.e. :

$$
p^{\mu} \Pi^{\mu \nu}=0
$$

Problem 5 An inspection shows that each of the diagrams considered above diverge not only at $D \rightarrow 4$ but also at $D \rightarrow 2$. It is easy to convince oneself that this divergence corresponds to a quadratic divergence of the diagrams, if they were calculated with an ultraviolet cutoff $\Lambda_{U V}$, that is each diagram actually contains terms $\approx \Lambda_{U V}^{2}$. Check that such divergences cancel in the sum of all diagrams; the diagram with the four-gluon vertex is important to ensure this cancellation despite the fact that it does not contribute to logrithmic renormalization. What would it mean if such quadratic divergences do not cancel?

