Exercises on Quantum Chromodynamics problem sheet 1

Worksheet 5: Green's functions of the $\square=\partial_{\mu} \partial^{\mu}$ operator

Consider the Green's functions of the d'Alembert operator $\square=\partial_{\mu} \partial^{\mu}$

$$
\begin{equation*}
G_{C}(x)=i \int_{C} \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k x} \frac{1}{k^{2}} \tag{1}
\end{equation*}
$$

corresponding to the four possible choices of the integration contour C in the complex k^{0} plane:

Figure 1: Contours in the complex energy plane: a) retarded; b) advanced; c) Feynman; d) antiFeynman.

Problem 1: Use the Green functions to construct the solutions of the equation

$$
\begin{equation*}
\square \phi(x)=j(x) \tag{2}
\end{equation*}
$$

for a localized source $j(x)(j(x)$ is nonzero only if $|x|<R)$. Show that the different choices of the Green's function give rise to the solutions with the following boundary conditions:
a) vanishing fields in the past, $\phi(t, \vec{r})=0$ for $t<-T_{0}$ for some T_{0} (radiation case)
b) vanishing fields in the future, $\phi(t, \vec{r})=0$ for $t>T_{0}$, (absorbtion case)
c) only positive frequencies exist in the far future $t>T_{0}$ and only negative frequencies in the distant past (Feynman), that is

$$
\begin{aligned}
& \phi(t, \vec{r})=\phi_{+}(t, \vec{r})=\int_{0}^{\infty} d \omega e^{-i \omega t} \tilde{\phi}(\omega, \vec{r}), \quad t>T_{0} \\
& \phi(t, \vec{x})=\phi_{-}(t, \vec{r})=\int_{0}^{\infty} d \omega e^{+i \omega t} \tilde{\phi}(\omega, \vec{r}), \quad t<-T_{0}
\end{aligned}
$$

Problem 2: Introduce

$$
\begin{equation*}
G_{ \pm}(x)=i \int_{C_{ \pm}} \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k x} \frac{1}{k^{2}}, \tag{3}
\end{equation*}
$$

where the contours $C_{ \pm}$in the complex k^{0} plane are

Figure 2: The C_{+}and C_{-}contours

Show that $G_{ \pm}(x)$ are the solutions of the homogeneous equation associated with the \square operator, and that the Green's functions are expressed in terms of $G_{ \pm}(x)$ as

$$
\begin{aligned}
G_{r e t}(x) & =\Theta\left(x_{0}\right)\left[G_{+}(x)-G_{-}(x)\right] \\
G_{a d v}(x) & =\Theta\left(-x_{0}\right)\left[G_{+}(x)-G_{-}(x)\right], \\
G_{F}(x) & =\Theta\left(x_{0}\right) G_{+}(x)+\Theta\left(-x_{0}\right) G_{-}(x) .
\end{aligned}
$$

Problem 3: Evaluate $G_{r e t}(x)$ explicitely and show that it is given by

$$
\begin{equation*}
G_{r e t}(x)=\frac{1}{4 \pi i} \frac{1}{|\vec{x}|} \delta\left(x_{0}-|\vec{x}|\right) . \tag{4}
\end{equation*}
$$

