Elementare Zahlentheorie

2. Übungsblatt – 29. April 2020

Aufgabe 1.

- (a) Bestimmen Sie alle positiven Teiler von 44 und -180 und berechnen Sie ggT(44, -180).
- (b) Bestimmen Sie Quotient und Rest für folgende Divisionen:

72:22 1770:314 -88:5 -2:37

Aufgabe 2. Beweisen Sie das folgende Lemma aus der Vorlesung: Falls c|a und c|b, dann auch c|(au+bv), für alle $u,v\in\mathbb{Z}$.

Aufgabe 3. Zeigen Sie, dass $5|(n^5 - n)$ für alle $n \in \mathbb{N}$.

Aufgabe 4. Sei $a \in \mathbb{Z}$, $a \ge 2$. Definiere die *Höhe* h(a) als die größte Zahl n, so dass Euklids Algorithmus n Schritte braucht, um ggT(a, b) zu berechnen, wobei b alle ganzen Zahlen mit 0 < b < a durchläuft (d.h. n ist so, dass $ggT(a, b) = r_{n-1}$).

- (a) Zeigen Sie, dass h(a) = 1 genau dann, wenn a = 2.
- (b) Berechnen Sie h(a) für alle $a \leq 8$.

Aufgabe 5. Die *Fibonacci-Zahlen* f_n sind definiert durch $f_1 = f_2 = 1$ und $f_{n+2} = f_{n+1} + f_n$ für alle $n \ge 1$.

- (a) Zeigen Sie, dass $0 \le f_n < f_{n+1}$ für alle $n \ge 2$.
- (b) Was geschieht, wenn man den Euklidschen Algorithmus auf zwei aufeinanderfolgende Fibonacci-Zahlen f_{n+2} und f_{n+1} anwendet? Zeigen Sie, dass $h(f_{n+2}) \ge n$. (h ist die Höhe aus Aufgabe 4.)