![]()  | 
    Address Prof. Dr. Bogdan-Vasile Matioc Office: Universitätsstraße 31 Office: M 120 Phone: +499419434289  | 
    
Research interests
Research projects
Editorial board
PhD Students
Daniel Böhme (since January 2023), Thesis: The periodic two-phase Stokes flow in two dimensions
Jonas Bierler (graduated Februaray 2022), Thesis: The multiphase Muskat problem in two dimensions
Submitted articles
 
 B.-V. Matioc and Ch. Walker,
        Recovering initial states in certain quasilinear parabolic problems from time averages,
   
         arXiv:2510.21687, 30pp. 
     
 
 D. Böhme and B.-V. Matioc,
        Well-posedness and Rayleigh-Taylor instability of the two-phase periodic quasistationary Stokes flow,
  
          arXiv:2508.15502, 43pp.
     
 
 B.-V. Matioc and Ch. Walker,
        A potential theory approach to the capillarity-driven Hele-Shaw problem,
   
         arXiv:2508.15491, 44pp. 
     
Accepted articles
 
 B.-V. Matioc, L. Schmitz, and Ch. Walker,
        On the principle of linearized stability for quasilinear evolution equations in time-weighted spaces,
  
         arXiv:2412.13940, to appear in Math. Nachr,  20pp. 
     
 
 B.-V. Matioc and Ch. Walker,
        Well-posedness of quasilinear parabolic equations in time-weighted spaces,
  
Published version, 
         arXiv:2312.07974 , to appear in Proc. Roy. Soc. Edinburgh Sect. A. 
     
Published articles
 
 D. Böhme and B.-V. Matioc,
        Well-posedness and stability for the two-phase periodic quasistationary Stokes flow,
  
Interfaces Free Bound., 27(4):659-701, 2025,
Published version, 
         arXiv:2406.07181 .
     
 
          J. Bierler and B.-V. Matioc, 
       The multiphase Muskat problem with general viscosities in two dimensions,
 
    Discrete Contin. Dynam. Systems, 45(12):5222-5250, 2025,
 Published version, 
        arXiv:2202.12004.
    
 
 B.-V. Matioc and E. Parau,
        Steady periodic hydroelastic waves in polar regions,
 
Water Waves, 7(2):363-387, 2025,
Published version, 
         arXiv:2402.03857. 
     
 
 B.-V. Matioc and Ch. Walker,
        The nonlocal fractional mean curvature flow of periodic graphs,
 
   Ann. Scuola Norm. Sup. Pisa, XXVI(1):91-130, 2025, 
Published version, 
         arXiv:2207.07474.
     
 
 B.-V. Matioc, L. Roberti, and Ch. Walker,
        Quasilinear parabolic equations with superlinear nonlinearities in critical spaces,
  
J. Differential Equations, 429:283–317, 2025,
Published version,
         arXiv:2408.05067. 
     
 
 B.-V. Matioc and Ch. Walker,
        Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities,
 
 Bull. Lond. Math. Soc.,  57(2): 444-462, 2025,
Published version,  
         arXiv:2404.11089.
     
 
     J. Escher,  A.-V. Matioc, and B.-V. Matioc, 
        The Mullins-Sekerka problem via the method of potentials,
      
 Math. Nachr., 297: 1960-1977, 2024,
Published version,
             arXiv:2308.06083. 
      
 
         Ph. Laurençot and B.-V. Matioc,
       Bounded weak solutions to a class of degenerate cross-diffusion systems,
  
        Ann. H. Lebesgue.,  6: 847-874, 2023,
Published version,
 arXiv:2201.06479.
    
 
 B.-V. Matioc and G. Prokert,
        Capillarity driven Stokes flow: the one-phase problem as small viscosity limit,
  
Z. Angew. Math. Phys., 74(6), 212, 2023,
Published version,
         arXiv:2209.13376.
     
 
 B.-V. Matioc and L. Roberti,
       Weak and classical solutions to an asymptotic model for atmospheric flows,
  
J. Differential Equations, 367:603–624, 2023,
Published version,
         arXiv:2304.08985. 
     
 
         Ph. Laurençot and B.-V. Matioc,
       Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems,
 
    Arch. Math. (Brno), 59(2):201-213, 2023, 
 Published version,
arXiv:2207.00361. 
    
 
      A.-V. Matioc and B.-V. Matioc, 
       A new reformulation of the Muskat problem with surface tension,
J. Differential Equations, 350:308–335, 2023,
Published version,
 arXiv:2203.13567.
      
 
         Ph. Laurençot and B.-V. Matioc,
        The porous medium equation as a singular limit of the thin film Muskat problem,
  
        Asymptot. Anal., 131(2):255-271, 2023, 
       
Published version,
 arXiv:2108.09032. 
    
 
       B.-V. Matioc and G. Prokert,  
       Two-phase Stokes flow by capillarity in the plane: The case of different viscosities,
       NoDEA Nonlinear Differential Equations Appl.,  29(5): Art. 54, 34 pp., 2022
       Published version,
       arXiv:2102.12814.
      
 
         Ph. Laurençot and B.-V. Matioc,
       Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals,
  
       Trans. Amer. Math. Soc., 375(8):5963–5986, 2022, 
       Published version,
       arXiv:2110.01234. 
    
 
      J. Bierler and B.-V. Matioc, 
       The multiphase Muskat problem with equal viscosities in two dimensions,
       Interfaces Free Bound., 24(2):163-196, 2022, Published version, 
arXiv:2101.07728.
      
 
      H. Abels and B.-V. Matioc, 
       Well-posedness of the Muskat problem in subcritical Lp-Sobolev spaces,
        European J. Appl. Math., 33(2):224-266, 2022, Published version, 
arXiv:2003.07656.
      
 
       B.-V. Matioc and G. Prokert, 
       Two-phase Stokes flow by capillarity in full 2D space: an approach via hydrodynamic potentials,
       Proc. Roy. Soc. Edinburgh Sect. A,   151:1815-1845, 2021, Published version,
 arXiv:2003.14010.
      
 
      A.-V. Matioc and B.-V. Matioc, 
       The Muskat problem with surface tension and equal viscosities in subcritical Lp-Sobolev spaces,
       J. Elliptic Parabol. Equ.,   7:635-670, 2021, Published version,
 arXiv:2010.12261.
      
 
     H. Garcke and B.-V. Matioc, 
        On a degenerate parabolic system describing the mean curvature flow of rotationally symmetric closed surfaces,
    J. Evol. Equ.,  21:201-224, 2021, Published version, arXiv:1905.09675.
      
 
     J. Escher, P. Knopf, C. Lienstromberg, and B.-V. Matioc, 
        Stratified periodic water waves with singular density gradients,
         Ann. Mat. Pura Appl., 199(5):1923-1959, 2020, 
Published version, arXiv:1911.13046.
      
 
      B.-V. Matioc, 
       Well-posedness and stability results for some  periodic Muskat problems,
        J. Math. Fluid Mech., 22(3): Art. 31, 45 pp., 2020, Published version, arXiv:1804.10403.
      
 
      B.-V. Matioc and Ch. Walker, 
        On the principle of linearized stability  in interpolation spaces for  quasilinear evolution equations,
        Monatsh. Math., 191:615-634, 2020, 
Published version, 
arXiv:1804.10523.
      
 
        A.-V. Matioc and B.-V. Matioc, 
        Well-posedness and stability results for a quasilinear periodic Muskat problem,
        J. Differential Equations, 266(9):5500–5531, 2019,
    Published version, 
     arXiv:1706.09260.
      
 
        B.-V. Matioc, 
        The Muskat problem in 
 
        Analysis & PDE, 12(2):281–332, 2019,
    Published version, 
 arXiv:1610.05546.
    
 
         B.-V. Matioc, 
        Viscous displacement in porous media: the Muskat problem in 
  
        Trans. Amer. Math. Soc., 370(10):7511-7556, 2018,
  Published version, 
  arXiv:1701.00992.  
     
 
         J. Escher, B.-V. Matioc, and Ch. Walker,
        The domain of parabolicity for the Muskat problem,
  
        Indiana Univ. Math. J.,  67(2):679–737, 2018, 
Published version, 
 arXiv:1507.02601.  
     
 
         Ph. Laurençot and B.-V. Matioc,
        Finite speed of propagation and waiting time for a thin film Muskat problem,
  
        Proc. Roy. Soc. Edinburgh Sect. A, 147(4):813–830, 2017, 
Published version, 
arXiv:1509.09100. 
    
 
         Ph. Laurençot and B.-V. Matioc,
        Self-similarity in a thin film Muskat problem,
  
        SIAM J. Math. Anal., 49(4):2790–2842, 2017, 
Published version, 
arXiv:1409.7329.   
     
 
         C. I. Martin and B.-V. Matioc,
         Gravity water flows with discontinuous vorticity and stagnation points,
  
        Commun. Math. Sci., 14(2): 415-441, 2016, 
Published version, 
arXiv:1503.01335. 
    
 
          B.-V. Matioc,
        Recovery of Stokes waves from velocity measurements on an axis of symmetry,
  
        J. Phys. A, 48:255501(8pp), 2015, 
Published version, 
arXiv:1505.02502. 
    
 
          B.-V. Matioc,
         A characterization of the symmetric steady water waves in terms of the underlying flow,
  
        Discrete Contin. Dyn. Syst. Ser. A, 34(8):3125-3133, 2014,
Published version, 
 arXiv:1401.6019. 
    
 
          B.-V. Matioc,
        Non-uniform continuity of the semiflow map associated to the porous medium equation,
  
        Bull. Lond. Math. Soc., 46:1105-1115, 2014,
Published version, 
 arXiv:1401.1115.   
     
 
         N. Duruk Mutlubaş, A. Geyer, and B.-V. Matioc,
        Non-uniform continuity of the flow map for an evolution equation
 modeling shallow water waves of moderate amplitude,
  
        Nonlinear Anal. Real World Appl., 17:322-331, 2014,
Published version, 
 arXiv:1312.3753. 
    
 
         C. I. Martin and B.-V. Matioc,
        Steady periodic water waves with unbounded vorticity: equivalent formulations and existence results,
  
        J. Nonlinear Sci., 24:633-659, 2014, 
Published version, 
arXiv:1311.6935. 
    
 
         A.-V. Matioc and B.-V. Matioc,
        Capillary-gravity water waves with discontinuous vorticity: existence and regularity results,
  
       Comm. Math. Phys., 330:859-886, 2014,
Published version, 
 arXiv:1311.6593. 
    
 
         J. Escher and B.-V. Matioc,
        On the analyticity of periodic gravity water waves with integrable vorticity function,
  
        Differential Integral Equations, 27(3-4):217–232, 2014, 
Published version, 
arXiv:1311.6288. 
    
 
         C. I. Martin and B.-V. Matioc,
        Existence of capillary-gravity water waves with piecewise constant vorticity,
  
        J. Differential Equations, 256(8):3086-3114, 2014, 
Published version, 
arXiv:1302.5523.   
     
 
        J. Escher and B.-V. Matioc,
         Non-negative global weak solutions for a degenerated
 parabolic system approximating the two-phase Stokes problem,
  
        J. Differential Equations, 256(8):2659-2676, 2014,
Published version, 
 arXiv:1210.6457. 
    
 
         Ph. Laurençot and B.-V. Matioc,
        A thin film approximation of the Muskat problem with gravity and capillary forces,
  
        J. Math. Soc. Japan, 66(4):1043-1071, 2014, 
Published version, 
arXiv:1206.5600. 
    
 
         B.-V. Matioc,
        Global bifurcation for water waves  with capillary effects and  constant vorticity,
  
         Monatsh. Math.,
Published version, 
 174:459-475, 2014. 
    
 
         D. Henry and B.-V. Matioc,
        On the existence of steady periodic capillary-gravity  stratified water waves,
  
        Ann. Scuola Norm. Sup. Pisa, XII(4):955-974, 2013, 
Published version, 
arXiv:1305.5802. 
    
 
         M. Ehrnström, J. Escher, and B.-V. Matioc,
        Steady-state fingering patterns for a periodic Muskat problem,
  
        Methods Appl. Anal., 20(1):33-46, 2013, 
Published version, 
arXiv:1303.6724.   
     
 
         C. I. Martin and B.-V. Matioc,
        Existence of Wilton ripples for water waves with constant vorticity and capillary effects,
 
        SIAM J. Appl. Math., 73(4):1582-1595, 2013,
Published version. 
    
 
        A.-V. Matioc and B.-V. Matioc,
        On the symmetry of periodic gravity water waves with vorticity,
  
        Differential Integral Equations, 26(1-2):129-140, 2013,
Published version.  
    
 
          B.-V. Matioc,
        Regularity results for deep-water waves with Hölder continuous vorticity,
  
        Appl. Anal., 92(10):2144-2151, 2013,
Published version. 
    
 
        J. Escher, A.-V. Matioc, and B.-V. Matioc,
        Thin film approximations of the two-phase Stokes problem,
  
        Nonlinear Anal., 73:1-13, 2013,
Published version. 
    
 
         Ph. Laurençot and B.-V. Matioc,
        A gradient flow approach to a thin film approximation of the Muskat problem,
  
        Calc. Var. Partial Differential Equations, 47:319-341, 2013,
Published version,
 arXiv:1110.6262. 
    
 
         J. Escher and B.-V. Matioc,
        Existence and stability of solutions for a strongly coupled systems modelling thin fluid threads,
  
        NoDEA Nonlinear Differential Equations Appl., 20:539-555, 2013,
Published version.  
     
 
          B.-V. Matioc and G. Prokert,
        Hele-Shaw flow in thin threads: A rigorous limit result,
  
        Interfaces Free Bound., 14:205-230, 2012, Published version,
arXiv:1207.30895.   
     
 
        A.-V. Matioc and B.-V. Matioc,
        On periodic water waves with Coriolis effects and isobaric streamlines,
  
        J. Nonlinear Math. Phys., 19(supp01):1240009, 15pp, 2012,
Published version,
 arXiv:1204.4993. 
    
 
          B.-V. Matioc,
        Non-negative global weak solutions for a degenerate parabolic system modeling thin films driven by capillarity,
  
        Proc. Roy. Soc. Edinburgh Sect. A, 142A:1071-1085, 2012,
Published version,
arXiv:1110.6793. 
    
 
          A.-V. Matioc and B.-V. Matioc,
        Regularity and symmetry properties of rotational solitary water waves,
  
        J. Evol. Equ., 12:481-494, 2012,
Published version.  
    
 
         J. Escher, A.-V. Matioc, and B.-V. Matioc,
        A generalised Rayleigh-Taylor condition for the Muskat problem,
  
        Nonlinearity, 20(1):73-92, 2012,
Published version, 
arXiv:1005.2511. 
    
 
          B.-V. Matioc,
        On the regularity of deep-water waves with general vorticity distributions,
  
        Quart. Appl. Math., LXX(2):393-405, 2012,
Published version.   
    
 
         J. Escher, A.-V. Matioc, and B.-V. Matioc,
        Modelling and analysis of the Muskat problem for thin fluid layers,
  
        J. Math. Fluid Mech., 14(2):267-277, 2012,
Published version.  
    
 
         D. Henry and B.-V. Matioc,
        On the regularity of steady periodic stratified water waves,
  
        Commun. Pure Appl. Anal., 11(4):1453-1464, 2012,
Published version.   
    
 
        J. Escher,  Ph. Laurençot, and B.-V. Matioc,
        Existence and stability of weak solutions for a degenerate
 parabolic system modelling two-phase flows in porous media,
  
        Ann. Inst. H. Poincaré Anal. Non Linéaire, 
        28(4):583-598, 2011,
Published version,
 arXiv:1101.3964.   
     
 
         J. Escher and B.-V. Matioc,
        On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results,
  
        Z. Anal. Anwend., 30(2):193-218, 2011,
Published version,
 arXiv:1005.2512. 
    
 
         J. Escher, A.-V. Matioc, and B.-V. Matioc,
        On stratified steady periodic water waves with linear density distribution and stagnation points,
  
        J. Differential Equations, 251:2932-2949, 2011,
Published version.   
    
 
         J. Escher and B.-V. Matioc,
        Stability properties of non-radial steady ferrofluid patterns,
  
        Comm. Partial Differential Equations, 36(3):363-379, 2011,
Published version.   
    
 
           B.-V. Matioc,
        Analyticity of the streamlines for periodic traveling water waves with bounded vorticity,
  
        Int. Math. Res. Not., 17:3858-3871, 2011,
Published version.   
    
 
       M. Ehrnström, J. Escher, and B.-V. Matioc,
        Well-posedness, instabilities, and bifurcation results for the flow in a rotating Hele-Shaw cell,
  
        J. Math. Fluid Mech., 13(2):271-293, 2011,
Published version.   
    
 
         J. Escher and B.-V. Matioc,
        Neck pinching for periodic mean curvature flows,
  
        Analysis (Munich), 30(3):253-260, 2010,
Published version.   
     
 
        J. Escher, A.-V. Matioc, and B.-V. Matioc,
        Classical solutions and stability results for Stokesian Hele-Shaw flows,
  
        Ann. Scuola Norm. Sup. Pisa, IX:325-349, 2010,
Published version.   
     
 
          J. Escher, A.-V. Matioc, and B.-V. Matioc,
        Analysis of a ferrofluid in a radial magnetic field,
  
         An. Univ. Vest Timis. Ser. Mat.-Inform., XLVII(3): 27-44, 2009.   
     
 
         M. Ehrnström, J. Escher, and B.-V. Matioc,
        Two dimensional steady edge waves. Part II: Solitari waves,
  
        Wave Motion, 46(6):372-378, 2009,
Published version.  
     
 
         M. Ehrnström, J. Escher, and B.-V. Matioc,
        Two dimensional steady edge waves. Part I: Periodic waves,
  
        Wave Motion, 46(6):363-371, 2009,
Published version.   
     
 
         J. Escher and B.-V. Matioc,
        A moving boundary problem for periodic Stokesian Hele-Shaw flows,
  
        Interfaces Free Bound., 11:119-137, 2009,
Published version.   
     
 
         J. Escher and B.-V. Matioc,
        Multidimensional Hele-Shaw flows modelling Stokesian fluids,
  
        Math. Methods Appl. Sci., 32:577-593, 2009,
Published version.   
     
 
        J. Escher and B.-V. Matioc,
        Stability of the equilibria for periodic Stokesian Hele-Shaw flows,
  
        J. Evol. Equ., 8(3):513-522, 2008,
Published version.    
     
 
        J. Escher and B.-V. Matioc,
        On periodic Stokesian Hele-Shaw flows with surface tension,
  
        European J. Appl. Math., 19(6):717-734, 2008,
Published version.    
     
 
         J. Escher and B.-V. Matioc,
        Existence and stability results for periodic Stokesian Hele-Shaw flows,
  
        SIAM J. Math. Anal., 40(5):1992-2006, 2008,
Published version.   
     
 
           B.-V. Matioc,
        Boundary value problems for rotationally symmetric mean curvature flows,
  
        Arch. Math., 89:365-372, 2007,
Published version.    
     
Articles in proceedings
 
 D. Böhme and B.-V. Matioc,
        Recovery of traveling water waves with smooth vorticity
  from the horizontal velocity on a line of symmetry for various wave regimes,
         In: Henry, D. (eds) Nonlinear Dispersive Waves.
  
Advances in Mathematical Fluid Mechanics.  Birkhäuser, Cham, 2024, 
         Published version,
arXiv:2308.02244. 
     
 
        D. Henry and B.-V. Matioc,
        Aspects of the mathematical analysis of nonlinear stratified water waves,
 
        Elliptic and Parabolic Equations, Springer Proceedings in Mathematics and Statistics,
 
         vol. 119, Springer International Publishing, 2015, 159-177,
Published version.  
  
 
        J. Escher and B.-V. Matioc,
        Analyticity of rotational water waves,
 
        Elliptic and Parabolic Equations, Springer Proceedings in Mathematics and Statistics,
 
         vol. 119, Springer International Publishing, 2015, 111-137,
Published version.  
  
 
        J. Escher, Ph. Laurençot, and B.-V. Matioc,
        Thin film approximations to the Muskat problem,
 
        Équations aux dérivées partielles et leurs applications, Le Havre 2012, 83-91,
        FNM Fédération Normandie Mathématiques, Paris France 2013.
  
 
        J. Escher, A.-V. Matioc, and B.-V. Matioc,
        Analysis of a mathematical model describing  necrotic tumor growth,
 
        Modelling, simulation and software concepts for scientific-technological problems, 237-250,
 
        Lect. Notes Appl. Comput. Mech. 57, Springer, Berlin, 2011,
Published version.  
  
Education
| 
             
  | 
          
             04.2013  | 
          
             
            Habilitation in mathematics,  University of Vienna,   Austria   | 
        
| 
             
  | 
          
             11.2009  | 
          
             
            Ph.D. in mathematics,    Leibniz University Hanover,  Germany   | 
        
| 
             
  | 
          
             07.2005  | 
          
             
            Masters degree in mathematics, West University of Timisoara, Romania  | 
        
| 
             
  | 
          
             06.2003  | 
          
             Diploma in mathematics, West University of Timisoara, Romania  | 
        
Last modified:  October 10 27, 2025  
                      
      Privacy Policy
                        
     Impressum
     
      © Bogdan Matioc