Address  

Dr. habil. Anca-Voichita Matioc
Universität Regensburg
Fakultät für Mathematik
93040 Regensburg

Email: anca.matioc@ur.de
Office:
Universitätsstraße 31
             Office: M 208
Phone:
+499419432796


Research interests


Submitted articles

  1. A.-V. Matioc and B.-V. Matioc, The Muskat problem with surface tension and equal viscosities in subcritical Lp-Sobolev spaces,
    arXiv:2010.12261, 29pp.

Published articles

  1. A.-V. Matioc and B.-V. Matioc, Well-posedness and stability results for a quasilinear periodic Muskat problem,
    J. Differential Equations, 266(9): 5500–5531, 2019.

  2. D. Henry and A.-V. Matioc, On the existence of equatorial wind waves,
    Nonlinear Anal., 101:113-123, 2014.

  3. D. Ionescu-Kruse and A.-V. Matioc, Small-amplitude equatorial water waves with constant vorticity: dispersion relations and particle trajectories,
    Discrete Contin. Dyn. Syst., 34(8):3045-3060, 2014.

  4. D. Henry and A.-V. Matioc, On the symmetry of steady equatorial wind waves,
    Nonlinear Anal. Real World Appl., 18:50-56, 2014.

  5. A.-V. Matioc and B.-V. Matioc, Capillary-gravity water waves with discontinuous vorticity: existence and regularity results,
    Comm. Math. Phys., 330:859-886, 2014.

  6. A.-V. Matioc, On particle motion in geophysical deep water waves traveling over uniform currents,
    Quart. Appl. Math., 72(3):455-469, 2014.

  7. D. Henry and A.-V. Matioc, Global bifurcation of capillary-gravity-stratified water waves,
    Proc. Roy. Soc. Edinburgh Sect., A 144(4):775-786, 2014.

  8. A.-V. Matioc and J. Escher, Analysis of a two-phase model describing the growth of solid tumors,
    European J. Appl. Math., 24(1):25-48, 2013.

  9. A.-V. Matioc, Exact geophysical waves in stratified fluids,
    Appl. Anal., 92(11):2254-2261, 2013.

  10. A.-V. Matioc and B.-V. Matioc, On the symmetry of periodic gravity water waves with vorticity,
    Differential Integral Equations, 26(1-2):129-140, 2013.

  11. A.-V. Matioc and B.-V. Matioc, On the well-posedness of a mathematical model describing water-mud interaction,
    Math. Methods Appl. Sci., 36(11):1388-1398, 2013.

  12. J. Escher, A.-V. Matioc, and B.-V. Matioc, Thin film approximations of the two-phase Stokes problem,
    Nonlinear Anal., 73:1-13, 2013.

  13. A.-V. Matioc, An explicit solution for deep water waves with Coriolis effects,
    J. Nonlinear Math. Phys., 19(supp01):1240005, 8pp, 2012.

  14. A.-V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach,
    J. Phys. A: Math. Theor., 45:365501, 10 p, 2012.

  15. J. Escher, A.-V. Matioc, and B.-V. Matioc, A generalised Rayleigh-Taylor condition for the Muskat problem,
    Nonlinearity, 20(1):73-92, 2012.

  16. A.-V. Matioc and B.-V. Matioc, On periodic water waves with Coriolis effects and isobaric streamlines,
    J. Nonlinear Math. Phys., 19(supp01):1240009, 15pp, 2012.

  17. A.-V. Matioc and B.-V. Matioc, Regularity and symmetry properties of rotational solitary water waves,
    J. Evol. Equ., 12:481-494, 2012.

  18. A.-V. Matioc, On the particle trajectories in linear deep water waves,
    Comm. Pure Appl. Anal., 11(4):1537-1547, 2012.

  19. J. Escher, A.-V. Matioc, and B.-V. Matioc, Modelling and analysis of the Muskat problem for thin fluid layers,
    J. Math. Fluid Mech., 14(2):267-277, 2012.

  20. A.-V. Matioc, Steady internal waves with a critical layer bounded by the wave surface,
    J. Nonlinear. Math. Phys., 19(1):1250008, 21 p, 2012.

  21. J. Escher, A.-V. Matioc, and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points,
    J. Differential Equations, 251:2932-2949, 2011.

  22. A.-V. Matioc and J. Escher, Bifurcation analysis for a free boundary problem modeling tumor growth,
    Arch. Math., 97:79-90, 2011.

  23. A.-V. Matioc and J. Escher, Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors,
    Discrete Contin. Dyn. Syst. Ser. B, 15(3):573-596, 2011.

  24. J. Escher and A.-V. Matioc, Radially symmetric growth of nonnecrotic tumors,
    NoDEA Nonlinear Di erential Equations Appl., 17:1-20, 2010.

  25. J. Escher, A.-V. Matioc, and B.-V. Matioc, Classical solutions and stability results for Stokesian Hele-Shaw flows,
    Ann. Scuola Norm. Sup. Pisa, IX:325-349, 2010.

  26. A.-V. Matioc, On particle trajectories in linear water waves,
    Nonlinear Anal. Real World Appl., 11(5):4275-4284, 2010.

  27. J. Escher, A.-V. Matioc, and B.-V. Matioc, Analysis of a ferrofluid in a radial magnetic field,
    An. Univ. Vest Timis. Ser. Mat.-Inform., XLVII(3): 27-44, 2009.

Articles in proceedings

  1. J. Escher, A.-V. Matioc, and B.-V. Matioc, Analysis of a mathematical model describing necrotic tumor growth,
    Modelling, simulation and software concepts for scientific-technological problems, 237-250,
    Lect. Notes Appl. Comput. Mech. 57, Springer, Berlin, 2011.


Education

 

02.2018

Habilitation in mathematics, Leibniz University Hanover, Germany
Thesis: Existence and qualitative aspects of geophysical water waves

 

11.2009

Ph.D. in mathematics, Leibniz University Hanover, Germany
Thesis: Modelling and analysis of nonnecrotic tumors
Supervisor: Prof. Dr. Joachim Escher

 

07.2005

Masters degree in mathematics, West University of Timisoara, Romania
Erasmus student, Saarland University, Germany (10.2003-09.2004)

 

06.2003

Diploma in mathematics, West University of Timisoara, Romania




Last modified:  April 3, 2020                   Privacy Policy                   Impressum
© Anca Matioc