Address Prof. Dr. Anca-Voichita Matioc Office: Universitätsstraße 31 Office: M 208 Phone: +499419432796 |
Research interests
Published articles
J. Escher, A.-V. Matioc and B.-V. Matioc,
The Mullins-Sekerka Problem via the method of potentials,
Mathematiche Nachrichten, 297:1575–1978, 2024,
Published version,
arXiv:2308.06083 .
A.-V. Matioc and B.-V. Matioc,
A new reformulation of the Muskat problem with surface tension,
J. Differential Equations, 350:308–335, 2023,
Published version,
arXiv:2203.13567.
A.-V. Matioc and B.-V. Matioc,
The Muskat problem with surface tension and equal viscosities in subcritical Lp-Sobolev spaces,
J. Elliptic Parabol. Equ., 7:635-670, 2021, Published version,
arXiv:2010.12261.
A.-V. Matioc and B.-V. Matioc,
Well-posedness and stability results for a quasilinear periodic Muskat problem,
J. Differential Equations, 266(9): 5500–5531, 2019.
D. Henry and A.-V. Matioc,
On the existence of equatorial wind waves,
Nonlinear Anal., 101:113-123, 2014.
D. Ionescu-Kruse and A.-V. Matioc,
Small-amplitude equatorial water waves with constant vorticity: dispersion relations and particle trajectories,
Discrete Contin. Dyn. Syst., 34(8):3045-3060, 2014.
D. Henry and A.-V. Matioc,
On the symmetry of steady equatorial wind waves,
Nonlinear Anal. Real World Appl., 18:50-56, 2014.
A.-V. Matioc and B.-V. Matioc,
Capillary-gravity water waves with discontinuous vorticity: existence and regularity results,
Comm. Math. Phys., 330:859-886, 2014.
A.-V. Matioc,
On particle motion in geophysical deep water waves traveling over uniform currents,
Quart. Appl. Math., 72(3):455-469, 2014.
D. Henry and A.-V. Matioc,
Global bifurcation of capillary-gravity-stratified water waves,
Proc. Roy. Soc. Edinburgh Sect., A 144(4):775-786, 2014.
A.-V. Matioc and J. Escher,
Analysis of a two-phase model describing the growth of solid tumors,
European J. Appl. Math., 24(1):25-48, 2013.
A.-V. Matioc,
Exact geophysical waves in stratified fluids,
Appl. Anal., 92(11):2254-2261, 2013.
A.-V. Matioc and B.-V. Matioc,
On the symmetry of periodic gravity water waves with vorticity,
Differential Integral Equations, 26(1-2):129-140, 2013.
A.-V. Matioc and B.-V. Matioc,
On the well-posedness of a mathematical model describing water-mud interaction,
Math. Methods Appl. Sci., 36(11):1388-1398, 2013.
J. Escher, A.-V. Matioc, and B.-V. Matioc,
Thin film approximations of the two-phase Stokes problem,
Nonlinear Anal., 73:1-13, 2013.
A.-V. Matioc,
An explicit solution for deep water waves with Coriolis effects,
J. Nonlinear Math. Phys., 19(supp01):1240005, 8pp, 2012.
A.-V. Matioc,
An exact solution for geophysical equatorial edge waves over a sloping beach,
J. Phys. A: Math. Theor., 45:365501, 10 p, 2012.
J. Escher, A.-V. Matioc, and B.-V. Matioc,
A generalised Rayleigh-Taylor condition for the Muskat problem,
Nonlinearity, 20(1):73-92, 2012.
A.-V. Matioc and B.-V. Matioc,
On periodic water waves with Coriolis effects and isobaric streamlines,
J. Nonlinear Math. Phys., 19(supp01):1240009, 15pp, 2012.
A.-V. Matioc and B.-V. Matioc,
Regularity and symmetry properties of rotational solitary water waves,
J. Evol. Equ., 12:481-494, 2012.
A.-V. Matioc,
On the particle trajectories in linear deep water waves,
Comm. Pure Appl. Anal., 11(4):1537-1547, 2012.
J. Escher, A.-V. Matioc, and B.-V. Matioc,
Modelling and analysis of the Muskat problem for thin fluid layers,
J. Math. Fluid Mech., 14(2):267-277, 2012.
A.-V. Matioc,
Steady internal waves with a critical layer bounded by the wave surface,
J. Nonlinear. Math. Phys., 19(1):1250008, 21 p, 2012.
J. Escher, A.-V. Matioc, and B.-V. Matioc,
On stratified steady periodic water waves with linear density distribution and stagnation points,
J. Differential Equations, 251:2932-2949, 2011.
A.-V. Matioc and J. Escher,
Bifurcation analysis for a free boundary problem modeling tumor growth,
Arch. Math., 97:79-90, 2011.
A.-V. Matioc and J. Escher,
Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors,
Discrete Contin. Dyn. Syst. Ser. B, 15(3):573-596, 2011.
J. Escher and A.-V. Matioc,
Radially symmetric growth of nonnecrotic tumors,
NoDEA Nonlinear Dierential Equations Appl., 17:1-20, 2010.
J. Escher, A.-V. Matioc, and B.-V. Matioc,
Classical solutions and stability results for Stokesian Hele-Shaw flows,
Ann. Scuola Norm. Sup. Pisa, IX:325-349, 2010.
A.-V. Matioc,
On particle trajectories in linear water waves,
Nonlinear Anal. Real World Appl., 11(5):4275-4284, 2010.
J. Escher, A.-V. Matioc, and B.-V. Matioc,
Analysis of a ferrofluid in a radial magnetic field,
An. Univ. Vest Timis. Ser. Mat.-Inform., XLVII(3): 27-44, 2009.
Articles in proceedings
J. Escher, A.-V. Matioc, and B.-V. Matioc,
Analysis of a mathematical model describing necrotic tumor growth,
Modelling, simulation and software concepts for scientific-technological problems, 237-250,
Lect. Notes Appl. Comput. Mech. 57, Springer, Berlin, 2011.
Submitted articles
Education
|
02.2018 |
Habilitation in mathematics, Leibniz University Hanover, Germany |
|
11.2009 |
Ph.D. in mathematics, Leibniz University Hanover, Germany |
|
07.2005 |
Masters degree in mathematics, West University of Timisoara, Romania |
|
06.2003 |
Diploma in mathematics, West University of Timisoara, Romania |
Last modified: March 30, 2022
Privacy Policy
Impressum
© Anca Matioc