More differential geometry

Matthias Ludewig

Version of August 30, 2023

5.5 Riemannian coverings and the theorem of Cartan-Hadamard

Recall that a smooth map $\varphi: N \rightarrow M$ between manifolds is called a covering if for all $p \in M$, there exists an open neighborhood U of p such that

$$
\varphi^{-1}(U)=\coprod_{\alpha \in I} U_{\alpha}
$$

where I is some index set, U_{α} is an open subset of N for each $\alpha \in I$ and $\left.\varphi\right|_{U_{\alpha}}: U_{\alpha} \rightarrow U$ is a diffeomorphism. Any connected manifold M has a universal cover, which is a connected and simply connected cover $\pi: \tilde{M} \rightarrow M$ of M, uniquely determined up to diffeomorphism. The fundamental group $\pi_{1}(M)$ acts freely and transitively on the fibers $\pi^{-1}(p)$, for each $p \in M$.

Example 5.1. (a) If F is a countable set and $N=M \times F$, then the projection $N \rightarrow M$ onto the first factor is a covering map. Such coverings are called trivial.
(b) For $N=\mathbb{R}^{n}$ and $M=\mathbb{R}^{n} / \mathbb{Z}^{n}$ the torus, the quotient map is a covering map.

Definition 5.2 (Riemannian covering). Let (N, h) and (M, g) be Riemannian manifolds. A covering map $\varphi: N \rightarrow M$ is a Riemannian covering if it is a local isometry.

Exercise 5.3. Let (N, h) and (M, g) be Riemannian manifolds and let $\varphi: N \rightarrow M$ be a covering map. Show that if (M, g) is complete, then so is (N, h).

Proposition 5.4 (Consequence of Bonnet-Myers). Let (M, g) be a compact Riemannian manifold with positive Ricci curvature. Then its fundamental group $\pi_{1}(M)$ is finite.
Proof. Let κ be such that ric $\geq \kappa(n-1) g$. Let \tilde{M} be the universal cover of M and equip if with the Riemannian metric \tilde{g} obtained by pulling back the metric g along the projection $\pi: \tilde{M} \rightarrow M$. Then π is a Riemannian covering. In particular, π is a local isometry, hence \tilde{M} again satisfies $\operatorname{ric}_{\tilde{g}} \geq \kappa(n-1) \tilde{g}$. Moreover, by Exercise 5.3. (\tilde{M}, \tilde{g}) is complete.
This shows that (\tilde{M}, \tilde{g}) satisfies the assumptions of the Bonnet-Myers theorem, hence \tilde{M} is compact. It is now a standard fact from topology that if a covering space is compact, then the cover must be finite. Hence $\pi: \tilde{M} \rightarrow M$ is a finite cover, so $\pi_{1}(M)$ (which bijectively corresponds to the fibers of this cover) must be finite.

For the next result, we need the following exercise.
Exercise 5.5. Let (N, h) and (M, g) be connected and complete Riemannian manifolds. Show that a surjective local isometry $\varphi: N \rightarrow M$ is always a covering map.

Theorem 5.6 (Cartan-Hadamard). Let (M, g) be a complete Riemannian manifold with sectional curvature $K \leq 0$. Then for all $p \in M$, $\exp _{p}: T_{p} M \rightarrow M$ is a covering map.
 $T_{p} M$ 。
We show that the differential $\left.d \exp _{p}\right|_{X}: T_{X} T_{p} M \cong T_{p} M \rightarrow T_{\exp _{p}(X)} M$ is an isomorphism for each $X \in T_{p} M$. To this end, we check that $\left.d \exp _{p}\right|_{X}$ has trivial kernel. We have $\left.d \exp _{p}\right|_{0}=\mathrm{id}$, so let now $X \neq 0$ and let $\gamma(t)=\exp _{p}(t X)$ is the geodesic with $\dot{\gamma}(0)=X$. Then we have

$$
\left.d \exp _{p}\right|_{X}(Y)=J(1)
$$

where J is the Jacobi field along γ with $J(0)=0$ and $\frac{\nabla}{d t} J(0)=Y$. We claim that J has no zeros. To this end, we set $f(t)=\frac{1}{2}\|J(t)\|^{2}$ and calculate

$$
\begin{aligned}
f^{\prime \prime}(t) & =\frac{d}{d t}\left\langle\frac{\nabla}{d t} J(t), J(t)\right\rangle \\
& =\left\langle\frac{\nabla^{2}}{d t^{2}} J(t), J(t)\right\rangle+\left\|\frac{\nabla}{d t} J(t)\right\|^{2} \\
& =\langle R(\dot{\gamma}(t), J(t)) \dot{\gamma}(t), J(t)\rangle+\left\|\frac{\nabla}{d t} J(t)\right\|^{2} \\
& =-K(\operatorname{span}\{\dot{\gamma}(t), J(t)\}) \cdot\left(\|J(t)\|^{2}\|\dot{\gamma}(t)\|^{2}-\langle J(t), \gamma(t)\rangle^{2}\right)+\left\|\frac{\nabla}{d t} J(t)\right\|^{2}
\end{aligned}
$$

Because $K \leq 0$, this is non-negative. Moreover, f satisfies

$$
f(0)=0, \quad f^{\prime}(0)=\left\langle\frac{\nabla}{d t} J(0), J(0)\right\rangle=0, \quad f^{\prime \prime}(0) \geq\|Y\|^{2}>0
$$

In total, this implies that $f(t)>0$ for all $t>0$. Hence $J(t)$ is never zero, so $\left.d \exp _{p}\right|_{X}$ has trivial kernel and is therefore an isomorphism. We conclude that $\exp _{p}$ is a local diffeomorphism.
Define a Riemannian metric \tilde{g} on $T_{p} M$ by $\tilde{g}=\exp _{p}^{*} g$. This turns $\exp _{p}$ into a local isometry. We claim that $\left(T_{p} M, \tilde{g}\right)$ is complete. Since $\exp _{p}$ is a local isometry, the geodesics through $0 \in T_{p} M$ are precisely the straight lines going through zero; indeed, by definition of the exponential map, they are mapped to the geodesics $\gamma(t)=\exp _{p}(t X)$ under $\exp _{p}$, and preimages of geodesics under local isometries are again geodesics. Hence $\left(T_{p} M, \tilde{g}\right)$ is geodesically complete at 0 . By the Hopf-Rinow theorem, $\left(T_{p} M, \tilde{g}\right)$ is complete, as claimed. By Exercise 5.5 and completeness of $(M, g), \exp _{p}$ is a covering map.

Remark 5.7. If M is simply connected, the theorem of Cartan-Hadamard implies that M must be diffeomorphic to \mathbb{R}^{n}.

5.6 The injectivity radius

Let (M, g) be a Riemannian manifold and let $\gamma:(a, b) \rightarrow M$ be a geodesic. Recall that two points $t_{1}, t_{2} \in(a, b)$ are conjugate if there exists a non-trivial Jacobi field J along γ with $J\left(t_{1}\right)=0$ and $J\left(t_{2}\right)=0$.

Lemma 5.8. Let (M, g) be a Riemannian manifold and let $\gamma:[0, r] \rightarrow M$ be a geodesic. Suppose that $t_{1} \in[0, r]$ is conjugate to zero along γ. Then γ is not length minimizing among piecewise C^{1}-curves between $\gamma(0)$ and $\gamma(t)$, for any $t>t_{1}$.

The proof of this lemma will use the second variation formula for the energy functional at a geodesic. Recall that if $\gamma:[a, b] \rightarrow M$ is a geodesic and $\left(\gamma_{s}\right)_{s \in(-\varepsilon, \varepsilon)}$ is a variation with fixed endpoints and variational vector field $X(t)=\left.\frac{\partial}{\partial s}\right|_{s=0} \gamma_{s}(t)$, then we have

$$
\begin{equation*}
\left.D^{2} E\right|_{\gamma}(X, X):=\left.\frac{\partial^{2}}{\partial s^{2}}\right|_{s=0} E\left[\gamma_{s}\right]=\int_{a}^{b}\left(\left\|\frac{\nabla}{d t} X(t)\right\|^{2}-\langle R(X(t), \dot{\gamma}(t)) \dot{\gamma}(t), X(t)\rangle\right) d t \tag{5.1}
\end{equation*}
$$

The same formula is true if the variational vector field is piecewise smooth, in the sense that there exists a subdivison $a=t_{0}<t_{1}<\cdots<t_{N}=b$ of $[a, b]$ such that the curves γ_{s} are still continuous, but smooth only on the subintervals $\left[t_{j-1}, t_{j}\right]$. In particular, (5.1) defines a quadratic form on the space of piecewise C^{1} vector fields along γ. Polarizing this quadratic form, we obtain the bilinear form

$$
\left.D^{2} E\right|_{\gamma}(X, Y)=\int_{a}^{b}\left(\left\langle\frac{\nabla}{d t} X(t), \frac{\nabla}{d t} Y(t)\right\rangle^{2}-\langle R(X(t), \dot{\gamma}(t)) \dot{\gamma}(t), Y(t)\rangle\right) d t
$$

defined for two piecewise C^{1} vector fields X, Y along γ.
Proof. Fix $t_{2}>t_{1}$. We will show that there exists a vector field Y along γ with $Y(0)=0$ and $Y\left(t_{2}\right)=0$ such that the second variation $\left.D^{2} E\right|_{\gamma}$ of the energy is negative on Y. Then any variation with fixed end points and variational vector field Y will then produce a curve between $\gamma(0)$ and $\gamma\left(t_{2}\right)$ shorter than γ.
Because 0 and t_{1} are conjugate along γ, there exists a non-trivial Jacobi field J such that $J(0)=0$ and $J\left(t_{1}\right)=0$. Let J^{*} be the Jacobi field such that $J^{*}(t)=J(t)$ for $t \leq t_{1}$ and $J^{*}(t)=0$ for $t>t_{1}$. Then J^{*} is a piecewise C^{1} vector field. Let moreover X be a piecewise C^{1} vector field such that $X(0)=0$ and $X\left(t_{2}\right)=0$ and $X\left(t_{1}\right)=-\frac{\nabla}{d t} J\left(t_{1}\right)$. Then $X\left(t_{1}\right) \neq 0$, because if we had $\frac{\nabla}{d t} J\left(t_{1}\right)=0$, then J would be trivial. Now for $\varepsilon>0$, set $Y=J^{*}+\varepsilon X$. Then

$$
\begin{equation*}
\left.D^{2} E\right|_{\gamma}(Y, Y)=\left.D^{2} E\right|_{\gamma}\left(J^{*}, J^{*}\right)+\left.2 \varepsilon D^{2} E\right|_{\gamma}\left(J^{*}, X\right)+\left.\varepsilon^{2} D^{*} E\right|_{\gamma}(X, X) \tag{5.2}
\end{equation*}
$$

For the first term, we have

$$
\begin{aligned}
\left.D^{2} E\right|_{\gamma}\left(J^{*}, J^{*}\right) & =\int_{0}^{t_{1}}\left(\left\|\frac{\nabla}{d t} J(t)\right\|^{2}-\langle R(J(t), \dot{\gamma}(t)) \dot{\gamma}(t), J(t)\rangle\right) d t \\
& =\int_{0}^{t_{1}}\left(-\left\langle\frac{\nabla^{2}}{d t^{2}} J(t), J(t)\right\rangle+\langle R(\dot{\gamma}(t), J(t)) \dot{\gamma}(t), J(t)\rangle\right) d t \\
& =0
\end{aligned}
$$

Here we used that J^{*} is non-zero only on $\left[0, t_{1}\right]$, then integrated by parts and then used that J vanishes at $t=0$ and $t=t_{1}$ and satisfies the Jacobi equation. For the next term, we calculate

$$
\begin{aligned}
\left.D^{2} E\right|_{\gamma}\left(J^{*}, X\right)= & \int_{0}^{t_{1}}\left(\left\langle\frac{\nabla}{d t} J(t), \frac{\nabla}{d t} Y(t)\right\rangle-\langle R(J(t), \dot{\gamma}(t)) \dot{\gamma}(t), X(t)\rangle\right) d t \\
= & \left.\left\langle\frac{\nabla}{d t} J(t), X(t)\right\rangle\right|_{t=t_{1}} \\
& +\underbrace{\int_{0}^{t_{1}}\left(-\left\langle\frac{\nabla^{2}}{d t^{2}} J(t), X(t)\right\rangle+\langle R(\dot{\gamma}(t), J(t)) \dot{\gamma}(t), X(t)\rangle\right) d t}_{=0, \text { as before }} \\
= & -\left\|\frac{\nabla}{d t} J\left(t_{1}\right)\right\|^{2}<0,
\end{aligned}
$$

by the definition of X. We conclude that the first term (5.2) is zero and the second is negative. Since the second term is linear in ε and the third is quadratic in ε, we can choose ε small enough to obtain $\left.D^{2} E\right|_{\gamma}(Y, Y)<0$, as desired.

Theorem 5.9. Let (M, g) be a Riemannian manifold and let $r>0$ be such that $\exp _{p}$ is defined on $B_{r}(0) \subseteq T_{p} M$. Then the restriction of $\exp _{p}$ to $B_{r}(0)$ is injective if and only if it is a diffeomorphism onto its image.

Proof. Clearly, if $\left.\exp _{p}\right|_{B_{r}(0)}$ is a diffeomorphism onto its image, then it is injective.
Conversely, suppose that $\left.\exp _{p}\right|_{B_{r}(0)}$ is not a diffeomorphism onto its image. We need to show that it is not injective. Since $\left.\exp _{p}\right|_{B_{r}(0)}$ is not a diffeomorphism onto its image, it is either not injective (in which case there is nothing to show) or there is a point $X \in B_{r}(0)$ such that $\left.d \exp _{p}\right|_{X}$ is not injective. So let us assume the latter. Since $\left.d \exp _{p}\right|_{0}=\mathrm{id}_{T_{p} M}$, we have $X \neq 0$. Let $\gamma(t)=\exp _{p}(t X)$ be the geodesic with $\dot{\gamma}(0)=X$.
Since $\left.d \exp _{p}\right|_{X}$ is not injective, there exists a non-zero $Y \in T_{X} T_{p} M \cong T_{p} M$ such that $\left.d \exp _{p}\right|_{X}(Y)=0$. On the other hand, we have

$$
\left.d \exp _{p}\right|_{X}(Y)=J(1)
$$

where J is the Jacobi field along γ with $J(0)=0$ and $\frac{\nabla}{d t} J(0)=Y$. Hence $t=0$ and $t=1$ are conjugate along γ.

By Lemma 5.8, γ is not minimizing between $\gamma(0)$ and $\gamma(s)$, for any $s>1$. On the other hand, since $B_{r}(p) \subseteq M$ is open, there exists some $s>1$ such that $\gamma(s) \in B_{r}(p)$. Let γ^{\prime} be a minimizing geodesic between p and $\gamma(s)$. Since γ^{\prime} is shorter than γ, we have $X^{\prime}:=\dot{\gamma}^{\prime}(0) \in B_{r}(0)$. We obtain that

$$
\exp _{p}(s X)=\gamma(s)=\gamma^{\prime}(1)=\exp _{p}\left(X^{\prime}\right)
$$

Since γ^{\prime} is shorter than γ as a geodesic between p and $\gamma(s)$, they cannot be reparametrizations of each other, hence $s X \neq X^{\prime}$. We conclude that $\exp _{p}$ is not injective.

Recall that the injectivity radius $\operatorname{injrad}(p)$ at a point p in a Riemanian manifold (M, g) is the supremum over all $r>0$ such that $\exp _{p}$ is a diffeomorphism onto its image when restricted to $B_{r}(0) \subset T_{p} M$. By the above theorem, an alternative definition is

$$
\begin{equation*}
\operatorname{injrad}(p)=\sup \left\{r>0\left|\exp _{p}\right|_{B_{r}(0)} \text { is injective }\right\} \tag{5.3}
\end{equation*}
$$

We also have the following characterization.
Lemma 5.10. If $d\left(p, \exp _{p}(X)\right)=\|X\|$ for all $X \in B_{r}(0) \subset T_{p} M$, then $\exp _{p}$ is injective on $B_{r}(0)$.

Proof. Suppose that there exist vectors $X, X^{\prime} \in B_{r}(0)$ such that $\exp _{p}(X)=\exp _{p}\left(X^{\prime}\right)$. We have to show $X=X^{\prime}$. By the assumption of the lemma,

$$
\|X\|=\exp _{p}(p, X)=\exp _{p}\left(X^{\prime}\right)=\left\|X^{\prime}\right\|
$$

Let $\gamma(t)=\exp _{p}(t X)$ and $\gamma^{\prime}(t)=\exp _{p}\left(t X^{\prime}\right)$. Let $s>1$ such that $\gamma(s)$ is still contained $B_{r}(p)$. Then since γ and γ^{\prime} are both length minimizing between p and $\gamma(1)=\gamma^{\prime}(1)$, the curve

$$
\eta(t)= \begin{cases}\gamma^{\prime}(t) & t \in[0,1] \\ \gamma(t) & t \in[1, s]\end{cases}
$$

is minimizes the length between p and $\gamma(s)$. But since shortest curves are geodesics, η must be in fact smooth, hence $\dot{\gamma}(1)=\dot{\gamma}^{\prime}(1)$, which implies $\gamma=\gamma^{\prime}$ and hence $X=X^{\prime}$.

Theorem 5.11. Let (M, g) be a complete Riemannian manifold. Then $\operatorname{injrad}(p)$ is a continuous function of $p \in M$.

Proof. We show that $\operatorname{injrad}(p)$ is both upper and lower semicontinuous in p, which implies that injrad is continuous.
(a) We first show that $\operatorname{injrad}(p)$ is upper semicontinuous in p, in other words,

$$
\limsup _{k \rightarrow \infty} \operatorname{injrad}\left(p_{k}\right) \leq \operatorname{injrad}(p)
$$

whenever $\left(p_{k}\right)_{k \in \mathbb{N}}$ is a sequence in M converging to p. We verify the assumption of Lemma 5.10. Write $r_{k}=\operatorname{injrad}\left(p_{k}\right)$ and $r^{*}=\lim \sup _{k \rightarrow \infty} r_{k}$. For $X \in B_{r^{*}}(0) \subset T_{p} M$,
choose a sequence of vectors $X_{k} \in T_{p_{k}} M$ converging to X. Then for $k \in \mathbb{N}$ large enough, $X_{k} \in B_{r_{k}}(0) \subset T_{p_{k}} M$. Therefore, setting $q_{k}=\exp _{p_{k}}\left(X_{k}\right)$, the geodesic $\gamma_{k}(t)=\exp _{p_{k}}\left(t X_{k}\right)$ between p_{k} and q_{k} is minimizing, hence $d\left(p_{k}, q_{k}\right)=\left\|X_{k}\right\|$. Since $X_{k} \rightarrow X$, we have $q_{k} \rightarrow \exp _{p}(X)$, hence by continuity of the distance function,

$$
d\left(p, \exp _{p}(X)\right)=\lim _{k \rightarrow \infty} d\left(p_{k}, q_{k}\right)=\lim _{k \rightarrow \infty}\left\|X_{k}\right\|=\|X\|
$$

As this holds for any $X \in B_{r^{*}}(0)$, Lemma 5.10 implies that $\exp _{p}$ is injective on $B_{r^{*}}(0) \subset$ $T_{p} M$. By (5.3), we therefore obtain $\operatorname{injrad}(p) \geq r^{*}$.
(b) We show that $\operatorname{injrad}(p)$ is lower semicontinuous in p, in other words,

$$
\liminf _{k \rightarrow \infty}^{\operatorname{injrad}}\left(p_{k}\right) \geq \operatorname{injrad}(p)
$$

whenever $\left(p_{k}\right)_{k \in \mathbb{N}}$ is a sequence in M converging to p. Suppose this is not true. Then, setting $r_{k}=\operatorname{injrad}\left(p_{k}\right)$ and $r=\operatorname{injrad}(p)$, there exists $\varepsilon>0$ such that

$$
\liminf _{k \rightarrow \infty} r_{k}<r-\varepsilon
$$

Therefore, after possibly passing to a subsequence, we have $r_{k}<r-\varepsilon$. By Thm. 5.9. $\exp _{p_{k}}$ is not injective when restricted to $B_{r-\varepsilon}(0) \subset T_{p_{k}} M$, so there exist two distinct vectors $X_{k}, Y_{k} \in T_{p_{k}} M$ such that $\exp _{p_{k}}\left(X_{k}\right)=\exp _{p_{k}}\left(Y_{k}\right)$ and such that $\left\|X_{k}\right\|,\left\|Y_{k}\right\| \leq r-\varepsilon$. By compactness, after passing to subsequences, X_{k} and Y_{k} converge to vectors $X, Y \in T_{p} M$ with $\exp _{p}(X)=\exp _{p}(Y)$ and $\|X\|,\|Y\| \leq r-\varepsilon$. If $X \neq Y$, we can conclude that exp is not injective on $B_{r-\varepsilon}(0) \subset T_{p} M$, a contradiction to $\operatorname{injrad}(p)=r$.
It therefore remains to show that $X \neq Y \in T_{p} M$. To this end, we consider the smooth map

$$
F:=\pi \times \exp : T M \rightarrow M \times M
$$

where $\pi: T M \rightarrow M$ is the bundle projection. We claim that the differential $\left.d F\right|_{X}$: $T_{X} T M \rightarrow T_{p} M \times T_{\exp (X)} M$ has full rank. To see this, we choose a subspace $H \subset T_{X} T M$ (a space of "horizontal vectors") such that $\left.d \pi\right|_{p}: H \rightarrow T_{p} M$ is a linear isomorphism. Then $T_{X} T M$ splits as a direct sum

$$
T_{X} T M=H \oplus T_{X} T_{p} M
$$

where both summands are isomorphic to $T_{p} M$, the first via $\left.d \pi\right|_{p}$ the second via the canonical isomorphism. With respect to this direct sum decomposition, $d F_{X}$ has the form

$$
\left.d F\right|_{X}=\left(\begin{array}{cc}
\left.d \pi\right|_{p} & 0 \tag{5.4}\\
* & \left.d \exp _{p}\right|_{X}
\end{array}\right)
$$

As by construction, the length of X is less than the injectivity radius of $p,\left.d \exp _{p}\right|_{X}$ has full rank. We obtain that $\left.d F\right|_{X}$ has full rank as well. By the inverse function theorem, F must be a diffeomorphism onto its image when restricted to a neighborhood $U \subset T M$ of X; in particular F is injective on this neighborhood. If we now assume that $X=Y$, then
both $\left(X_{k}\right)_{k \in \mathbb{N}}$ and $\left(Y_{k}\right)_{k \in \mathbb{N}}$ converge to X. For $k \in \mathbb{N}$ large enough, X_{k} and Y_{k} are both contained in U, but we have

$$
F\left(X_{k}\right)=\left(p_{k}, \exp _{p_{k}}\left(X_{k}\right)\right)=\left(p_{k}, \exp _{p_{k}}\left(Y_{k}\right)\right)=F\left(Y_{k}\right),
$$

a contradiction to the fact that F is injective on U.
Definition 5.12 (Injectivity radius). We define the (global) injectivity radius of (M, g) by

$$
\operatorname{injrad}(M, g)=\inf _{p \in M} \operatorname{injrad}(p)
$$

We generally have $\operatorname{injrad}(M, g) \geq 0$, but the injectivity radius may be zero. However, we have the following lemma.

Corollary 5.13. If the Riemannian manifold (M, g) is compact, then $\operatorname{injrad}(M, g)>0$.
Proof. We have $\operatorname{injrad}(p)>0$ for each $p \in M$. By Thm. 5.11, the injectivity radius is continuous. Hence because M is compect, there exists $p \in M$ such that

$$
0<\operatorname{injrad}(p)=\inf _{p \in M} \operatorname{injrad}(p)=\operatorname{injrad}(M, g)
$$

5.7 Closed geodesics

Definition 5.14. Let (M, g) be a Riemannian manifold. A closed geodesic in M is a smooth map $\gamma: S^{1} \rightarrow M$ such that γ satisfies the geodesic equation at every point of S^{1}.

Theorem 5.15. Let (M, g) be a compact Riemannian manifold and let $c_{0}: S^{1} \rightarrow M$ be a piecewise C^{1} curve. Then there exists a closed geodesic homotopic to c that minimizes the energy among all piecewise C^{1} curves homotopic to c_{0}.

For the proof of the theorem, we need the following lemma.
Lemma 5.16. Let (M, g) be a complete Riemannian manifold. Whenever two piecewise C^{1} loops $c_{1}, c_{2}: S^{1} \rightarrow M$ satisfy $d\left(c_{1}(t), c_{2}(t)\right)<\operatorname{injrad}\left(c_{1}(t)\right)$ for all $t \in S^{1}$, then c_{1} and c_{2} are homotopic.

Proof. Let $r_{t}=\operatorname{injrad}\left(c_{1}(t)\right)$. Then the exponential map $\exp _{c_{1}(t)}$ is injective on $B_{r_{t}}(0) \subset$ $T_{c_{1}(t)} M$ and since $d\left(c_{1}(t), c_{2}(t)\right)<r_{t}$, there exists a unique $X(t) \in B_{r_{t}}(0) \subset T_{c_{1}(t)} M$ such that $c_{2}(t)=\exp _{c_{1}(t)}(X(t))$.
We show that X is a piecewise C^{1} vector field along c_{1}. To this end, consider the map $F=$ $\pi \times \exp$ as in the proof of Thm. 5.11. by construction, X satisfies $F(X(t))=\left(c_{1}(t), c_{2}(t)\right)$. By the assumption $d\left(c_{1}(t), c_{2}(t)\right)<r_{t}$, the differential $\left.d \exp _{c_{1}(t)}\right|_{X(t)}$ is non-singular for each $t \in S^{1}$, so from (5.4), we get that also the differential $\left.d F\right|_{X(t)}$ is non-singular for each
$t \in S^{1}$. Hence F is a local diffeomorphism. Now if for some $t \in S^{1}, U \subset T M$ is an open neighborhood of $X(t)$ such that F is a diffeomorphism when restricted to U, we have

$$
X(t)=\left(\left.F\right|_{U}\right)^{-1}\left(c_{1}(t), c_{2}(t)\right)
$$

Since c_{1} and c_{2} are piecewise C^{1} and F is smooth, we obtain that X is also piecewise C^{1}. We can now define a homotopy by

$$
H(s, t)=F(s X(t))=\exp _{c_{1}(t)}(s X(t))
$$

which satisfes $H(0, t)=c_{1}(t), H(1, t)=c_{2}(t)$.
Proof (of Thm. 5.15). Set

$$
E_{0}=\inf \left\{E[c] \mid c \text { homotopic to } c_{0}\right\}
$$

and let c_{1}, c_{2}, \ldots be a sequence of piecewise C^{1} loops homotopic to c_{0} such that $E\left[c_{k}\right] \rightarrow E_{0}$ as $k \rightarrow \infty$. As reparametrization does not change the homotopy class, we may assume that c_{i} are parametrized proportionally to arc length. By the estimate $L\left[c_{k}\right]^{2} \leq 2 E\left[c_{k}\right]$, we obtain that the lengths $L\left[c_{k}\right]$ are bounded uniformly over k. We think of the loops c_{k} as maps $[0,1] \rightarrow M$ such that $c_{k}(0)=c_{k}(1)$.
Pick $r \in \mathbb{R}$ satisfying $0<r<\operatorname{injrad}(M, g)$, which is possible by (5.13). Then since the c_{i} are parametrized by arc length and their lengths are uniformly bounded, there exists some $N \in \mathbb{N}$ such that, setting $t_{j}=j / N$, the points $p_{j}^{k}:=c_{k}\left(t_{j}\right)(j=0, \ldots, N)$, satisfy

$$
d\left(p_{j-1}^{k}, p_{j}^{k}\right) \leq \frac{r}{3}
$$

for any $j=1, \ldots, N$ and any $k \in \mathbb{N}$ (observe that $p_{0}^{k}=p_{N}^{k}$ since the c_{i} are loops). We obtain N sequences $\left(p_{1}^{k}\right)_{i \in \mathbb{N}}, \ldots,\left(p_{N}^{k}\right)_{k \in \mathbb{N}}$ in M. Since with M also the N-fold product M^{N} is compact, after passing to a subsequence, we may achieve that for each $j=0, \ldots, N$, the sequence $\left(p_{j}^{k}\right)_{i \in \mathbb{N}}$ converges to some point $p_{j} \in M$, where $p_{0}=p_{N}$.
By continuity, we also have

$$
d\left(p_{j-1}, p_{j}\right) \leq \frac{r}{3}<\operatorname{injrad}(M, g)
$$

for each j, so there exists a unique minimizing geodesic between p_{j-1} and p_{j}. Let $c: S^{1} \rightarrow$ M be the piecewise geodesic loop such that $c\left(t_{j}\right)=p_{j}$ and such that on the subintervals [$\left.t_{j-1}, t_{j}\right]$ of $[0,1](j=1, \ldots, N), c$ is a the unique minimizing geodesic between p_{j-1} and p_{j}. Let $k_{0} \in \mathbb{N}$ be so large that $d\left(p_{j}^{k}, p_{j}\right) \leq r / 3$ for all $k \geq k_{0}$. Then for any $k \geq k_{0}$ and any $t \in S^{1}$, we have

$$
d\left(c(t), c_{k}(t)\right) \leq d\left(c(t), p_{j}\right)+d\left(p_{j}, p_{j}^{k}\right)+d\left(p_{j}^{k}, c_{k}(t)\right) \leq \frac{r}{3}+\frac{r}{3}+\frac{r}{3}=r<\operatorname{injrad}(M, g) .
$$

where j is such that $t \in\left[t_{j-1}, t_{j}\right]$. From Lemma 5.16, we obtain that c and c_{k} are homotopic, hence c is also homotopic to c_{0}. Moreover, for each $j=1, \ldots, N$ and each $k \in \mathbb{N}$, we get

$$
\begin{aligned}
L\left[c \mid\left[t_{j-1, t_{j}}\right]\right. & =d\left(p_{j-1}, p_{j}\right) \leq d\left(p_{j-1}, p_{j-1}^{k}\right)+d\left(p_{j-1}^{k}, p_{j}^{k}\right)+d\left(p_{j}^{k}, p_{j}\right) \\
& \leq d\left(p_{j-1}, p_{j-1}^{k}\right)+L\left[\left.c_{k}\right|_{\left[t_{j-1}, t_{j}\right]}\right]+d\left(p_{j}^{k}, p_{j}\right) .
\end{aligned}
$$

Taking the sum over j, we get

$$
\begin{aligned}
L[c] & \leq L\left[c_{k}\right]+2 \sum_{j=1}^{n} d\left(p_{j}^{k}, p_{j}\right) \\
& \leq \sqrt{2 E\left[c_{k}\right]}+2 \sum_{j=1}^{n} d\left(p_{j}^{k}, p_{j}\right) \quad \xrightarrow{k \rightarrow \infty} \sqrt{2 E_{0}} .
\end{aligned}
$$

Let γ be the reparametrization of c proportionally to arc length, which is again homotopic to c_{0}. Then since γ is parametrized proportionally to arc length, we have

$$
E[\gamma]=\frac{1}{2} L[\gamma]^{2}=\frac{1}{2} L[c]^{2} \leq E_{0}
$$

On the other hand, since E_{0} is is infimum of all energies of loops homotopic to c_{0}, we must have $E[\gamma]=E_{0}$. Hence γ realizes the infinimum of the energy among all piecewise C^{1} curves homotopic to c_{0}. It follows that all variations $\left(\gamma_{s}\right)_{s \in(-\varepsilon, \varepsilon)}$ of γ must satisfy $\left.\frac{d}{d s}\right|_{s=0} E\left[\gamma_{s}\right]=0$, so it follows from Thm. 5.3.1 that γ is a geodesic (and in particular smooth, not only piecewise smooth).

5.8 Synge's theorem

Let M be a manifold. For a point $p \in M$, denote by $\operatorname{Fr}_{p}(M)$ the set of vector space bases of $T_{p} M$. If n the dimension of the manifold, there is a right action of $\mathrm{GL}(n, \mathbb{R})$ on $\operatorname{Fr}_{p}(M)$, given by

$$
\left(E_{1}, \ldots, E_{n}\right) \cdot\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)=\left(\sum_{i=1}^{n} a_{i 1} E_{i}, \ldots, \sum_{i=1}^{n} a_{i n} E_{i}\right)
$$

which is free and transitive. Hence the choice of a basis in $T_{p} M$ gives a bijection to $\mathrm{GL}(n, \mathbb{R}) . \operatorname{Fr}_{p}(M)$ is then given the unique manifold structure making this bijection to the open set $\mathrm{GL}(n, \mathbb{R}) \subset \mathbb{R}^{n \times n}$ is a diffeomorphism (this is independent of the choice of basis). The manifolds $\operatorname{Fr}_{p}(M)$ fit together to the frame bundle

$$
\operatorname{Fr}(M)=\coprod_{p \in M} \operatorname{Fr}_{p}(M) .
$$

There is then a unique manifold structure on $\operatorname{Fr}(M)$ such that the footpoint projection $\pi: \operatorname{Fr}(M) \rightarrow M$ is a surjective submersion (this is constructed similarly to the smooth
structure on $T M)$. In fact, this shows that $\operatorname{Fr}(M)$ is even a fiber bundle with typical fiber $\operatorname{GL}(n, \mathbb{R})$ (in fact, it is even a principal bundle).
$\mathrm{GL}(n, \mathbb{R})$ has two different connected components: The matrices with positive and negative determinant. Since $\operatorname{Fr}_{p}(M)$ is diffeomorphic to $\operatorname{GL}(n, \mathbb{R})$ for every $p \in M$, this shows that also each $\operatorname{Fr}_{p}(M)$ has two connected components. We then have the following lemma.

Lemma 5.17. If M is connected, then $\operatorname{Fr}(M)$ has at most two connected components.
Proof. This follows at once from the long exact sequence for homotopy groups, applied to the fibration

$$
\mathrm{GL}(n, \mathbb{R}) \longrightarrow \operatorname{Fr}(M) \longrightarrow M
$$

Here we have that

$$
\cdots \longrightarrow \pi_{1}(M) \longrightarrow \underbrace{\pi_{0}(\mathrm{GL}(n, \mathbb{R}))}_{\mathbb{Z}_{2}} \longrightarrow \pi_{0}(\operatorname{Fr}(M)) \longrightarrow \underbrace{\pi_{0}(M)}_{=0}
$$

is a short exact sequence of pointed sets. Hence since M is connected, $\pi_{0}(\operatorname{GL}(n, \mathbb{R})) \cong \mathbb{Z}_{2}$ surjects onto $\pi_{0}(\operatorname{Fr}(M))$.
An explicit argument is the following. Fix a base point $E_{0} \in \operatorname{Fr}(M)$. Denote by p_{0} the foot point of E_{0}. Because M is connected (hence path-connected, as M is a manifold), given any other frame $E \in \operatorname{Fr}(M)$, say with foot point p, there exists a continuous path $c:[0,1] \rightarrow M$ with $c(0)=p_{0}$ and $c(1)=p$. Now, because $\operatorname{Fr}(M)$ is a fiber bundle, it has the path-lifting property, which implies that we can lift c to a path $\bar{c}:[0,1] \rightarrow \operatorname{Fr}(M)$, satisfying $\widehat{c}(0)=E_{0}$ and $\pi(\bar{c}(t))=c(t)$ for all t. In particular, $c(1)$ and E are two points in the same fiber $\operatorname{Fr}_{p_{0}}(M)$. If these two points lie in the same component of $\operatorname{Fr}_{p_{0}}(M)$, then we connect them by a path in $\operatorname{Fr}_{p}(M)$ and, by concatenation, obtain a path connecting E_{0} and E.
Now, if E and E^{\prime} are two points in $\operatorname{Fr}(M)$, we can connect the foot points of both with p_{0} through paths c and c^{\prime}, and lift these to $\operatorname{Fr}(M)$, obtaining two elements $c(1), c^{\prime}(1) \in$ $\operatorname{Fr}_{p_{0}}(M)$. Now since $\operatorname{Fr}_{p_{0}}(M)$ has two connected components, at least two of the three elements $E_{0}, c(1), c^{\prime}(1)$ must lie in the same connected component. This shows that given two frames E and E^{\prime}, either one of them lies in the same path component of E_{0} or they both lie in the same path component. Hence $\pi_{0}(\operatorname{Fr}(M))$ has at most two elements.

Definition 5.18 (Orientability). A connected manifold M is orientable if the frame bundle $\operatorname{Fr}(M)$ has two different connected components. An orientation of an orientable connected manifold M is a choice of one of these connected components. It is denoted by $\mathrm{Fr}^{+}(M)$ and its elements are called positively oriented bases.
A (possibly non-connected) manifold is called orientable if each connected component is orientable, and an orientation of such a manifold is the choice of an orientation for each connected component.

For an oriented manifold M, the $\mathrm{GL}(n, \mathbb{R})$-action on $\operatorname{Fr}(M)$ restricts to an action of $\mathrm{GL}_{n}^{+}(\mathbb{R})$ (the group of matrices with positive determinant) on $\mathrm{Fr}^{+}(M)$.

Lemma 5.19. Let (M, g) be a Riemannian manifold. For a piecewise smooth loop c : $S^{1} \rightarrow M$, denote by P_{c} the parallel transport around c.
(a) If M is oriented, then every piecewise smooth loop $c: S^{1} \rightarrow M$ has $\operatorname{det}\left(P_{c}\right)=1$.
(b) If M is not orientable, then there exists a piecewise smooth loop $c: S^{1} \rightarrow M$ such that $\operatorname{det}\left(P_{c}\right)=-1$.

Proof. We think of c as a map $c:[0,1] \rightarrow M$ such that $c(0)=c(1)$. We know that $P_{c}: T_{c(0)} M \rightarrow T_{c(1)} M$ is an orthogonal transformation. Hence $\operatorname{det}\left(P_{c}\right)= \pm 1$.
(a) Suppose that M is orientable. Let $E=\left(E_{1}, \ldots, E_{n}\right) \in \operatorname{Fr}_{c(0)}^{+}(M)$ be a positively oriented basis of of $T_{c(0)} M$ and let $E(t)=\left(E_{1}(t), \ldots, E_{n}(t)\right) \in \operatorname{Fr}_{c(t)}(M)$ be the corresponding parallel transported basis along c. Then $E(t)$ is a continuous path in $\mathrm{Fr}^{+}(M)$, hence $E(t)$ must be positively oriented for every $t \in[0,1]$. In particular, for $t=1$, we have $E(1)=\left(P_{c} E_{1}, \ldots, P_{c} E_{n}\right) \in \operatorname{Fr}_{c(1)}^{+}$, so

$$
\left(P_{c} E_{1}, \ldots, P_{c} E_{n}\right)=\left(E_{1}, \ldots, E_{n}\right) \cdot A
$$

for some $A \in \mathrm{GL}^{+}(\mathbb{R})$. It follows from the definition of the action that A is just a matrix representation of P_{c} with respect to the basis E. Hence

$$
\operatorname{det}\left(P_{c}\right)=\operatorname{det}(A)>0
$$

(b) Suppose that M is not orientable. Then $\operatorname{Fr}(M)$ is connected (hence path-connected). So given $p \in M$ and any two bases $E, E^{\prime} \in \operatorname{Fr}_{p}(M)$, there exists a smooth path \bar{c} in $\operatorname{Fr}(M)$ with $\bar{c}(0)=E$ and $\bar{c}(1)=E^{\prime}$. Since E and E^{\prime} lie in the same fiber, its foot point curve c is a closed curve. Let $E(t)$ be the frame obtained by parallel transport of E along c. This gives another smooth path in $\operatorname{Fr}(M)$, which lies in the same fiber as $\bar{c}(t)$ for every $t \in[0,1]$. Hence for each $t \in[0,1]$, there exists a unique $A(t) \in \operatorname{GL}(n, \mathbb{R})$ such that $E(t)=\bar{c}(t) \cdot A(t)$. Since both $E(t)$ and $\bar{c}(t)$ are smooth in t, the matrix $A(t)$ must depend smoothly on t also. Since $E(0)=E=\bar{c}(0)$, we have $A(0)=\mathrm{id}$, so $\operatorname{det}(A(t))>0$ for each $t \in[0,1]$. We obtain that

$$
\left(P_{c} E_{1}, \ldots, P_{c}\left(E_{n}\right)\right)=E(1)=\bar{c}(1) \cdot A(1)=E^{\prime} \cdot A(1)
$$

Now if E^{\prime} does not lie in the same connected component as E, we have $E^{\prime}=E \cdot B$ for a matrix B with $\operatorname{det}(B)<0$. We therefore have

$$
\operatorname{det}\left(P_{c}\right)=\operatorname{det}(B A(1))=\operatorname{det}(B) \operatorname{det}(A(1))<0 .
$$

Lemma 5.20. Let (M, g) be a Riemannian manifold and let $c, c^{\prime}: S^{1} \rightarrow M$ be two piecewise smooth loops that are homotopic. Then the parallel transports P_{c} and $P_{c^{\prime}}$ around c, respectively c^{\prime}, satisfy $\operatorname{det}\left(P_{c}\right)=\operatorname{det}\left(P_{c^{\prime}}\right)$.

Remark 5.21. The point is here that the homotopy is only required to be continuous.

Proof. Let $c: S^{1} \rightarrow M$ be a loop (which we think of as path $c:[0,1] \rightarrow M$ with $c(0)=c(1))$ and let $E \in \operatorname{Fr}_{c(0)}(M)$ be a basis of $T_{c(0)} M$. Let moreover $E(t)$ be the parallel transport of E around c. As seen in the proof of Lemma 5.19, we have $\operatorname{det}\left(P_{c}\right)=1$ if and only if $E(1)$ lies in the same connected component as E. Let now c^{\prime} be another loop and let H be a homotopy between c and c^{\prime}. Since $\operatorname{Fr}(M)$ is a fiber bundle, we can lift H to a map $\bar{H}:[0,1] \times[0,1] \rightarrow \operatorname{Fr}(M)$ such that $H(0, t)=E(t)$ for all $t \in[0,1]$. Write $E^{\prime}=H(1,0)$ and let $E^{\prime}(t)$ be the parallel transport of E^{\prime} along c^{\prime}. Then as in the proof of Lemma 5.19, $E^{\prime}(t)=H(1, t) \cdot A(t)$ for a smooth map $A:[0,1] \rightarrow \operatorname{GL}(n, \mathbb{R})$. Now, if $E(1)$ lies in the same connected component as E if and only if $H(s, 1)$ and $H(s, 0)$ lie in the same component of $\operatorname{Fr}_{H(s, 0)}(M)$ for every $s \in[0,1]$, if and only if $E^{\prime}(1)$ lies in the same connected component as E^{\prime}.

Theorem 5.22 (Synge). Let (M, g) be a compact Riemannian manifold with positive sectional curvature.
(a) If M is even-dimensional and oriented, then it is simply connected.
(b) If M is odd-dimensional, then it is orientable.

The proof is based on the following.
Linear Algebra Lemma 5.23. Let V be an oriented Euclidean vector space and let P be an orthogonal transformation of V. If V is odd-dimensional, assume that $\operatorname{det}(P)=1$. If V is even-dimensional, assume that $\operatorname{det}(P)=-1$. Then P fixes a one-dimensional subspace.

Proof. As an orthogonal transformation, the eigenvalues of P all lie on the complex unit circle. Since P is real, the spectrum is symmetric with respect to the real axis, hence if λ is an eigenvalue, then so is $\bar{\lambda}$. Let $E \subset V$ be the direct sum of eigenspaces to eigenvalues with non-zero imaginary part. Then E is an even-dimensional invariant subspace, since all eigenvalues of $\left.P\right|_{E}$ come in complex conjugate pairs. As $\lambda \bar{\lambda}=1$, we have $\operatorname{det}\left(\left.P\right|_{E}\right)=1$. On the orthogonal complement V^{\prime} of E, P has the eigenvalues +1 and -1 . We have to show that $e=\operatorname{dim}\{X \mid P X=X\}$ is not zero. We have

$$
\operatorname{det}(P)=\operatorname{det}\left(\left.P\right|_{V^{\prime}}\right) \operatorname{det}\left(\left.P\right|_{E}\right)=\operatorname{det}\left(\left.P\right|_{V^{\prime}}\right)=(-1)^{\operatorname{dim}\left(V^{\prime}\right)-e}=(-1)^{\operatorname{dim}(V)-e}
$$

since V^{\prime} has the same parity as V. Now observe that the assumptions imply that e must always be odd, in particular not zero.

Proof (of Thm. 5.22). (a) Assume that M is even-dimensional and suppose that $c: S^{1} \rightarrow$ M defines an non-trivial element of $\pi_{1}(M)$. By Thm. 5.15, there exists a closed geodesic γ homotopic to c that minimizes the energy in its homotopy class. We may parametrize γ by arc length. The parallel transport P_{γ} around γ satisfies

$$
P_{\gamma} \dot{\gamma}(0)=\dot{\gamma}(0),
$$

hence it preserves the orthogonal complement $V=\dot{\gamma}(0)^{\perp} \subset T_{\gamma(0)} M$. Since M is evendimensional, V is odd-dimensional. Hence $\left.P_{\gamma}\right|_{V}$ is orthogonal transformation of an odddimensional vector space. By Lemma 5.19(a), we have $\operatorname{det}\left(P_{\gamma}\right)=1$. By Lemma 5.23, $\left.P_{\gamma}\right|_{V}$ fixes a line, hence there exists $X \perp \dot{\gamma}(0)$ with $\|X\|=1$ and $P_{\gamma} X=X$. Let $X(t)$ be the parallel vector field around γ corresponding to this eigenvector (the point is here that X closes up continuously after going around $\gamma)$. Let $\left(\gamma_{s}\right)_{s \in(-\varepsilon, \varepsilon)}$ be a variation with variational vector field X. Then since X is parallel, we get

$$
\begin{aligned}
\frac{\partial^{2}}{\partial s^{2}} E\left[\gamma_{s}\right] & =\int_{0}^{1}\left(\left\|\frac{\nabla}{d t} X(t)\right\|^{2}-\langle R(X(t), \dot{\gamma}(t)) \dot{\gamma}(t), X(t)\rangle\right) d t \\
& \left.=-\int_{0}^{1} R(X(t), \dot{\gamma}(t)) \dot{\gamma}(t), X(t)\right\rangle d t \\
& =-\int_{0}^{1} K(\operatorname{span}\{X(t), \dot{\gamma}(t)\}) d t<0
\end{aligned}
$$

Here we use that as $X \perp \dot{\gamma}(0)$, we also have $X(t) \perp \dot{\gamma}(t)$ for all other t, hence $X(t)$ and $\dot{\gamma}(t)$ span a plane in $T_{\gamma(t)} M$ and we can identify $R(X(t), \dot{\gamma}(t)) \dot{\gamma}(t), X(t)$ with the sectional curvature of this plane. We obtain that for $|s|$ small, γ_{s} is a curve homotopic to γ such that $E\left[\gamma_{s}\right]<E[\gamma]$, a contradiction to the assumption that γ is energy minimizing in its homotopy class. Hence every element of $\pi_{1}(M)$ must be trivial.
(b) Suppose M is not orientable. Then by Lemma 5.19(b), there exists a piecewise smooth loop $c: S^{1} \rightarrow M$ such that $\operatorname{det}\left(P_{c}\right)=-1$. c must define a non-trivial element of $\pi_{1}(M)$, because if c is homotopic to a constant loop, then by Lemma 5.20, we have $\operatorname{det}\left(P_{c}\right)=$ $\operatorname{det}(\mathrm{id})=1$ (using that parallel transport around constant loops is the identity). Let now γ be an energy-minimizing geodesic homotopic to c (Thm. 5.15). By Lemma 5.20, we also have $\operatorname{det}\left(P_{\gamma}\right)=-1$. Since M is odd-dimensional, the orthogonal complement $V=\dot{\gamma}(0)^{\perp}$ is an even-dimensional invariant subspace for P_{γ}, and we still have $\operatorname{det}\left(\left.P_{\gamma}\right|_{V}\right)=-1$. Hence by Lemma $5.23,\left.P_{\gamma}\right|_{V}$ fixes a line. As before, we derive a contradiction to the fact that γ minimizes the energy in its homotopy class. Hence there cannot be a piecewise smooth loop $c: S^{1} \rightarrow M$ with $\operatorname{det}\left(P_{c}\right)=-1$, so M must be orientable.

Remark 5.24. The necessity of the assumptions of Synge's theorem can be seen via the following examples.
(a) The odd-dimensional spheres can be realized as $S^{2 n-1} \subset \mathbb{C}^{n}$. For any $p \in \mathbb{N}$ and q_{1}, \ldots, q_{n} coprime integers to p, there is an action of the cyclic group $\mathbb{Z} / p \mathbb{Z}$ on $S^{2 n-1}$, where the generator of $\mathbb{Z} / p \mathbb{Z}$ acts via

$$
\left(z_{1}, \ldots, z_{n}\right) \longmapsto\left(e^{2 \pi q_{1} / p} z_{1}, \ldots, e^{2 \pi q_{n} / p} z_{n}\right) .
$$

This is a free and orientation preserving action by isometries, hence taking the quotient by this action, we obtain a new Riemannian manifold, the so-called lens space $L\left(p ; q_{1}, \ldots, q_{n}\right)$. The corresponding Riemannian manifold still has constant positive sectional curvature and non-trivial fundamental group. This shows that the manifold in Thm. 5.22 must indeed be even-dimensional for the conclusion of (a) to hold.
(b) The real projective spaces $\mathbb{R} P^{n}$ are non-orientable if n is even, but have positive sectional curvature. This shows that the conclusion (b) of Synge's theorem needs the assumption that the dimensional of M is odd.

6 Lie groups and homogeneous spaces

6.1 Lie groups and their Lie algebras

Definition 6.1. A Lie group is a group G together with a manifold structure on G such that the group multiplication $m: G \times G \rightarrow G$ and the inversion map $i: G \rightarrow G$ are smooth. A homomorphism between Lie groups G and H is a smooth group homomorphism $\varphi: G \rightarrow H$.

Example 6.2. Any countable group is a Lie group when endowed with the discrete topology. (It cannot be uncountable because then as a topological space with the discrete topology, it would not be second-countable.)

Example 6.3. \mathbb{R}^{n} with its usual smooth structure becomes a Lie group with respect to addition of vectors. Its quotient $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, the n-dimensional torus, is also a Lie group. In fact, every connected abelian Lie group is of the form $T^{n} \times \mathbb{R}^{m}$, for numbers $n, m \in \mathbb{N}_{0}$.

Example 6.4. It is a general (non-trivial) fact that the isometry group $\operatorname{Isom}(M, g)$ of a semi-Riemannian manifold (M, g) is a Lie group.

Example 6.5. If V is a real or complex or quaternionic vector space, then the general linear group $\mathrm{GL}(V)$ is a Lie group with the manifold structure coming from viewing it as an open subset of $\operatorname{End}(V)$. For any $n \in \mathbb{N}$, we thus obtain Lie groups GL (n, \mathbb{R}), GL (n, \mathbb{C}) and $\mathrm{GL}(n, \mathbb{H})$. There are canonical inclusions $\mathrm{GL}(n, \mathbb{C}) \subset \mathrm{GL}(2 n, \mathbb{R})$ and $\mathrm{GL}(n, \mathbb{H}) \subset$ $\mathrm{GL}(2 n, \mathbb{C}) \subset \mathrm{GL}(4 n, \mathbb{R})$, which for $n=1$ are given by

$$
a+b i \longmapsto\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right), \quad z+w j \longmapsto\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right) .
$$

The most important theorem for generating examples of Lie groups is the following. A proof can be found in any textbook on Lie groups.

Theorem 6.6. If G is a Lie group and $H \subset G$ is a closed subgroup, then it is in fact a submanifold and a Lie group with the induced smooth structure.

Example 6.7. It follows that any closed subgroup $G \subset \mathrm{GL}(V)$ is a Lie group. We have the following concrete examples.
(a) The special linear group $\mathrm{SL}(V)=\operatorname{det}^{-1}(1) \subset \mathrm{GL}(V)$. We also use the notations $\operatorname{SL}(n, \mathbb{R}), \mathrm{SL}(n, \mathbb{C})$ and $\mathrm{SL}(n, \mathbb{H})$. In the quaternionic case, one has to take the real determinant, coming from the inclusion $\mathrm{GL}(n, \mathbb{H}) \subset \mathrm{GL}(4 n, \mathbb{R})$.
(b) The orthogonal group $\mathrm{O}(n)=\left\{A \in \mathrm{GL}(n, \mathbb{R}) \mid A A^{t}=\mathrm{id}\right\}$.
(c) The special orthogonal group $\mathrm{SO}(n)=\mathrm{O}(n) \cap \mathrm{SL}(n, \mathbb{R})$.
(d) The unitary group $\mathrm{U}(n)=\left\{A \in \mathrm{GL}(n, \mathbb{C}) \mid A A^{*}=\mathrm{id}\right\}$. Here $A^{*}=\bar{A}^{t}$ denotes the transpose, followed by complex conjugation.
(e) The special unitary group $\mathrm{SU}(n)=\mathrm{U}(n) \cap \mathrm{SL}(n, \mathbb{C})$.
(f) The unitary groups are not to be confused with the complex orthogonal groups $\mathrm{O}(n, \mathbb{C})=$ $\left\{A \in \mathrm{GL}(n, \mathbb{C}) \mid A A^{t}=\mathrm{id}\right\}$ and $\mathrm{SO}(n, \mathbb{C})=\mathrm{O}(n, \mathbb{C}) \cap \mathrm{SL}(n, \mathbb{C}) . \mathrm{U}(n)$ and $\mathrm{SU}(n)$ are compact, while these are not.
(g) The (compact) symplectic group $\operatorname{Sp}(n)=\left\{A \in \mathrm{GL}(n, \mathbb{H}) \mid A A^{\dagger}=\mathrm{id}\right\}$. Here A^{\dagger} denotes transpose followed by quaternionic conjugation.

Given a Lie group G, we write

$$
\lambda_{g}(h)=g h, \quad \rho_{g}(h)=h g
$$

for the actions of G on itself by left and right multiplication. It follows from the axioms of a Lie group, that λ_{g} and ρ_{g} are diffeomorphisms for every $g \in G$.

Definition 6.8 (Left-invariant vector fields). A vector field \tilde{X} on a Lie group G is called left invariant if for all $g \in G$, we have

$$
d \lambda_{g}(\tilde{X})=\tilde{X} \circ \lambda_{g}
$$

Lemma 6.9. For two left-invariant vector fields \tilde{X}, \tilde{Y} on a Lie group G, the Lie bracket $[\tilde{X}, \tilde{Y}]$ is again left invariant.

Proof. Observe here that left-invariance of a vector field \tilde{X} on G can be reformulated as $\left(\lambda_{g}\right)_{*} \tilde{X}=\tilde{X}$. Therefore the lemma follows from the fact that the Lie bracket of vector fields is natural, in the sense that for any diffeomorphism $f: M \rightarrow N$ between manifolds and any two vector fields \tilde{X}, \tilde{Y} on M, we have $f_{*}[\tilde{X}, \tilde{Y}]=\left[f_{*} \tilde{X}, f_{*} \tilde{Y}\right]$, where $f_{*} \tilde{X}=d f(\tilde{X}) \circ f^{-1}$ is the pushforward of X by f.

For any manifold M, the Lie bracket on vector fields satisfies the so-called Jacobi identity

$$
\begin{equation*}
[[\tilde{X}, \tilde{Y}], \tilde{Z}]+[[\tilde{Y}, \tilde{Z}], \tilde{X}]+[[\tilde{Z}, \tilde{X}], \tilde{Y}]=0 \tag{6.1}
\end{equation*}
$$

Abstractly, a vectorspace V together with a skew-symmetric bracket $[\cdot, \cdot]: V \times V \rightarrow V$ satisfying $(\sqrt{6.1})$ is called a Lie algebra. By Lemma 6.9 , the space of left invariant vector fields $\mathcal{X}_{\lambda}(G)$ is a Lie subalgebra of the Lie algebra $\mathcal{X}(G)$ of all vector fields on G.
There is an alternative description of the Lie algebra $\mathcal{X}_{\lambda}(G)$ of left invariant vector fields for a Lie group G that we discuss now.

Lemma 6.10. Evaluation at $e \in G$ gives a vector space isomorphism between the space of left invariant vector fields on G and $T_{e} G$.

Proof. For any tangent vector $X \in T_{e} G$, there is a left invariant vector field \tilde{X} with $\left.\tilde{X}\right|_{e}=X$, which is given by

$$
\left.\tilde{X}\right|_{g}=d \lambda_{g}(X)
$$

Conversely, every left invariant vector field \tilde{X} is determined by its value at $e \in G$, as $\left.\tilde{X}\right|_{g}=\left.\left(\tilde{X} \circ \lambda_{g}\right)\right|_{e}=d \lambda_{g}\left(\left.\tilde{X}\right|_{e}\right)$.

From now on, we set

$$
\mathfrak{g}:=T_{e} G,
$$

which by the above Lemma is isomorphic to the Lie algebra of left invariant vector fields on G. To obtain a description of the Lie bracket of $\mathcal{X}_{\lambda}(G)$ in terms of \mathfrak{g}, consider the conjugation action

$$
\alpha: G \times G \longrightarrow G, \quad(g, h) \longmapsto g h g^{-1}
$$

of G on itself. Differentiating α with respect to the second variable at the unit element $e \in G$, we obtain an action

$$
\operatorname{Ad}: G \times \mathfrak{g} \longrightarrow \mathfrak{g}
$$

of G on \mathfrak{g}. This action is called the adjoint action of G on \mathfrak{g}.
Example 6.11. If $G \subset \mathrm{GL}(V)$ is a closed subgroup, the adjoint action is just given by $\operatorname{Ad}_{g}(X)=g X g^{-1}$. The tangent space at an arbitrary $g \in G$ is related to \mathfrak{g} by

$$
T_{g} G=\left\{X g \mid X \in T_{e} G\right\}=\left\{g X \mid X \in T_{e} G\right\}
$$

The equality of the two descriptions above follows from the invariant of \mathfrak{g} under the adjoint action.

Further differentiating Ad with respect to the first variable, we obtain a map

$$
\mathrm{ad}: \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathfrak{g}
$$

Lemma 6.12. Let $X, Y \in \mathfrak{g}$ and let \tilde{X} and \tilde{Y} be the corresponding left invariant vector fields. Then

$$
\operatorname{ad}_{X}(Y)=\left.[\tilde{X}, \tilde{Y}]\right|_{e}
$$

Proof. We show that $\operatorname{ad}_{X}(Y)$ and $\left.[\tilde{X}, \tilde{Y}]\right|_{e}$ coincide as derivations on $\mathfrak{g}=T_{e} G$. To this end, let $\xi, \eta:(-\varepsilon, \varepsilon) \rightarrow G$ be smooth curves with $\xi(0)=\eta(0)=e$ and $\dot{\xi}(0)=X$, $\dot{\eta}(0)=Y$. Then

$$
\operatorname{ad}_{X}(Y)=\left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{Ad}_{\xi(t)}(Y)
$$

On the other hand, $\sigma(s)=\xi(t) \eta(s) \xi(t)^{-1}$ is a curve such that $\dot{\sigma}(0)=\operatorname{Ad}_{\xi(t)}(Y)$. Hence for $f \in C^{\infty}(G)$, we have

$$
\partial_{\operatorname{Ad}_{\xi(t)}(Y)} f(e)=\left.\frac{\partial}{\partial s}\right|_{s=0} f\left(\alpha_{\xi(t)}(\eta(s))\right) .
$$

We therefore get

$$
\partial_{\operatorname{ad}_{X}(Y)} f(e)=\left.\frac{\partial}{\partial t}\right|_{t=0} \partial_{\operatorname{Ad}_{\xi(t)}(Y)} f(e)=\left.\frac{\partial^{2}}{\partial t \partial s}\right|_{t=s=0} f\left(\alpha_{\xi(t)}(\eta(s))\right)
$$

Exchanging the differentiation variables and using the chain rule, we get

$$
\begin{aligned}
\left.\frac{\partial^{2}}{\partial t \partial s}\right|_{t=s=0} f\left(\alpha_{\xi(t)}(\eta(s))\right) & =\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{s=t=0} f\left(\xi(t) \eta(s) \xi(t)^{-1}\right) \\
& =\underbrace{\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{s=t=0} f(\xi(t) \eta(s))}_{(1)}+\underbrace{\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{s=t=0} f\left(\eta(s) \xi(t)^{-1}\right)}_{(2)}
\end{aligned}
$$

We have

$$
\left.\frac{\partial}{\partial s}\right|_{s=0} \xi(t) \eta(s)=\left.\frac{\partial}{\partial s}\right|_{s=0} \lambda_{\xi(t)}(\eta(s))=\left.d \lambda_{\xi(t)}\right|_{e}\left(\left.Y\right|_{e}\right)=\left.\tilde{Y}\right|_{\xi(t)}
$$

hence swapping derivatives again, we get

$$
(1)=\left.\frac{\partial^{2}}{\partial t \partial s}\right|_{t=s=0} f(\xi(t) \eta(s))=\left.\frac{\partial}{\partial t}\right|_{t=0} \partial_{\tilde{Y}} f(\xi(t))=\partial_{\tilde{X}} \partial_{\tilde{Y}} f(e)
$$

To deal with the term (2), we observe that differentiating the constant curve $t \mapsto \xi(t) \xi(t)^{-1}$ using the chain rule, we obtain that $t \mapsto \xi(0)^{-1}$ represents the tangent vector $-\dot{\xi}(0)=-X$. Hence

$$
\left.\frac{\partial}{\partial t}\right|_{t=0} \eta(s) \xi(t)^{-1}=\left.\frac{\partial}{\partial t}\right|_{t=0} \lambda_{\eta(s)}\left(\xi(t)^{-1}\right)=-\left.d \lambda_{\eta(s)}\right|_{e}\left(\left.X\right|_{e}\right)=-\left.\tilde{X}\right|_{\eta(s)}
$$

and

$$
(2)=-\left.\frac{\partial}{\partial s}\right|_{s=0} \partial_{\tilde{X}} f(\eta(s))=-\partial_{\tilde{Y}} \partial_{\tilde{X}} f(e) .
$$

Putting everything together, we obtain

$$
\partial_{\mathrm{ad}_{X}(Y)} f(e)=\partial_{\tilde{X}} \partial_{\tilde{Y}} f(e)-\partial_{\tilde{Y}} \partial_{\tilde{X}} f(e)=\partial_{[\tilde{X}, \tilde{Y}]} f(e),
$$

as claimed.
Definition 6.13 (Lie algebra). Let G be a Lie group. The Lie algebra of G is its tangent space at the identity element $\mathfrak{g}=T_{e} G$, together with the Lie bracket $[X, Y]=$ $\operatorname{ad}_{X}(Y)$.

Lie groups are typically denoted by capital roman letters such as G, H, K, while the corresponding Lie algebras are denoted by the corresponding fraktur letters $\mathfrak{g}, \mathfrak{h}, \mathfrak{k}$. If φ : $G \rightarrow H$ is a Lie group homomorphism, its differential induces a Lie algebra homomorphism $\varphi_{*}=\left.d \varphi\right|_{e}: \mathfrak{g} \rightarrow \mathfrak{h}$.

Example 6.14. The Lie bracket of the Lie algebra of an abelian Lie group is zero.
Example 6.15. The Lie algebra of $\mathrm{GL}(V)$ is the space $\operatorname{gl}(V)=\operatorname{End}(V)$ of vector space endomorphisms of V, with the commutator Lie bracket

$$
[X, Y]=X Y-Y X
$$

Matrix Lie groups from Example 6.7 are the following, all with the bracket induced by the one of $\operatorname{gl}(V)$:
(a) $\mathfrak{s l}(V)=\{X \in \operatorname{gl}(V) \mid \operatorname{tr}(X)=0\}$.
(b) $\mathfrak{o}(n)=\mathfrak{s o}(n)=\left\{X \in \operatorname{gl}(n, \mathbb{R}) \mid X^{t}=-X\right\}$.
(c) $\mathfrak{u}(n)=\left\{X \in \mathfrak{g l}(n, \mathbb{C}) \mid X^{*}=-X\right\}$.
(d) $\mathfrak{s u}(n)=\left\{X \in \mathfrak{g l}(n, \mathbb{C}) \mid X^{*}=-X, \operatorname{tr}(X)=0\right\}$.
(e) $\mathfrak{o}(n, \mathbb{C})=\mathfrak{s o}(n, \mathbb{C})=\left\{X \in \mathfrak{g l}(n, \mathbb{C}) \mid X^{t}=-X\right\}$.
(f) $\mathfrak{s p}(n)=\left\{X \in \mathfrak{g l}(n, \mathbb{H}) \mid X^{\dagger}=-X\right\}$.

It is an exercise to check that the commutator bracket indeed restricts to each of these subspaces.

6.2 Differential geometry of Lie groups

Definition 6.16 (Invariant metrics). Let G be a Lie group. A semi-Riemannian metric β on G is called left invariant, if $\lambda_{g}^{*} \beta=\beta$ for all $h \in G$, and bi-invariant if $\lambda_{g}^{*} \beta=$ $\rho_{g}^{*} \beta=\beta$ for all $h \in G$.

Lemma 6.17. Let G be a Lie group with Lie algebra \mathfrak{g}.
(a) Restriction at the unit element e provides an isomorphism between the space of left invariant semi-Riemannian metrics on G and the space of non-degenerate inner products on \mathfrak{g} (of the same signature).
(b) This isomorphism further refines to one between the space of bi-invariant semi-Riemannian metrics on G and the space of Ad-invariant, non-degenerate inner products on \mathfrak{g}.

Proof. (a) Any left-invariant semi-Riemannian metric β is determined by $\beta_{0}:=\left.\beta\right|_{e}$ because of the formula

$$
\begin{equation*}
\left.\beta\right|_{g}\left(\left.X\right|_{g},\left.Y\right|_{g}\right)=\beta_{0}\left(\left.d \lambda_{g^{-1}}\right|_{g}\left(\left.X\right|_{g}\right),\left.d \lambda_{g^{-1}}\right|_{g}\left(\left.Y\right|_{g}\right)\right), \quad X, Y \in T_{g} G \tag{6.2}
\end{equation*}
$$

This shows that the restriction map is injective. On the other hand, given a nondegenerate inner product b on $\mathfrak{g}=T_{e} G$, it defines a semi-Riemannian metric on G by replacing $\left.\beta\right|_{e}$ by b in the above formula. Therefore, the restriction map is surjective.
(b) Let β_{0} be an Ad-invariant, non-degenerate inner product on \mathfrak{g} and let β be the corresponding left-invariant metric given by (6.2). Then for vector fields $X, Y \in T_{g} G$, we have

$$
\begin{aligned}
\left.\beta\right|_{g}(X, Y) & =\beta_{0}\left(\left.d \lambda_{g^{-1}}\right|_{g}(X),\left.d \lambda_{g^{-1}}\right|_{g}(Y)\right) \\
& =\beta_{0}\left(\operatorname{Ad}_{h^{-1}} d \lambda_{g^{-1}}(X), \operatorname{Ad}_{h^{-1}} d \lambda_{g^{-1}}(Y)\right) \\
& =\beta_{0}\left(\left.\left.d \alpha_{h^{-1}}\right|_{e} d \lambda_{g^{-1}}\right|_{g}(X),\left.\left.d \alpha_{h^{-1}}\right|_{e} d \lambda_{g^{-1}}\right|_{g}(Y)\right) \\
& =\beta_{0}\left(\left.\left.d \lambda_{h^{-1}}\right|_{h} d \rho_{h}\right|_{e} d \lambda_{g^{-1}}(X),\left.\left.d \lambda_{h^{-1}}\right|_{h} d \rho_{h}\right|_{e} d \lambda_{g^{-1}}(Y)\right) \\
& =\beta_{0}\left(\left.\left.d \lambda_{(g h)^{-1}}\right|_{g h} d \rho_{h}\right|_{g}(X),\left.\left.d \lambda_{(g h)^{-1}}\right|_{g h} d \rho_{h}\right|_{g}(Y)\right) \\
& =\beta_{g h}\left(\left.d \rho_{h}\right|_{g}(X),\left.d \rho_{h}\right|_{g}(Y)\right),
\end{aligned}
$$

where we used that the left and right actions commute, together with the product rule. So β is also right invariant, hence bi-invariant. Conversely, if β is bi-invariant, then we have for $\beta_{0}:=\left.\beta\right|_{e}$ that

$$
\begin{aligned}
\beta_{0}\left(\operatorname{Ad}_{g}(X), \operatorname{Ad}_{g}(Y)\right) & =\left.g\right|_{e}\left(\left.d \alpha_{g}\right|_{e}(X),\left.d \alpha_{g}\right|_{e}(Y)\right) \\
& =\left.\beta\right|_{e}\left(\left.\left.d \lambda_{g}\right|_{g^{-1}} d \rho_{g}\right|_{e}(X),\left.\left.d \lambda_{g}\right|_{g^{-1}} d \rho_{g}\right|_{e}(Y)\right) \\
& =\left.\beta\right|_{g^{-1}}\left(\left.d \rho_{g}\right|_{e}(X),\left.d \rho_{g}\right|_{e}(Y)\right) \\
& =\left.\beta\right|_{e}(X, Y) \\
& =\beta_{0}(X, Y)
\end{aligned}
$$

for all $X, Y \in \mathfrak{g}$.
Theorem 6.18. Every compact Lie group admits a bi-invariant Riemannian metric.
Proof. We use that any compact Lie group has a finite right invariant measure, i.e., a measure μ with $\mu(G)<\infty$ and such that

$$
\int_{G} \rho_{g}^{*} f(h) d \mu(h)=\int_{G} f(h) d \mu(h)
$$

for all $f \in C^{\infty}(G)$ and all $g \in G$ (this can be obtained, for example, by extending a density at $e \in G$ by right invariance to all of G). Now given any positive definite inner product β_{0} on G, we define

$$
\beta(X, Y)=\int_{G} \beta_{0}\left(\operatorname{Ad}_{h}(X), \operatorname{Ad}_{h}(Y)\right) d \mu(h), \quad X, Y \in \mathfrak{g}
$$

Then

$$
\beta\left(\operatorname{Ad}_{g}(X), \operatorname{Ad}_{g}(Y)\right)=\int_{G} \beta_{0}\left(\operatorname{Ad}_{h g}(X), \operatorname{Ad}_{h g}(Y)\right) d \mu(h)
$$

which coincides with $\beta(X, Y)$ by right invariance of μ.

Example 6.19. Ad-invariant, non-degenerate inner products on $\mathfrak{g l}(n, \mathbb{R})$ and $\mathfrak{g l}(n, \mathbb{C})$ are given by

$$
\beta(X, Y)=-\operatorname{tr}(X Y), \quad \text { respectively } \quad \beta(X, Y)=-\operatorname{Re} \operatorname{tr}(X Y),
$$

inducing a semi-Riemannian metric on $\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{GL}(n, \mathbb{C})$. These inner products are positive definite on $\mathfrak{s o}(n) \subset \mathfrak{g l}(n, \mathbb{R})$ and $\mathfrak{u}(n) \subset \mathfrak{g l}(n, \mathbb{C})$, hence induce bi-invariant Riemannian metrics $\mathrm{O}(n), \mathrm{SO}(n)$ and $\mathrm{U}(n)$.

Lemma 6.20. Let G be a Lie group with Lie algebra \mathfrak{g}. Then any Ad-invariant, nondegenerate inner product β on \mathfrak{g} satisfies

$$
\beta([X, Y], Z)=\beta(X,[Y, Z]), \quad X, Y, Z \in \mathfrak{g} .
$$

Proof. Let $\xi:(-\varepsilon, \varepsilon) \rightarrow G$ be a path with $\dot{\xi}(0)=X$. Then for $Y, Z \in \mathfrak{g}$, the number $\operatorname{Ad}_{\xi(t)}^{*} \beta(Y, Z)$ is independent of t. Hence, using the chain rule and Lemma 6.12, we get

$$
\begin{aligned}
0 & =\left.\frac{d}{d t}\right|_{t=0} \beta\left(\operatorname{Ad}_{\xi(t)}(Y), \operatorname{Ad}_{\xi(t)}(Z)\right) \\
& =\beta\left(\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}_{\xi(t)}(Y), Z\right)+\beta\left(Y,\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}_{\xi(t)}(Z)\right) \\
& =\beta\left(\operatorname{ad}_{X}(Y), Z\right)+\beta\left(Y, \operatorname{ad}_{X}(Z)\right) \\
& =\beta([X, Y], Z)+\beta(Y,[X, Z]),
\end{aligned}
$$

which implies the claim.
Lemma 6.21. Let G be a Lie group and let β be a bi-invariant semi-Riemannian metric on G, with Levi-Civita connection ∇. Then for left invariant vector fields \tilde{X}, \tilde{Y}, we have

$$
\nabla_{\tilde{X}} \tilde{Y}=\frac{1}{2}[\tilde{X}, \tilde{Y}] .
$$

Proof. By the Koszul formula, we have

$$
\begin{align*}
2 \beta\left(\nabla_{X} Y, Z\right)= & \partial_{X} \beta(Y, Z)+\partial_{Y} \beta(X, Z)-\partial_{Z} \beta(X, Y) \tag{6.3}\\
& +\beta([X, Y], Z)-\beta([X, Z], Y)-\beta([Y, Z], X)
\end{align*}
$$

For all vector fields X, Y, Z on G. If $\tilde{X}, \tilde{Y} \in \mathcal{X}_{\lambda}(G)$ are left invariant vector fields corresponding to $X, Y \in \mathfrak{g}$, then

$$
\left.\beta\right|_{g}\left(\left.\tilde{X}\right|_{g},\left.\tilde{Y}\right|_{g}\right)=\left.\beta\right|_{g}\left(\left.d \lambda_{g}\right|_{e} X,\left.d \lambda_{g}\right|_{e} Y\right)=\left.\beta\right|_{e}(X, Y)
$$

so $\left.\beta\right|_{g}\left(\left.\tilde{X}\right|_{g},\left.\tilde{Y}\right|_{g}\right.$ is a constant function of g. We obtain that if $\tilde{X}, \tilde{Y}, \tilde{Z}$ are left invariant vector fields, then the first three terms of (6.3) vanish. We therefore get

$$
\begin{aligned}
2 \beta\left(\nabla_{\tilde{X}} \tilde{Y}, \tilde{Z}\right) & =\beta([\tilde{X}, \tilde{Y}], \tilde{Z})-\beta([\tilde{X}, \tilde{Z}], \tilde{Y})-\beta([\tilde{Y}, \tilde{Z}], \tilde{X}) \\
& =\beta([\tilde{X}, \tilde{Y}], \tilde{Z})+\beta([\tilde{Z}, \tilde{X}], \tilde{Y})+\beta([\tilde{Z}, \tilde{Y}], \tilde{X}) \\
& =\beta([\tilde{X}, \tilde{Y}], \tilde{Z})+\beta(\tilde{Z},[\tilde{X}, \tilde{Y}])+\beta(\tilde{Z},[\tilde{Y}, \tilde{X}]) \\
& =\beta([\tilde{X}, \tilde{Y}], \tilde{Z}) .
\end{aligned}
$$

where we used Lemma 6.20. Since β is non-degenerate and each tangent space is spanned by the values of left invariant vector fields, this implies the result.

Theorem 6.22. Let G be a Lie group with a bi-invariant semi-Riemannian metric. Then for left invariant vector fields $\tilde{X}, \tilde{Y}, \tilde{Z}$, we have

$$
R(\tilde{X}, \tilde{Y}) \tilde{Z}=-\frac{1}{4}[[\tilde{X}, \tilde{Y}], \tilde{Z}] .
$$

Moreover, we have $\nabla R=0$, hence G is a locally symmetric space.
Proof. We calculate

$$
\begin{aligned}
R(\tilde{X}, \tilde{Y}) \tilde{Z} & =\nabla_{\tilde{X}} \nabla_{\tilde{Y}} \tilde{Z}-\nabla_{\tilde{Y}} \nabla_{\tilde{X}} \tilde{Z}-\nabla_{[\tilde{X}, \tilde{Y}]} \tilde{Z} \\
& =\frac{1}{4}[\tilde{X},[\tilde{Y}, \tilde{Z}]]-\frac{1}{4}[\tilde{Y},[\tilde{X}, \tilde{Z}]]-\frac{1}{2}[[\tilde{X}, \tilde{Y}], \tilde{Z}] \\
& =\frac{1}{4}[\tilde{X},[\tilde{Y}, \tilde{Z}]]+\frac{1}{4}[\tilde{Y},[\tilde{Z}, \tilde{X}]]+\frac{1}{4}[\tilde{Z},[\tilde{X}, \tilde{Y}]]-\frac{1}{4}[[\tilde{X}, \tilde{Y}], \tilde{Z}] .
\end{aligned}
$$

The first three terms vanish by the Jacobi identity (6.1).
To see that $\nabla R=0$, calculate

$$
\begin{aligned}
\left(\nabla_{\tilde{X}} R\right)(\tilde{Y}, \tilde{Z}) \tilde{W} & =\nabla_{\tilde{X}}\{R(\tilde{Y}, \tilde{Z}) \tilde{W}\}-R\left(\nabla_{\tilde{X}} \tilde{Y}, \tilde{Z}\right) \tilde{W}-R\left(\tilde{Y}, \nabla_{\tilde{X}} \tilde{Z}\right) \tilde{W}-R(\tilde{Y}, \tilde{Z}) \nabla_{\tilde{X}} \tilde{W} \\
& =\frac{1}{8}(-[\tilde{X},[[\tilde{Y}, \tilde{Z}], \tilde{W}]]+\underbrace{[[[\tilde{X}, \tilde{Y}], \tilde{Z}], \tilde{W}]+[[\tilde{Y},[\tilde{X}, \tilde{Z}]], \tilde{W}]}_{=-[[\tilde{Y}, \tilde{Z}], \tilde{X}], \tilde{W}]}+[[\tilde{Y}, \tilde{Z}],[\tilde{X}, \tilde{W}]]) \\
& =-\frac{1}{8}([[\tilde{W},[\tilde{Y}, \tilde{Z}]], \tilde{X}]+[[[\tilde{Y}, \tilde{Z}], \tilde{X}], \tilde{W}]+[[\tilde{X}, \tilde{W}],[\tilde{Y}, \tilde{Z}]])=0,
\end{aligned}
$$

by the Jacobi identity for the three vector fields \tilde{X}, \tilde{W} and $[\tilde{Y}, \tilde{Z}]$.
Corollary 6.23. Let β be a bi-invariant semi-Riemannian metric on a Lie group G. Then the sectional curvature of a non-degenerate 2-plane $E \subset \mathfrak{g}$ spanned by $X, Y \in \mathfrak{g}$ is given by

$$
K(E)=\frac{1}{4} \frac{\beta([X, Y],[X, Y])}{\beta(X, X) \beta(Y, Y)-\beta(X, Y)^{2}} .
$$

In particular, a Riemannian (i.e., positive definite) bi-invariant metric on a Lie group has non-negative sectional curvature.

Proof. By Lemma 6.20, we have

$$
\begin{aligned}
K(E)\left(\beta(X, X) \beta(Y, Y)-\beta(X, Y)^{2}\right) & =\beta(R(X, Y) Y, X) \\
& =-\frac{1}{4} \beta([[X, Y], Y], X) \\
& =-\frac{1}{4} \beta([X, Y],[Y, X]) \\
& =\frac{1}{4} \beta([X, Y],[X, Y]) .
\end{aligned}
$$

6.3 The exponential map

Theorem 6.24. Let G be a Lie group with Lie algebra \mathfrak{g}. For each $X \in \mathfrak{g}$, there exists a unique Lie group homomorphism $\gamma: \mathbb{R} \rightarrow G$ such that $\dot{\gamma}(0)=X$.
Proof. Let \tilde{X} be the left-invariant vector field corresponding to X.
We start with showing uniqueness. Let $\gamma: \mathbb{R} \rightarrow G$ be a group homomorphism with $\dot{\gamma}(0)=X$. Then differentiating the equation $\gamma(t+s)=\gamma(t) \gamma(s)$ at $s=0$ shows that γ satisfies the ordinary differential equation

$$
\begin{equation*}
\dot{\gamma}(t)=\left.d \lambda_{\gamma(t)}\right|_{e} \dot{\gamma}(0)=\left.\tilde{X}\right|_{\gamma(t)} . \tag{6.4}
\end{equation*}
$$

By uniqueness of solutions to ordinary differential equations, there is at most one solution to this equation with $\gamma(0)=e$.
To show existence, let $\gamma:(-a, \varepsilon) \rightarrow G$ be the solution to the ordinary differential equation (6.4) with initial condition $\gamma(0)=e$, where $a>0$ is chosen maximal. Suppose that $a<\infty$. Then for $0<s<\varepsilon$, set $\tilde{\gamma}(t)=\gamma(s)^{-1} \gamma(t+s)=\lambda_{\gamma(s)^{-1}}(\gamma(t+s))$. Then $\tilde{\gamma}(0)=e$ and since \tilde{X} is left invariant,

$$
\dot{\tilde{\gamma}}(t)=\left.d \lambda_{\gamma(s)^{-1}}\right|_{\gamma(t+s)}\left(\left.\tilde{X}\right|_{\gamma(t+s)}\right)=\left.\tilde{X}\right|_{\gamma(s)^{-1} \gamma(t+s)}=\left.\tilde{X}\right|_{\tilde{\gamma}(t)} .
$$

So $\tilde{\gamma}$ satisfies the same ordinary differential equation (6.4) as γ, with the same initial condition. However, $\tilde{\gamma}$ is defined on the interval $(-a-s, \varepsilon-s)$, a contradiction to the assumption that a is maximal. We obtain that γ is defined for all negative times. Similarly, one shows that γ is defined for all positive times.
We now show that γ is a group homomorphism. Observe that for each $s \in \mathbb{R}$, the path $\tilde{\gamma}(t):=\gamma(t+s)$ satisfies (6.4) with the initial condition $\tilde{\gamma}(0)=\gamma(s)$. But the path $\tilde{\tilde{\gamma}}(t):=\gamma(t) \gamma(s)$ also satisfies (6.4) with the same initial condition. Hence $\tilde{\tilde{\gamma}}=\tilde{\gamma}$, so $\gamma(t+s)=\gamma(t) \gamma(s)$ for all $s, t \in \mathbb{R}$.

By the above lemma, we can make the following definition.
Definition 6.25 (Exponential map). Let G be a Lie group with Lie algebra \mathfrak{g}. The exponential map of G is the map

$$
\exp : \mathfrak{g} \longrightarrow G
$$

with the property that $\exp (X)=\gamma(1)$, where $\gamma: \mathbb{R} \rightarrow G$ is the unique Lie group homomorphism with $\dot{\gamma}(0)=X$.

Example 6.26. If $G \subset \mathrm{GL}(V)$ is a closed subgroup, then the exponential map of G is given by the usual matrix exponential,

$$
\exp (g)=\sum_{n=0}^{\infty} \frac{g^{n}}{n!}
$$

Theorem 6.27. Let G be a Lie group and let β be a bi-invariant semi-Riemannian metric on G. Then each Lie group homomorphism $\gamma: \mathbb{R} \rightarrow G$ such that $\dot{\gamma}(0)=X$ is a geodesic for β. In particular, the Lie group exponential map coincides with the semi-Riemannian exponential map at the unit element.

Proof. Let $\gamma(t)=\exp (t X)$ and let \tilde{X} be the left invariant vector field corresponding to X. By definition, γ is an integral curve to \tilde{X}, so the result follows from the fact that

$$
\frac{\nabla}{d t} \dot{\gamma}(t)=\left.\nabla_{\tilde{X}} \tilde{X}\right|_{\gamma(t)}=\left.\frac{1}{2}[\tilde{X}, \tilde{X}]\right|_{\gamma(t)}=0 .
$$

Here we used Lemma 6.21 and the fact that the Lie bracket is skew-symmetric.

6.4 Symmetric spaces

Definition 6.28 (Symmetric space). Let (M, g) be a connected semi-Riemannian manifold. A (global) geodesic reflection at $p \in M$ is an isometry $\sigma_{p}: M \rightarrow M$ such that $\sigma_{p}(p)=p$ and such that $\left.d \sigma_{p}\right|_{p}=-\mathrm{id}_{T_{p} M} .(M, g)$ is called symmetric space if for every $p \in M$, there exists a global geodesic reflection at p.

Symmetric spaces are closely related to homogeneous spaces. Recall that an action of a Lie group G on a manifold M is a smooth map $G \times M \rightarrow M,(g, p) \mapsto g \cdot p$, satisfying

$$
g \cdot(h \cdot p)=g h \cdot p \quad \text { and } \quad e \cdot p=p, \quad g, h \in G, \quad p \in M
$$

Such an action is called transitive if for any two points $p, q \in M$, there exists $g \in G$ such that $g \cdot p=q$. It is called free if the map $G \times M \rightarrow M \times M$ is injective, and it is called proper if the same map is proper (i.e., inverse images of compact sets are compact). The quotient manifold theorem states that if a Lie group G acts freely and properly on a manifold M, then the orbit space M / G is a topological manifold of $\operatorname{dimension} \operatorname{dim}(M)-\operatorname{dim}(G)$ and has a unique smooth structure turning the projection map $M \rightarrow M / G$ into a surjective submersion.

Definition 6.29 (Homogeneous space). A homogeneous space is a manifold M together with a transitive action of a Lie group G.

If G is a Lie group and K is a closed subgroup of G, then the action of K on G by multiplication is always free and proper, so the quotient space G / K is a smooth manifold with a free and transitive action of G.

Conversely, given a homogenous space M, we can pick a point $p \in M$, and denote the corresponding stabilizer subgroup by

$$
K:=K_{p}:=\{g \in G \mid g \cdot p=p\} \subseteq G .
$$

Then the smooth map $G \rightarrow M, g \mapsto g \cdot p$ descends to a diffeomorphism $G / K \rightarrow M$.
Theorem 6.30. Every symmetric space is homogenous.
Proof. Let (M, g) be a semi-Riemannian symmetric space. Then

$$
G:=\operatorname{Isom}(M, g) .
$$

is a Lie group, see Example 6.4. We claim that G acts transitively on M. To see this, we use that, given $p, q \in M$, there exists a broken geodesic connecting p and q, i.e., a continuous path $c:[0, r] \rightarrow M$ together with a time partition $0=t_{0}<t_{1}<\cdots<t_{N}=r$ such that c is a geodesic on each of the subintervals $\left[t_{j-1}, t_{j}\right]$ (in the case that M is Riemannian and complete, p and q can even be connected by a geodesic, but we do not want to make this assumption). For $j=1, \ldots, N$, let $\sigma_{j} \in G$ be the geodesic reflection at $c\left(\frac{t_{j-1}+t_{j}}{2}\right)$. Then σ_{j} exchanges $c\left(t_{j-1}\right)$ and $c\left(t_{j}\right)$, hence the composition $\sigma_{N} \circ \cdots \circ \sigma_{1} \in G$ sends p to q.

Fundamental Example 6.31. Let G be a Lie group and let $\sigma: G \rightarrow G$ be an involutive automorphism of G, i.e., a smooth map such that $\sigma(g h)=\sigma(g) \sigma(h)$ and $\sigma(\sigma(g))=g$. Let

$$
K \subseteq \operatorname{Fix}(\sigma)
$$

be an open subgroup of the fixed point set of σ (i.e., a disjoint union of connected components). Moreover, define $\tau: G \rightarrow G$ by $\tau(g)=\sigma\left(g^{-1}\right)$ and let

$$
M=\operatorname{Fix}(\tau)_{0}
$$

be the identity component of the fixed point set of τ.
A G-action on M is defined by the formula

$$
g \bullet p=g p \sigma(g)^{-1} .
$$

There is a smooth map $\pi: G \rightarrow M$ defined by $\pi(g)=g \sigma(g)^{-1}$. One can check that the image of this map is open and closed in M, hence all of M since M is connected. As σ fixes K, we have $\pi(g)=\pi(g k)$ for $k \in K$, hence π descends to a surjective map $G / K \rightarrow M$. It is injective if and only if $K=\operatorname{Fix}(\sigma)$. Indeed, if

$$
g \sigma(g)^{-1}=h \sigma(h)^{-1} \quad \Longleftrightarrow \quad g h^{-1}=\sigma\left(g h^{-1}\right)
$$

hence $g h^{-1} \in \operatorname{Fix}(\sigma)$. Conversely, if $g \in \operatorname{Fix}(\sigma) \backslash K$, then $\pi(g)=\pi(e)$, so the quotient map is not injective. We obtain that if $K=\operatorname{Fix}(\sigma)$, then π descends to a diffeomorphism
between M and the homogeneous space G / K, while in general, it descends to a covering map with fiber $\operatorname{Fix}(\sigma) / K$.
Assume that G carries a bi-invariant semi-Riemannian metric β for which σ (and hence also τ) are isometries, and such that β is non-degenerate when restricted to M. Then M is a totally geodesic semi-Riemannian submanifold of (G, β). We claim that for $p \in M$, a geodesic symmetry at p is given by $\sigma_{p}:=\lambda_{p} \circ i \circ \lambda_{p^{-1}}$, where i is the inversion map of G. On elements of M, this boils down to

$$
\sigma_{p}(q)=p q^{-1} p, \quad q \in M
$$

Indeed, σ_{p} clearly fixes p, is an isometry (since left translations and τ are), preserves M by the calculation

$$
\tau\left(p q^{-1} p\right)=\sigma\left(p^{-1} q p^{-1}\right)=\sigma\left(p^{-1}\right) \sigma(q) \sigma\left(p^{-1}\right)=p q^{-1} p
$$

and satisfies

$$
\left.d \sigma_{p}\right|_{p}=\left.\left.d \lambda_{p}\right|_{e} \underbrace{\left.d i\right|_{e}}_{-1} d \lambda_{p^{-1}}\right|_{p}=-\left.\left.d \lambda_{p}\right|_{e} d \lambda_{p^{-1}}\right|_{p}=-\left.d\left(\lambda_{p} \circ \lambda_{p^{-1}}\right)\right|_{p}=-\mathrm{id}_{T_{p} M}
$$

Since $\left.d \tau\right|_{e}=-\left.d \sigma\right|_{e}$, we obtain a β-orthogonal direct sum decomposition

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}
$$

of the Lie algebra \mathfrak{g} of G into the Lie algebra $\mathfrak{k}=\left\{X \in \mathfrak{g}|d \sigma|_{e}(X)=X\right\}$ of K and the tangent space $\mathfrak{m}=T_{e} M$ to M at e. Since M is totally geodesic, the its curvature tensor is just the restriction of the curvature tensor of G to M, in other words,

$$
R^{M}(X, Y) Z=-\frac{1}{4}[[X, Y], Z], \quad X, Y, Z \in \mathfrak{m}
$$

Special Case 6.32 (Complex projective space). Set $G=\mathrm{U}(n+1)$ and σ be the automorphism of G given by conjugation with the matrix

$$
\left(\begin{array}{cccc}
-1 & & & \tag{6.5}\\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right) .
$$

Then $K:=\operatorname{Fix}(\sigma)=\mathrm{U}(1) \times \mathrm{U}(n) \subset \mathrm{U}(n+1)$ and $M \cong \mathrm{U}(n+1) /(\mathrm{U}(1) \times \mathrm{U}(n)) . M$ is diffeomorphic to $\mathbb{C} P^{n}$, via the map that sends a matrix $U \in \mathrm{U}(n+1)$ onto the first row vector. We have

$$
\mathfrak{m}=\left\{\widehat{x} \mid x \in \mathbb{C}^{n}\right\}
$$

where for $z \in \mathbb{C}^{n}$, we set

$$
\widehat{x}:=\left(\begin{array}{cc}
0 & -\bar{x}^{t} \\
x & 0
\end{array}\right) \in \mathfrak{u}(n+1) \subset \operatorname{Mat}(n+1, \mathbb{C})
$$

Consider the bi-invariant semi-Riemannian metric corresponding to the bilinear form

$$
\beta(X, Y)=-\frac{1}{8} \cdot \operatorname{Re} \operatorname{tr}(X Y)
$$

on $\mathfrak{u}(n+1)$ (the conventional factor of $\frac{1}{8}$ is there to make the results look nice later on). Then the restriction $g=\left.\beta\right|_{\mathfrak{m}}$ of this metric is in terms of these elements given by

$$
g(\widehat{x}, \widehat{y})=-\frac{1}{8} \cdot \operatorname{Re} \operatorname{tr}\left(\begin{array}{cc}
-\bar{x}^{t} y & 0 \\
0 & -x \bar{y}^{t}
\end{array}\right)=\frac{1}{4} \cdot \operatorname{Re}\langle x, y\rangle .
$$

To determine the curvature, we calculate

$$
[\widehat{x}, \widehat{y}]=\left(\begin{array}{cc}
-2 i \operatorname{Im}\langle x, y\rangle & 0 \\
0 & -\left(x \bar{y}^{t}-y \bar{x}^{t}\right)
\end{array}\right),
$$

where the brackets denote the standard Hermitean form on \mathbb{C}^{n}, which we take to be anti-linear in the first component. Hence

$$
\begin{aligned}
4 R(\widehat{x}, \widehat{y}) \widehat{z} & =-[[\widehat{x}, \widehat{y}], \widehat{z}] \\
& =-\left(\begin{array}{cc}
0 & 2 i \operatorname{Im}\langle x, y\rangle \cdot \bar{z}^{t} \\
-\left(x \bar{y}^{t}-y \bar{x}^{t}\right) z & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \bar{z}^{t}\left(x \bar{y}^{t}-y \bar{x}^{t}\right) \\
-2 i \operatorname{Im}\langle x, y\rangle \cdot z & 0
\end{array}\right) \\
& =[\langle y, z\rangle \cdot x-\langle x, z\rangle \cdot y-2 i \operatorname{Im}\langle x, y\rangle \cdot z]
\end{aligned}
$$

This can be written in a more invariant form (not using the Hermitean scalar product but the bilinear form β) as follows. Denote

$$
j=\left(\begin{array}{llll}
i & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right) \in \mathrm{U}(n+1)
$$

and write $J=\operatorname{Ad}_{j}$. We have $J(\widehat{x})=\widehat{i x}$, hence J is an endomorphism of \mathfrak{m} that satisfies $J^{2}=-\mathrm{id}$ and leaves g invariant. In other words, J is a complex structure for the vector space \mathfrak{m}. Using J, we can express \langle,$\rangle through g$. The formula is

$$
\langle x, y\rangle=4 g(\widehat{x}, \widehat{y})+4 i g(J \widehat{x}, \widehat{y})
$$

so

$$
\begin{aligned}
{[\langle y, z\rangle \cdot x] } & =4 g(\widehat{y}, \widehat{z}) \widehat{x}+4 g(J \widehat{y}, \widehat{z}) J \widehat{x} \\
{[\langle x, z\rangle \cdot y] } & =4 g(\widehat{x}, \widehat{z}) \widehat{y}+4 g(J \widehat{x}, \widehat{z}) J \widehat{y} \\
{[2 i \operatorname{Im}\langle x, y\rangle \cdot z] } & =8 g(J \widehat{x}, \widehat{y}) J \widehat{z} .
\end{aligned}
$$

Putting together, we obtain

$$
R^{M}(X, Y) Z=g(Y, Z) X+g(J Y, Z) J X-g(X, Z) Y-g(J X, Z) J Y-2 g(J X, Y) J Z
$$

If X and Y are orthonormal, spanning a plane $E \subset \mathfrak{m}$, we get for the sectional curvature

$$
K^{M}(E)=1+3 g(J X, Y)^{2} .
$$

Hence the sectional curvature lies between 1 and 4. The maximal value of 4 is taken on 2-planes E that are invariant under J (hence spanned by X and $Y=J X$).

Special Case 6.33 (Sphere). Let $G=\mathrm{SO}(n+1)$ and let σ be conjugation by the special matrix 6.5). For $K=\{1\} \times \operatorname{SO}(n) \subset \operatorname{Fix}(\sigma)$, the quotient G / K is identified with S^{n}, while for $K=\operatorname{Fix}(\sigma)=(\mathrm{O}(1) \times O(n)) \cap \mathrm{SO}(n+1)$, the quotient is identified with $\mathbb{R} P^{n}$. The manifold M from Example 6.31 is $\mathbb{R} P^{n}$ in both cases.

