David Reutter, University of Hamburg based on joint work in progress w. Theo Johnson - Freyd

[Motivation

Homotopy groups:
$$\Pi_{-n} I Q_{lZ} = hom_{Ab} (\Pi_{n} S, Q_{lZ}) \longrightarrow \Pi_{0} = Q_{lZ}$$

Homotopy groups:
$$\Pi_{-n} I Q_{12} = hom_{A6} (\Pi_{n} \&, Q_{12}) \longrightarrow \Pi_{0} = Q_{12}$$

 $\Pi_{0} = Q_{12}$

Homotopy groups:
$$\Pi_{-n} I Q (z = hom_{A6} (\Pi_n S, Q | z)) \longrightarrow \Pi_0 = Q / z$$

Homotopy groups:
$$\Pi_{-n} I Q (z = hom_{A6} (\Pi_n S, Q | z)) \longrightarrow \Pi_0 = Q / z$$

Homotopy groups:
$$\Pi_{-n} I Q_{12} = hom_{A6} (\Pi_{n} \&, Q_{12}) \longrightarrow \Pi_{0} = Q_{12}$$

Homotopy groups:
$$\Pi_{-n} I Q_{2} = hom_{A6} (\Pi_{n} S, Q_{2}) \longrightarrow \Pi_{0} = Q_{2}$$

Freed-Hopkins:
(The Pirard symmetric monoidal d-groupoid of)
$$3_{20} \leq^d IQ/R$$
 is a
universal target for fully extended invertible (torsion) TQFT.

In low dimensions

In low dimensions

In tow atmensions

$$d=0: \quad \mathcal{F}_{20} I \mathbb{D}/\mathbb{R} = \mathbb{D}/\mathbb{R} \qquad \qquad \text{finite-dim. super vector spaces} \qquad \frac{n \quad \pi_n I \mathbb{D}/\mathbb{R}}{\mathbb{D}} \\ d=1: \quad \mathcal{F}_{20} \leq I \mathbb{D}/\mathbb{R} \cong sLine_a^{\sim} = (s \, Vec_a)^{\times} \qquad \begin{array}{c} \text{only } \mathbb{O} \quad \text{invertible} \\ \text{objects } \mathbb{F} \text{ inv. morphisms} \\ d=2: \quad \mathcal{F}_{20} \leq^2 I \mathbb{D}/\mathbb{R} \cong (s \, \mathbb{A} \, \mathbb{I}_{2a})^{\times} \qquad \begin{array}{c} \text{Morita category of finite-dim.} \\ \text{semisinple syper-algebras} \end{array} \qquad \begin{array}{c} n \quad \pi_n I \mathbb{D}/\mathbb{R} \\ \overline{\mathbb{D}}/\mathbb{R} \\ -1 \quad \mathbb{R}/2 \\ -2 \quad \mathbb{R}/2 \\ -3 \quad \mathbb{R}/24 \end{array}$$

Theorem [with TJF]: For
$$d \ge 2$$
, there is a C -linear symmetric monoidal d -category W^d with:
(1) $(W^d)_{tor}^X \cong \mathcal{F}_{\ge 0} \not\in dI \mathbb{R}/\mathcal{F}$

Theorem Ewith TJF]: For d 22, there is a unique t-linear
symmetric monoidal d-category Wd with:
(1)
$$(W^{d})_{tor}^{\chi} \equiv g_{20} \not\in^{d} I D / \not z$$

(2) $\int_{u}^{d-1} W^{d} = End_{wd}^{d-1} (I) \cong SVec_{d}$ (and inductive limit)
(3) W^{d} is a filtered colimit of finite semisimple symmetric n-cats.

Moreover, for every finite semisimple R-linear symmetric-monoidal d-rat. e: Fund (e, wd) = hom (2de, C) R-Alg

Why sVecq? A field k is algebraically closed

$$\widehat{\mathbb{T}}$$
 Hilberts Nullstellensetz
 $\forall \pm 0$, fin. generated k-algebra $K \rightarrow A$:
 $K \stackrel{A}{=} K$

. .

- · C is the O-categorical algebraic closure of R.
- · sveca is the 1-categorial "algebraic closure" of R.

- · (is the O-categorical Separable closure of R.
- · sveca is the 1-cutegorial separable closure of R.

· sveca is the 1-categorial separable closure of R.

Looks a lot Line PL, the stable piecewise-linear group.

Karoubian towers
Waroubian towers
Karoubian n-category := complete n-category
n-categories envicted
at the top in abeliangroups.
Nat [Ab] L Kar (at n [see also: Cargueville-Punkel-Schaumenni
n (at [Ab] L Kar (at n [see also: Cargueville-Punkel-Schaumenni
n (at [Ab] L Kar (at n [see also: Cargueville-Punkel-Schaumenni
n (at [Ab] L Kar (at n [see also: Cargueville-Punkel-Schaumenni
n (at [Ab] L Kar (at n [see also: Cargueville-Punkel-Schaumenni
n (at [Ab] L Kar (at n [see also: Cargueville-Punkel-Schaumenni
n (at [Ab] L Kar (at n [see also: Cargueville-Punkel-Schaumenni
nore details: M. Zetto -
Def: A (Karoubian) tower is a sequence (cneeⁿ)nzo of pointed
(Karoubian) n-rategories en with pointed equivalences
$$\Omega_{cn} e^{n} \cong e^{n-1} \forall n \ge 1$$
.
In words: A sequence of categories which deloop one gnotle.

Karoubian towers
(Karoubian towers)
(Karoubian n-category := complete n-category
n-category sewithed
at the top in abeliangroups.
(Kar (-))
(at EAb] (L)
(Karoubian) tower is a sequence (cn e eⁿ)n₂₀ of pointed
(Karoubian) n-rategories eⁿ with pointed equivalences
$$\mathcal{Q}_{cn} e^{n} \stackrel{c}{=} e^{n-7} \forall n \ge 1$$
.
In words: A sequence of categories which deloop one anothe.
Think : A thing with non-invertible cells in degree $[-\infty, 0]$:
(-1)- cells $3e^{0}$ e^{1} e^{2}
(commentible) (cop spectrum.

Karoubiantowers
$$fill devels$$
 $E5aiotion - Johnson - Field]$ Karoubian $n - (ategory) :=$ $(ax - idempotent)$ Karoubian $n - (ategory) :=$ $(applete - complete)$ $n - (ategory) :=$ $(applete) - complete - complete $n - (ategory)$ $n - (atEAb] =$ L $Kar(at_n)$ $Mar(at EAb] =$ L $Kar(at_n)$ $Def: A (Karoubian)$ tower is a sequence $(c_n e e^n)_{n \ge 0}$ of pointed $(Karoubian)$ $n - (ategories) e^n$ with pointed equivalences $Q_{en}e^n = e^{n-1} \forall n \ge 1$ M words: A sequence of $(ategories which deloop one anolla.$ Think : A thing with non-invertible (ells in degree $[-\infty, 0]$: $(-1) - (ells)$ i $i$$

Towers generalize commutative rings
Observe:
$$IF \in is$$
 a tower, then e^n inherits a symmetric
monoidal structure from the ∞ - deloopslys.
In parbicular, e^n is a commutative ring.
Definition: $IF R$ is a commutative ring, then the
Karoubian n-cuts $\mathcal{E}^n R := Kar(B^n R) \cong Mod^{dual}(Mod^{dual}(\dots (R)))$
 Γ trivially deloop R n times
form a tower, the suspension tower $\mathcal{E}R$ of R .

Towers generalize commutative rings
Observe:
$$|f \in is$$
 a tower, then e^n inherits a symmetric
monoidal structure from the ∞ - deloopslys.
In particular, e^n is a commutative ring, then the
Definition: $|f R|$ is a commutative ring, then the
Karoubian n-cuts $E^n R := Kar(B^n R) \cong Mod^{dual}(Mod^{dual}(\dots (RS)))$
 Γ trivially deloop R in times
form a tower, the suspension tower E^R of R_o
 $\frac{Prop:}{E} : CRing \longrightarrow Kar Towers is fully faithful.$

Towers generalize commutative rings
Observe:
$$|f \in i$$
 is a tower, then e^n inherits a symmetric
monoidal structure from the ∞ -deloopings.
In parbicular, e^n is a commutative ring, then the
Definition: $|f R$ is a commutative ring, then the
Karoubian n-cats $E^n R := Kar(B^n R) \cong Mod^{dual}(Mod^{dual}(\dots (R)))$
 Γ trivially deloop R is times
form a tower, the suspension tower ER of R .
Prop: E^n : $CRing \longrightarrow Kar Towers$ is fully faithful

E.g.: ER= {fin.gen. projective R-modules}, ER= { s+por 461e a lgebras}

Towers generalize commutative rings
Observe: If
$$e^{\circ}$$
 is a tower, then e° inherits a symmetric
monoidal structure from the ∞ - deloopshys.
In parbialar, e° is a commutative ring,
Definition: If R is a commutative ring,
 $\frac{Definition:}{R}$ if R is a commutative ring,
 K aroubien n -cats $E^{\circ}R := Kar(B^{\circ}R) \cong M \operatorname{od}^{dual}(M \operatorname{od}^{dual}(\dots (R)))$
 $form a tower,$ the suspension tower ER of R .
 $\frac{Prop:}{E} : CRing \longrightarrow Kar Towers is fully faithful
 $E.g.: ER = fin.gen.$ projective R -modules $J, E^{\circ}R = f \operatorname{in}^{nod}R^{nod}$
 $\frac{nod}{R}$.
 $\frac{Note:}{R} := Kar(E^{\circ}R)^{\times}$ can have homotopy in negable degrets $\longrightarrow \begin{bmatrix} n_0 = R^{\times} \\ R - 2 = Brille \\ R - 2 = Brille \end{bmatrix}$$

Mull stellen satzianism (From now on: "ring" will mean "comm. rig"
A field K is
separably closed
$$\forall \pm 0$$
, finite
separable ring maps $K = K$
Def: A ring homomorphism $R \rightarrow S$ is finite separable, if:
(1) S is finitely generated
projective as $R \rightarrow odule$
(2) S is finitely generated
projective as $S \otimes S - module$

Mull stellen satzianism (From now on: "ring" will mean "comm. rive
A field K is
separably closed
$$\forall \pm 0i$$
 finite
separable ring maps $K = K$
Def: A ring homomorphism $R \rightarrow S$ is finite separable, if:
(1) S is finitely generated
projective as R -module
(2) S is finitely generated
projective as $S \otimes S$ -module

Def: A map
$$F^{\bullet}: e^{\bullet} \rightarrow \mathcal{D}^{\bullet}$$
 of Karoubian towers is fully finite
if Fn the n-functor $F^{n}: e^{n} \rightarrow \mathcal{D}^{n}$ is fully right adjunctible.

Mull stellen satzianism (From now on: "ring" will mean "comm. rig"
A field K is
separably closed
$$\forall \neq 0$$
, finite
separable ring maps
K = K
Def: A ring homomorphism R \rightarrow S is finite separable, if:
(1) S is finitely generated
projective as R-module
(2) S is finitely generated
projective as S@S-module

Def: A map
$$F^{\bullet}: e^{\bullet} \rightarrow \mathcal{D}^{\bullet}$$
 of Karoubian towers is fully finite
if $\forall n$ the n-functor $F^{n}: e^{n} \rightarrow \mathcal{D}^{n}$ is fully right adjunctible.

Prop in progress [w.TJF]: (1) A ring map R->S is finite separable => E'R->E'S is fully finite.

Mull stellen satzianism (From now on: "ring" will mean "community")
A field K is
separably closed
$$\forall \neq 0$$
, finite
separable ring maps
K = K
Def: A ring homomorphism R \rightarrow S is finite separable, if:
(1) S is finitely generated
projective as R-module
(2) S is finitely generated
projective as S@S-module

Def: A map
$$F^{\bullet}: e^{\bullet} \rightarrow \mathcal{D}^{\bullet}$$
 of Karoubian towers is fully finite
if $\forall n$ the n-functor $F^{n}: e^{n} \rightarrow \mathcal{D}^{n}$ is fully right adjunctible.

A field K is
$$\forall \neq 0$$
, finite
separably closed \iff separable ring maps K = K

Def: A Karoubian tower R is
separably closed
$$\iff$$
 $\forall \neq 0i fully$
finite ring maps $j \neq i$
 $2 = 2^{\circ}$

Exm: 2°C is not separably closed.

Cf. recent work of Burklund-Schlank-Yuan in chromatic homotopy theory. Barthel-Carmeli-Schlank-Yanovski

III Constructing W

Roots of unity
Recall: K a separably closed field of char. O.
Then:
$$\mu(K) := \frac{\operatorname{roots} \ of \ unity}{\operatorname{in} K} = (K^{X})_{tor} \cong \mathbb{R}/\mathbb{Z} \in Ab.$$

Roots of unity
Recall: K a separably closed field of char. O.
Then:
$$V(K) := \frac{roots}{in \ K} = \frac{(K^{X})_{tor}}{in \ K} = \frac{\mathbb{R}}{\mathbb{R}} \neq Ab.$$

Def: The roots of unity of a kar. tower e' are
 $V(E) := (E^{X})_{tor} \in Spectra.$

Poots of unity

Perall: K a separably closed field of char. O.

Then:
$$\mu(K) := roots$$
 of unity $= (K^{X})_{tor} \cong \mathbb{R}/\mathbb{Z} \in Ab$.

Def: The roots of unity of a Kar. tower e are

 $\mu(E) := (E^{X})_{tor} \in Spectra$.

Expectation: If E is a separably closed tower

with char(E) := char (E_0) = O, then $\mu(E) \cong I\mathbb{R}/\mathbb{Z}$.

Roots of unity

Recall: k a separably closed field of char. O.

Then:
$$\mu(k) := roots$$
 of unity

in k

Def: The roots of unity of a Kar. tower e are

 $\mu(e) := (e^x)_{tor} \in Spectra.$
Expectation: If e is a separably closed tower

with char(e):= char (e_0) = O, then $\mu(e) = TO/Z$.

Idea: Build W by adjoining missing roots of unity.

Difficulty:

Don't adjoin

 $(roots of new roots of new roots might be roots$

Building (want these roots of mity
Look at
$$p(\mathbb{R}) = \mathbb{Z}/2 \longrightarrow \mathbb{Q}/\mathbb{Z}$$

 $-1 + 1 \longrightarrow \mathbb{Q}$

 $O \longrightarrow \gamma(R) = \frac{R}{2} \longrightarrow \frac{2}{R} \xrightarrow{2} O(R) \xrightarrow{2} O(R) \xrightarrow{2} O(R) \xrightarrow{2} O(R)$ missing roots

want these roots of unity Building C Look at $\mu(R) = \mathbb{Z}/2 \longrightarrow \mathbb{Q}/\mathbb{Z}$ $\begin{array}{c} \bullet \\ -1 \\ +1 \end{array} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}$ $\omega \in Ext^{1}(\mathcal{Q}_{\mathcal{R}}, \mathcal{R}_{12})$ $QR/R \xrightarrow{2} Q/R \xrightarrow{\omega} SHR/2$ missing routs

want these roots of unity Building C Look at $\mu(R) = \mathbb{Z}/2 \longrightarrow \mathbb{Q}/\mathbb{Z}$ $\omega \in Ext^{1}(\mathcal{Q}_{\mathcal{R}}, \mathcal{R}_{12})$ $QR_{R} \xrightarrow{2} QR_{R} \xrightarrow{\omega} RI2[1]$ missing routs

want these roots of unity Building C Look at $p(R) = \mathbb{Z}/2 \longrightarrow \mathbb{Q}/R$ $\frac{2}{R_{R}} \xrightarrow{\omega} \frac{1}{R_{2}} \frac{\omega}{R_{2}} = \frac{1}{R_{1}}$ QR/R missing routs R [A]

want these roots of unity Building C Look at $p(R) = \mathbb{Z}/2 \longrightarrow \mathbb{Q}/R$ \mathbb{Z}_{12} $Q_{R/R} \xrightarrow{2} Q_{R} \xrightarrow{\omega} R_{2}[1]$ missing routs $\mathbb{R} \begin{bmatrix} \mathbb{Z}/2 \end{bmatrix} \cong \mathbb{C}$

Building
$$\mathcal{W}^{n}$$
 Notation: For a symmetric n-cat. \mathcal{C} , $Tor (\mathcal{C}) := \langle torsion \ objects \rangle / is 0$
iso on \mathcal{N}_{0} : $\gamma(\mathcal{L}) \longrightarrow \mathcal{D}/\mathcal{R}$
 $\gamma(\mathcal{L}) \longrightarrow \mathcal{I} \mathcal{O}/\mathcal{R}$
mono on \mathcal{N}_{-1} : $Tor(\mathcal{L}) = 0 \longrightarrow \mathcal{D}/2$
 $:= \mathcal{N}_{-1} \gamma(\mathcal{L}^{0}) = \langle torsion \ objects \rangle / is 0$

Building
$$\mathcal{W}^{n}$$
 Notation: For a symmetric n-cat. \mathcal{C} , Tor $(\mathcal{C}) := \langle torsion objects \rangle / iso$
in \mathcal{C}^{n} iso on $\mathcal{N}_{2-(n-1)}$
induction:
 $\mathcal{V}(\mathcal{L}^{n}\mathcal{W}^{n-1}) \longrightarrow \mathcal{I}(\mathcal{D}/\mathcal{R})$ mono on \mathcal{N}_{-n}

Building
$$\mathcal{W}^{n}$$
 $\xrightarrow{N \text{ otation}} \cdot For a symmetric n-cat. \mathcal{C} , $Tor (\mathcal{C}) := \sqrt{tor sion objects} / iso$
in $\mathcal{C}^{n} := \pi_{-n}$
iso on $\pi^{\leq (n-1)}$
 $\frac{\ln \operatorname{duction}}{\operatorname{V}(z^{\circ} \mathcal{W}^{h-1})} \longrightarrow \mathcal{I}(\mathcal{D}/\mathcal{R})$ mono on $\pi^{n}$$

$$V(\mathcal{L}^{m-1}) \longrightarrow \mathbb{I}(\mathcal{D}/\mathcal{R}) \longrightarrow C \longrightarrow V(\mathcal{L}^{m-1})[1]$$

~

Building
$$\mathcal{W}^{n}$$

 $\frac{N \text{ obtation}}{N}$: For a symmetric n-rate of Tor (e):= $\sqrt{torsim} \frac{objects}{ine}$ (in e)
 $\pi^{n} := \pi_{-n}$
 $\frac{\ln duction:}{(z^{\circ} \mathcal{W}^{n-1})} \longrightarrow I \mathcal{O}/\mathbb{R}$
 $p(z^{\circ} \mathcal{W}^{n-1}) \longrightarrow I \mathcal{O}/\mathbb{R}$
 $p(z^{\circ} \mathcal{W}^{n-1}) \longrightarrow I \mathcal{O}/\mathbb{R} \longrightarrow p(z^{\circ} \mathcal{W}^{n-1}) [1]$
 $p(z^{\circ} \mathcal{W}^{n-1}) \longrightarrow I \mathcal{O}/\mathbb{R} \longrightarrow p(z^{\circ} \mathcal{W}^{n-1}) [1]$
 $cofiber w, \Pi^{\leq (n-1)} = 0$

•

- v

Building
$$\mathcal{W}^{n}$$

 $\frac{N \operatorname{otation}: \operatorname{For} a \operatorname{symmetric} n-(\operatorname{at}, \mathcal{C}) \operatorname{Tor} (\mathcal{C}):= \langle \operatorname{tor} \operatorname{sim}_{in} \mathcal{C}^{\operatorname{objets}} \rangle / iso$
 $\frac{1 \operatorname{nduction}:}{n^{n} := n_{-n}}$
 $\frac{1 \operatorname{nduction}:}{p(\mathcal{L}^{\circ} \mathcal{W}^{n-1}) \longrightarrow I} \mathcal{O} / \mathbb{R}}$
 $\frac{1 \operatorname{nduction}:}{p(\mathcal{L}^{\circ} \mathcal{W}^{n-1}) \longrightarrow I} \mathcal{O} / \mathbb{R}} \xrightarrow{\mathcal{L}^{\circ} \mathcal{V}} \mathcal{V} (\mathcal{L}^{\circ} \mathcal{W}^{n-1}) [I]}{p(\mathcal{L}^{\circ} \mathcal{W}^{n-1}) \longrightarrow I} \mathcal{O} / \mathbb{R}}$
 $\frac{1 \operatorname{nduction}:}{p(\mathcal{L}^{\circ} \mathcal{W}^{n-1}) \longrightarrow I} \mathcal{O} / \mathbb{R}} \xrightarrow{\mathcal{L}^{\circ} \mathcal{V}} \xrightarrow{\mathcal{L}^{\circ} \mathcal{V}} \mathcal{V} (\mathcal{L}^{\circ} \mathcal{W}^{n-1}) [I]}{p(\mathcal{L}^{\circ} \mathcal{W}^{n-1}) \longrightarrow I} \mathcal{O} / \mathbb{R}}$
 $\frac{1 \operatorname{nduction}:}{p(\mathcal{L}^{\circ} \mathcal{W}^{n-1}) \longrightarrow \operatorname{nom}(\pi_{n} \mathfrak{S}_{i} \mathcal{O}_{\mathcal{L}})} \xrightarrow{\mathcal{L}^{\circ} \mathcal{V}} \xrightarrow{\mathcal{L}^{\circ} \mathcal{V}} \xrightarrow{\mathcal{L}^{\circ} \mathcal{V}} (\mathcal{L}^{\circ} \mathcal{W}^{n-1}) = O$
 $\frac{1 \operatorname{nduction}:}{p(\mathcal{L}^{\circ} \mathcal{W}^{n-1}) \longrightarrow \operatorname{nom}(\pi_{n} \mathfrak{S}_{i} \mathcal{O}_{\mathcal{L}})} \xrightarrow{\mathcal{L}^{\circ} \mathcal{V}} \xrightarrow{\mathcal{L$

- -

Building W iso on n^{≤n} Frono on nⁿ⁺¹ To build: pl(zwn) -> IQ/z is

Building
$$W$$

To build: $V(\mathcal{E}^{n} \mathcal{W}^{n}) \rightarrow I \mathcal{W}_{\mathcal{R}}$ is iso on $\mathcal{D}^{\leq n}$
mono on \mathcal{D}^{n+2}
For n21: Consider $X := cofib (\gamma(\mathcal{E}^{n} \mathcal{W}^{n-1}) \rightarrow \gamma(\mathcal{E}^{n} \mathcal{W}^{n}))$

Building
$$\mathcal{W}$$

To build: $\mathcal{V}(\mathcal{E}^{n}\mathcal{W}^{n}) \rightarrow I\mathcal{W}_{\mathcal{B}}$ is iso on $\mathcal{D}^{\leq n}$
mono on \mathcal{D}^{n+1}
For n > 1: Consider $X := cofib (\mathcal{V}(\mathcal{E}^{n}\mathcal{W}^{n-1}) \rightarrow \mathcal{V}(\mathcal{E}^{n}\mathcal{W}^{n}))$

Building
$$W$$

To build: $V(\mathcal{E}^{*}W^{n}) \rightarrow IQ/R$ is iso on $\mathcal{D}^{\leq n}$
in one on Π^{n+2}
For n > 1: Consider $X := cofib (V(\mathcal{E}^{*}W^{n-1}) \rightarrow V(\mathcal{E}^{*}W^{n}))$
Unparked: $O \rightarrow Tor(\mathcal{E}W^{n-1}) \rightarrow Tor(W^{n}) \rightarrow \mathcal{F}^{n} \rightarrow Tor(\mathcal{E}^{2}W^{n-1}) \rightarrow \mathcal{T}or(\mathcal{E}W^{n})$
be cause $W^{n} = (\mathcal{E}W^{n-1})^{\omega_{n}} \mathbb{E}\mathcal{F}^{n}$ is be cause W^{n-1}
a categorial group algebra is separally closed

This implies: $\gamma(z, w^{n-1}) \longrightarrow I(D/Z)$ $\gamma(z, w^{n}) \xrightarrow{--7} iso \text{ on } \pi^{\leq n}$ $\gamma(z, w^{n}) \xrightarrow{--7} iso \text{ on } \pi^{\leq n}$ $mono \text{ on } \pi^{n+1}$

By induction, get W^{\bullet} with $\gamma(W^{\bullet}) \cong I \mathbb{Q}/\mathbb{Z}$.