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Modular functors

Following [Segal 88, Moore-Seiberg 88, Turaev 94, Tillmann 98,
Bakalov-Kirillov 01, . . . ].

X
Y

Σ

Map(Σ) = π0(Diff(Σ)) ; Example: Map(S1 × S1) ∼= SL(2,Z) .

(Σ;X ,Y , . . . ) 7−→ vector space B(Σ;X ,Y , . . . ) x Map(Σ) ‘conformal block’

for all surfaces, compatible with the gluing of surfaces.

Formal definition using modular operads in the sense of Getzler-Kapranov

A modular functor is a modular algebra over the modular surface operad
(or a certain central extension of it) with values in a symmetric monoidal
bicategory of linear categories.
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MODULAR

FUNCTORS

mapping
class groups
(faithfulness, . . . )

[Andersen 06]

topological
field theory

[Reshetikhin-Turaev 91]

homological
algebra

(Hochschild homology,

Ext algebras, . . . )

conformal
field theory
[Fuchs-Runkel-

Schweigert 02-08]



The classical construction three-dimensional topological
field theories

Theorem [Bartlett-Douglas-Schommer-Pries-Vicary 15]

Once-extended three-dimensional topological field theories are
equivalent to semisimple modular categories. (The topological field
theory associated to a semisimple modular category is the
Reshetikhin-Turaev construction.)

Once-extended = defined up to codimension two

=⇒ Restriction to surfaces gives us a modular functor.
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A finite tensor category [Etingof-Ostrik] A over some
algebraically closed field k is

a linear category A with finite-dimensional morphism spaces,
enough projective objects, finitely many isomorphism classes of
simple objects such that every object has finite length,
with a monoidal product ⊗ : A�A −→ A,
a rigid duality −∨,
and simple unit.

A braiding on a monoidal category is a natural isomorphism
X ⊗ Y −→ Y ⊗ X subject to the hexagon axioms. A braiding
on a finite tensor category is called non-degenerate if the only
objects that trivially double braid with all other objects are
finite direct sums of the monoidal unit.
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A balancing on a braided monoidal category is a natural
isomorphism θX : X −→ X subject to

θX⊗Y = cY ,X cX ,Y (θX ⊗ θY ) ,

θI = idI .

If in presence of duality we have additionally

θX∨ = θ∨X ,

we call the balancing a ribbon structure.

Modular category: finite ribbon category with non-degenerate
braiding.

Sources for modular categories

Certain Hopf algebras (−→ quantum groups) and vertex operator
algebras (−→ two-dimensional conformal field theory).
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If A is a semisimple modular category, the conformal block for the
surface with genus g and n boundary components is

A(I ,X1 ⊗ · · · ⊗ Xn ⊗ F⊗g ) for X1, . . . ,Xn ∈ A

with F =
⊕

basis of simples

X∨i ⊗ Xi .



An illustration for the torus

For a complex semisimple modular category A, the conformal
block of the torus is spanned by the isomorphism classes
[x0], . . . , [xn] of simple objects. Consider the generators

T =

(
1 0
1 1

)
, S =

(
0 −1
1 0

)
for the mapping class group SL(2,Z) of the torus. Then:

T acts diagonally, namely by θxi ∈ k on [xi ].

S acts by the so-called ‘S-matrix’ with entries:

xi xj .

Theorem [Schauenburg-Ng 2010]

The kernel of this SL(2,Z)-representation is a congruence
subgroup whose level is the order of the ribbon twist θ.
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The non-semisimple improvement

The construction still works with the coend F =
∫ X∈A

X∨ ⊗ X
instead — even beyond semisimplicity!

Theorem [Lyubashenko 95]

If A is a (possibly non-semisimple!) modular category, the vector
spaces A(I ,X1 ⊗ · · · ⊗ Xn ⊗ F⊗g ) carry projective mapping class
group actions.

Problem: How can we approach the search for all mapping
class group systematically and based on a solid topological
underpinning?
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Goal: Classification of modular functors

Preliminary observation: The boundary labels form the objects of a
linear category, the circle category, that we denote by A.

(I will present the situation in which A is finitely cocomplete and B(Σ,−)
cocontinuous in the labels. Technically speaking: We work in Rexf .)
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Genus zero modular functors

7−→ ⊗ : A�A −→ A

monoidal product

7−→ I ∈ A
monoidal unit

7−→ θ : idA =⇒ idA
balancing

Dehn twist
θX⊗Y = cY ,X cX ,Y (θX ⊗ θY )

θI = idI

[Wahl 01, Salvatore-Wahl 03]

plus braiding cX ,Y : X ⊗ Y
∼=−−→ Y ⊗ X
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θDX = DθX

‘ genus zero modular functors = ribbon Grothendieck-Verdier categories’
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Extension to higher genus

Theorem [Brochier-W. 22]

Any genus zero modular functor (including the cyclic structure)
extends to higher genus in at most one way, up to a contractible
choice.

For the extension, there will be an obstruction — and this is
exactly what we can express in terms of factorization ho-
mology!

What is factorization homology? [Beilinson-Drinfeld, Lurie,
Ayala-Francis, . . . ; 2000-]

∫
Σ
A =

⊕
tnD2↪→Σ

n≥0

A�n

/
∼

coefficients: E2-algebra, e.g. braided category

surface

A
A

A
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Skein module functors for handlebodies

Take a surface Σ with n boundary components and choose a handle-
body filling H. If A is a ribbon Grothendieck-Verdier category, then
A extends uniquely to all handlebodies (‘ansular functor’ [Müller-
W.]).

One may show that it produces a functor

ΦA(H) :

∫
Σ

A −→ A�n .

Definition

We say that A is connected if ΦA(H) ∼= ΦA(H ′) for all handlebodies H
and H ′ with boundary Σ, and all surfaces Σ (isomorphism of module
functors).
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More details [optional]

Theorem [Müller-W. 2022]

Genus zero restriction provides an equivalence between ansular
functors and cyclic framed E2-algebras.
In Rexf , the ansular functor associated to a ribbon
Grothendieck-Verdier category A sends a handlebody of genus g
and n boundary components labeled with X1, . . . ,Xn to the hom
space

A(X1 ⊗ · · · ⊗ Xn ⊗ A⊗g ,K )∗

defined using the canonical end A =
∫ X∈A

X ⊗ DX (D is the
duality functor of A).

Uses a result of Giansiracusa on the derived modular envelope of
framed E2.



More details [optional]

Let A be a cyclic framed E2-algebra in Rexf .

For a handlebody H with ∂H = Σ (the n embedded disks of
H are converted in boundary components of Σ), consider an
embedding ϕ : tJD2 −→ Σ. This endows H with m := |J|
more embedded disks in its boundary. We denote this
handlebody by Hϕ.

By evaluation of the ansular functor Â associated to A, we
get a 1-morphism

A�m Â(Hϕ)−−−−−→ A�n
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H

ϕ : tJD2 −→ Σ = ∂H

boundary components of Σ /
embedded disks of H

This is natural in ϕ and hence produces the desired
1-morphism

ΦA(H) : hocolim
ϕ:tJD2−→Σ

A�J −→ A�n .



Classification of modular functors

One can define a moduli space MF of modular functors.

Theorem [Brochier-W. 22]

Genus zero restriction provides a homotopy equivalence from the
moduli space MF of modular functors to connected ribbon
Grothendieck-Verdier categories.

The closed surface of genus g is always sent to HomA(A⊗g ,K )∗

with the canonical end A =
∫
X∈A X ⊗ DX and K = DI .
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Moduli space of modular functors

Lyubashenko

A satisfies finiteness assumptions,
rigidity and factorizability
(modular category),
e.g. A = H-mod
for ribbon factorizable Hopf algebra H

Σg 7−→ HomH(H⊗g
ad , k)∗

Feigin-Fuchs boson

non-exact
VOA examples?

Drinfeld center of non-spherical pivotal Hopf algebras



Application / special case I: Drinfeld centers

For a pivotal finite tensor category C, denote by α the
distinguished invertible object that describes the quadruple dual via
the Radford isomorphism of Etingof-Nikshych-Ostrik

−∨∨∨∨ ∼= α⊗−⊗ α−1 .

Theorem [Müller-W. 2022]

The distinguished invertible object α ∈ C, equipped with a suitable
half braiding, is a dualizing object in the Drinfeld center Z (C) that
makes Z (C) a ribbon Grothendieck-Verdier category.

This ribbon Grothendieck-Verdier category is connected; it
therefore gives rise to a modular functor, even when Z (C) is not a
modular category in the traditional sense.
(This will happen when C is not spherical in the sense of
Douglas-Schommer-Pries-Snyder by a result of [Shimizu 17].)
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Applications II: Skein modules and pivotal module
categories

A : finite ribbon category ; H : handlebody with one embedded
disk (for simplicity) ; Σ := ∂H.

Then the conformal block for H, seen as object in A, becomes a
module over the skein algebra AΣ := End(OΣ) ∈ A, where
OΣ ∈

∫
ΣA is the pointing.

(The internal end is with respect to the A-action on
∫

Σ
A.)

The algebra AΣ generalizes the Alekseev-Grosse-Schomerus moduli
algebra for Σ, see [Ben-Zvi-Brochier-Jordan 15]).

Proposition [Brochier-W., in progress]

If A is modular,
∫

Σ
A is a pivotal A-module and hence AΣ a symmetric

Frobenius algebra.
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Applications III: Dehn twists

[De Renzi, Gainutdinov, Geer, Patureau-Mirand, Runkel 2020]
prove that the modular functor for a certain ribbon factorizable
Hopf algebra (the ‘small quantum group’) has the following
property: For a closed surface, any Dehn twist acts by an
automorphism of infinite order. We generalize this as follows:

Theorem [Müller-W., in progress]

Let H be a ribbon factorizable Hopf algebra whose ribbon element
has order N ∈ N ∪ {∞}. On the conformal block that the modular
functor for H-mod assigns to Σg with g ≥ 1, any Dehn twist
about an essential simple closed curve acts by an automorphism of
order N if the curve is non-separating.

If the curve is separating, this is generally false.
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Applications IV: Vertex operator algebras

[Allen-Lentner-Schweigert-Wood 21] provide some very mild conditions
on a vertex operator algebra V and a notion of module making
V -modules a ribbon Grothendieck-Verdier category (possibly with a
non-exact monoidal product!).

Theorem [Müller-W. + Brochier-W. 22]

Under the above assumptions, the genus zero conformal blocks

Σ0,n 7−→ HomV (−⊗ · · · ⊗ −,V ∗)∗

on which the ribbon braid groups act through the ribbon
Grothendieck-Verdier structure have a unique extension to all
handlebodies (an ‘ansular functor’) and at most one extension to a
modular functor (both with values in Rex).

This will hopefully pave the way to comparison theorems to con-
structions of conformal blocks directly from the vertex operator al-
gebra, see [Ben-Zvi-Frenkel] and more recently [Damiolini-Gibney-
Tarasca].
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