Orbifold completion of 3-categories

Nils Carqueville

Universität Wien

based on joint work with Ilka Brunner, Catherine Meusburger, Vincentas Mulevičius, Daniel Plencner, Ana Ros Camacho, Ingo Runkel, Gregor Schaumann, Daniel Scherl, and Lukas Müller: arXiv:2307.06485 [math.QA]

overview: arXiv:2307.16674 [math-ph]

slides: https://carqueville.net/nils/3dorb.pdf

In a nutshell

Orbifold data ... are algebraic representations of Pachner moves ... are objects of a higher Morita category

- ... are special defects in defect TQFT
- ... are gaugeable (non-invertible) symmetries

... give rise to state sum models

In a nutshell

Orbifold data ... are algebraic representations of Pachner moves ... are objects of a higher Morita category ... are special defects in defect TQFT ... are gaugeable (non-invertible) symmetries ... give rise to state sum models

Theorem. Let \mathcal{T} be 3-category with duals. The higher Morita category \mathcal{T}_{orb} of orbifold data in \mathcal{T} has duals.

Theorem. Let \mathcal{Z} be 3d defect TQFT and $\mathcal{D}_{\mathcal{Z}}$ its 3-category with duals. From $(\mathcal{D}_{\mathcal{Z}})_{\mathrm{orb}}$ one obtains 3d **defect TQFT** $\mathcal{Z}_{\mathrm{orb}}$.

Applications.

- "Defect state sum models are orbifolds of the trivial defect TQFT."
- "Reshetikhin-Turaev defect TQFTs without thinking"
- "Douglas-Reutter 4-manifold invariants via orbifolds"

Closed TQFT

An *n*-dimensional closed oriented TQFT is symmetric monoidal functor

Closed TQFT

An *n*-dimensional closed oriented TQFT is symmetric monoidal functor

Classification.

- (1d closed oriented TQFTs) \cong (dualisable objects)
- (3d closed oriented TQFTs) \cong (J-algebras)
- (4d closed oriented TQFTs) \cong ??
- (2d closed oriented TQFTs) \cong (commutative Frobenius algebras)

Defect TQFT

An *n*-dimensional defect TQFT is symmetric monoidal functor $\operatorname{Bord}_{n,n-1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$

depending on set of $\textbf{defect data}\ \mathbb D$ consisting of

- set D_n of "bulk theories"
- sets D_j of *j*-dimensional "defects" for $j \in \{0, 1, \dots, n-1\}$
- adjacency rules...

Defect TQFT

An *n*-dimensional defect TQFT is symmetric monoidal functor $\operatorname{Bord}_{n,n-1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$

depending on set of $\textbf{defect data}\ \mathbb D$ consisting of

- set D_n of "bulk theories"
- sets D_j of *j*-dimensional "defects" for $j \in \{0, 1, \dots, n-1\}$
- adjacency rules. . .

Non-full embedding $\operatorname{Bord}_{n,n-1}^{\operatorname{or}} \hookrightarrow \operatorname{Bord}_{n,n-1}^{\operatorname{def}}(\mathbb{D})$ for all $u \in D_n$

Davydov/Kong/Runkel 2011, Carqueville/Runkel/Schaumann 2017

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}_{2}^{\text{triv}}$: $\text{Bord}_{2,1}^{\text{def}}(\mathbb{D}^{\text{triv}_{2}}) \longrightarrow \text{Vect}_{\Bbbk}$ $D_{2}^{\text{triv}_{2}} := \{\Bbbk\}$

$$D_1^{\operatorname{triv}_2} := \operatorname{Ob}(\operatorname{vect}_{\Bbbk}) \qquad \qquad \mathcal{Z}_2^{\operatorname{triv}}\left(\bigcup_{V_m}^{V_1} \right) := V_1 \otimes \cdots \otimes V_m$$

 $D_0^{\operatorname{triv}_2} := \operatorname{Mor}(\operatorname{vect}_{\Bbbk})$

$$\mathcal{Z}_2^{ ext{triv}}\Big(igstarrow \Big) := (ext{evaluate 0- und 1-strata as string diagrams in $ext{vect}_{oldsymbol{k}})$$$

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}_{2}^{\text{triv}}$: $\text{Bord}_{2,1}^{\text{def}}(\mathbb{D}^{\text{triv}_{2}}) \longrightarrow \text{Vect}_{\Bbbk}$ $D_{2}^{\text{triv}_{2}} := \{\Bbbk\}$

$$D_1^{\operatorname{triv}_2} := \operatorname{Ob}(\operatorname{vect}_{\Bbbk}) \qquad \qquad \mathcal{Z}_2^{\operatorname{triv}}\left(\bigcirc_{V_m}^{V_1} \right) := V_1 \otimes \cdots \otimes V_m$$

 $D_0^{\operatorname{triv}_2} := \operatorname{Mor}(\operatorname{vect}_\Bbbk)$

$$\mathcal{Z}_2^{\mathrm{triv}}\Big(\bigwedge^{}\Big) := (\text{evaluate 0- und 1-strata as string diagrams in } \mathrm{vect}_{\Bbbk})$$

State sum models Z_2^{ss} :

separable symmetric Frobenius k-algebras and bimodules

B-twisted sigma models $\mathcal{Z}^{B\sigma}$:

Calabi-Yau manifolds and their derived categories

Landau–Ginzburg models \mathcal{Z}^{LG} :

isolated singularities and matrix factorisations

Theorem. For \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$ with – objects: elements of D_2

- 1-morphisms $X \colon u \longrightarrow v$: lists of composable elements of D_1

$$v = t(x_1) \qquad \cdots \qquad s(x_{n-1}) = t(x_{n-2}) \qquad t(x_n) = t(x_{n-1}) \qquad s(x_n) = u$$

- Hom $(X, Y) = \mathcal{Z} \begin{pmatrix} (y_2, \nu_2) & \cdots & (y_{m-1}, \nu_{m-1}) \\ (y_1, \nu_1) & (y_m, \nu_m) \\ (x_1, -\varepsilon_1) & (x_2, -\varepsilon_2) \\ (x_2, -\varepsilon_2) & \cdots & (x_{n-1}, -\varepsilon_{n-1}) \end{pmatrix}$
- composition: "nair-of-pants with defects"

Theorem. For \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$ with - objects: elements of D_2

- 1-morphisms $X: u \longrightarrow v$: lists of composable elements of D_1

$$v = t(x_1) \xrightarrow{x_1 \dots x_{n-2}} s(x_{n-1}) = t(x_{n-2}) \xrightarrow{t(x_n) = t(x_{n-1})} s(x_n) = u$$

- Hom $(X, Y) = \mathcal{Z} \begin{pmatrix} (y_2, \nu_2) & \cdots & (y_{m-1}, \nu_{m-1}) \\ (y_1, \nu_1) & (y_m, \nu_m) \\ (x_1, -\varepsilon_1) & (x_2, -\varepsilon_2) & \cdots & (x_{n-1}, -\varepsilon_{n-1}) \end{pmatrix}$
- composition: "pair of pants with defects"

composition: pair-of-pants with defects

Examples. $\mathcal{D}_{\mathcal{Z}_{o}^{\mathrm{triv}}} \cong \mathrm{B} \operatorname{vect}_{\Bbbk}$ $\mathcal{D}_{\mathcal{Z}_2^{ss}} \cong ssFrob(vect_k) \cong (\mathcal{D}_{\mathcal{Z}_2^{triv}})^{\odot}_{orb}$ $\mathcal{D}_{\mathcal{Z}^{\mathrm{LG}}_{\mathrm{o}}} \cong \mathcal{LG}$

Davydov/Kong/Runkel 2011

Examples of 3d defect TQFTs

Reshetikhin–Turaev defect TQFT $\mathcal{Z}_{\mathcal{M}}^{\mathrm{RT}}$ for modular fusion category \mathcal{M} : $D_3^{\mathrm{RT}} := \{ \mathsf{commutative } \Delta \mathsf{-separable Frobenius algebras } A \mathsf{ in } \mathcal{M} \}$ $D_2^{\text{RT}} := \{\Delta \text{-sep. sym. Frobenius alg. } F \text{ with comp. bimodule structure}\}$ $D_1^{\mathrm{RT}} := \{ \text{multimodules } M \}$ $A_3 F_3$ $D_0^{\text{RT}} := \{ \text{multimodule maps} \}$ F_2 $A_2 F_1$ A_1

Trivial defect TQFT
$$\mathcal{Z}_{3}^{\text{triv}} \cong \mathcal{Z}_{\text{vect}_{\Bbbk}}^{\text{RT}} \Big|_{D_{3}^{\text{RT}} \longrightarrow \{\Bbbk\}}$$

Kapustin/Saulina 2010, Carqueville/Runkel/Schaumann 2017, Koppen/Mulevičius/Runkel/Schweigert 2021, Carqueville/Müller 2023

Theorem. For \mathcal{Z} : Bord^{def}_{3,2}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_3
- k-morphisms: (3 k)-fold cylinders over defect k-balls, $k \in \{1, 2\}$
- 3-morphisms: $\mathcal{Z}($ "defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Theorem. For \mathcal{Z} : Bord^{def}_{3,2}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_3
- k-morphisms: (3 k)-fold cylinders over defect k-balls, $k \in \{1, 2\}$
- 3-morphisms: $\mathcal{Z}($ "defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Theorem. For \mathcal{Z} : Bord^{def}_{3,2}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_3
- k-morphisms: (3 k)-fold cylinders over defect k-balls, $k \in \{1, 2\}$
- 3-morphisms: $\mathcal{Z}($ "defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Examples.

$$\begin{array}{lll} \mathcal{D}_{\mathcal{Z}_{3}^{\mathrm{triv}}} &\cong & \mathrm{B\,ssFrob}(\mathrm{vect}_{\Bbbk}) &\cong & \mathrm{B\,}\mathcal{D}_{\mathcal{Z}_{2}^{\mathrm{ss}}} \\ \mathcal{D}_{\mathcal{Z}_{3}^{\mathrm{ss}}} &\cong & \left(\mathcal{D}_{\mathcal{Z}_{3}^{\mathrm{triv}}}\right)_{\mathrm{orb}}^{\odot} \supset & \mathrm{sFus}_{\Bbbk} \\ \mathcal{D}_{\mathcal{Z}_{\mathcal{M}}^{\mathrm{RT}}} &\cong & \left(& \mathrm{B\,}\Delta\mathrm{ssFrob}(\mathcal{M}) \right) \right)_{\mathrm{orb}} \end{array}$$

Carqueville/Meusburger/Schaumann 2016, Barrett/Meusburger/Schaumann 2012, Carqueville/Müller 2023

Examples of *n*-dimensional defect TQFTs

Euler defect TQFT \mathcal{Z}_{Ψ}^{eu} : Bord $_{n,n-1}^{def} \longrightarrow \operatorname{Vect}_{\Bbbk}$, where

Bord^{def}_{n,n-1}: stratified bordisms without labels $\Psi = (\psi_1, \dots, \psi_n) \in (\mathbb{k}^{\times})^n$

$$\begin{split} \mathcal{Z}_{\Psi}^{\mathrm{eu}}(\text{object } E) &:= \mathbb{k} \\ \mathcal{Z}_{\Psi}^{\mathrm{eu}}(\text{bordism } M) &:= \prod_{j=1}^{n} \prod_{j \text{-strata } \sigma_{j} \subset M} \psi_{j}^{\chi(\sigma_{j}) - \frac{1}{2}\chi(\partial \sigma_{j})} \end{split}$$

Examples of *n*-dimensional defect TQFTs

Euler defect TQFT $\mathcal{Z}_{\Psi}^{\text{eu}}$: $\operatorname{Bord}_{n,n-1}^{\operatorname{def}} \longrightarrow \operatorname{Vect}_{\Bbbk}$, where

Bord^{def}_{n,n-1}: stratified bordisms without labels $\Psi = (\psi_1, \dots, \psi_n) \in (\mathbb{k}^{\times})^n$

$$\begin{split} \mathcal{Z}_{\Psi}^{\mathrm{eu}}(\text{object } E) &:= \mathbb{k} \\ \mathcal{Z}_{\Psi}^{\mathrm{eu}}(\text{bordism } M) &:= \prod_{j=1}^{n} \prod_{j \text{-strata } \sigma_{j} \subset M} \psi_{j}^{\chi(\sigma_{j}) - \frac{1}{2}\chi(\partial \sigma_{j})} \end{split}$$

Euler completion \mathcal{Z}^{\odot} of any defect TQFT \mathcal{Z} satisfies $(\mathcal{Z}^{\odot})^{\odot} \cong \mathcal{Z}^{\odot} \qquad \mathcal{Z}^{\odot} \otimes \mathcal{Z}_{\Psi}^{eu} \cong \mathcal{Z}^{\odot}$

Euler completion $\mathcal{D}_{\mathcal{Z}}^{\odot} \cong \mathcal{D}_{\mathcal{Z}^{\odot}}$ of higher defect categories

Quinn 1995, Carqueville/Runkel/Schaumann 2017

Δ -separable symmetric Frobenius algebras

 $A \in \mathcal{C}$ with

such that

(A need not be commutative.)

Input: Δ -separable symmetric Frobenius \Bbbk -algebra (A, μ, Δ)

(1) Choose oriented triangulation t for every bordism Σ in $Bord_{2,1}^{or}$ (2) Decorate Poincaré dual graph with (\Bbbk, A, μ, Δ) :

(3) Obtain
$$\Sigma^{t,A}$$
 in $\operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}^{\operatorname{triv}})$ and define $Z_A(\Sigma) = Z_2^{\operatorname{triv}}(\Sigma^{t,A})$

Input: Δ -separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ)

- (1) Choose oriented triangulation t for every bordism Σ in Bord₂
- (2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t,A}$ in $Bord_2^{def}(\mathbb{D}^{triv})$ and define $\mathbb{Z}_A^{ss}(\Sigma) = \mathbb{Z}^{triv}(\Sigma^{t,A})$

Input: Δ -separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ)

- (1) Choose oriented triangulation t for every bordism Σ in Bord₂
- (2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t,A}$ in $\operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}^{\operatorname{triv}})$ and define $\mathbb{Z}_A^{\operatorname{ss}}(\Sigma) = \mathbb{Z}^{\operatorname{triv}}(\Sigma^{t,A})$

>

Input: Δ -separable symmetric Frobenius \Bbbk -algebra (A, μ, Δ)

(1) Choose oriented triangulation t for every bordism Σ in $Bord_{2,1}^{or}$ (2) Decorate Poincaré dual graph with (\Bbbk, A, μ, Δ) :

Theorem. Construction yields $\mathsf{TQFT} \ \mathcal{Z}_A \colon \operatorname{Bord}_{2,1}^{\operatorname{or}} \longrightarrow \operatorname{Vect}_{\Bbbk}$.

Input: Δ -separable symmetric Frobenius \Bbbk -algebra (A, μ, Δ)

(1) Choose oriented triangulation t for every bordism Σ in $Bord_{2,1}^{or}$ (2) Decorate Poincaré dual graph with (\Bbbk, A, μ, Δ) :

(3) Obtain
$$\Sigma^{t,A}$$
 in Borddef(\mathbb{D}^{triv}) and define $\mathcal{Z}_A(\Sigma) = \mathcal{Z}_2^{\text{triv}}(\Sigma^{t,A})$

Theorem. Construction yields TQFT $\mathcal{Z}_A \colon \operatorname{Bord}_{2,1}^{\operatorname{or}} \longrightarrow \operatorname{Vect}_{\Bbbk}$.

Proof sketch: Defining properties of (A, μ, Δ) encode invariance under **Pachner moves** \implies independent of choice of triangulation:

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

Input: Δ -separable symmetric Frobenius \Bbbk -algebra (A, μ, Δ)

(1) Choose oriented triangulation t for every bordism Σ in Bord^{or}_{2,1}
(2) Decorate Poincaré dual graph with (k, A, μ, Δ):

Theorem. Construction yields TQFT $\mathcal{Z}_A \colon \operatorname{Bord}_{2,1}^{\operatorname{or}} \longrightarrow \operatorname{Vect}_{\Bbbk}$.

No need to consider only algebras over k!

Orbifolds

Definition. Let \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$ be defect TQFT. An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv (\mathcal{A}_2, \mathcal{A}_1, \mathcal{A}_0^+, \mathcal{A}_0^-)$:

such that Pachner moves become identities under \mathcal{Z} :

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \stackrel{!}{=} \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \stackrel{!}{=} \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Carqueville/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009

Orbifolds

Definition. Let \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$ be defect TQFT. An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv (\mathcal{A}_2, \mathcal{A}_1, \mathcal{A}_0^+, \mathcal{A}_0^-)$:

such that Pachner moves become identities under \mathcal{Z} :

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \stackrel{!}{=} \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \stackrel{!}{=} \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Definition & Theorem.

Triangulation + A-decoration + evaluation with $\mathcal{Z} = A$ -orbifold TQFT

$$\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_{2,1}^{\operatorname{or}} \longrightarrow \mathcal{C}$$

Carqueville/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \implies$ pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$

Lemma.

 $\{\text{orbifold data for } \mathcal{Z}\} \cong \{\Delta\text{-separable symmetric Frobenius algebras in } \mathcal{D}_{\mathcal{Z}}\}$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \implies$ pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$

Lemma.

 $\left\{ \text{orbifold data for } \mathcal{Z} \right\} \cong \left\{ \Delta \text{-separable symmetric Frobenius algebras in } \mathcal{D}_{\mathcal{Z}} \right\}$

Examples.

– Δ -separable symmetric Frobenius algebras in $BVect_k$

 $= \Delta \text{-separable symmetric Frobenius } \& \text{-algebras} \quad \textcircled{O}$ $\implies \mathcal{Z}_A = (\mathcal{Z}^{\text{triv}})_A \quad (``State sum models are orbifolds of the trivial TQFT.'')$

- A *G*-action in $\mathcal{D}_{\mathcal{Z}}$ is 2-functor $\rho \colon \mathrm{B}\underline{G} \longrightarrow \mathcal{D}_{\mathcal{Z}}$.

Lemma. $A_G := \bigoplus_{g \in G} \rho(g)$ is Δ -separable Frobenius algebra in $\mathcal{D}_{\mathcal{Z}}$.

$$\implies$$
 G-orbifolds are orbifolds:

Orbifolds unify gauging of symmetry groups and state sum models.

Davydov/Kong/Runkel 2011, Fröhlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category \mathcal{B}_{orb} :

- objects: Δ -separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories = bimodule categories

Theorem. $\mathcal{B} \hookrightarrow \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category \mathcal{B}_{orb} :

- objects: Δ -separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories = bimodule categories

Theorem. $\mathcal{B} \hookrightarrow \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$

Theorem & Definition. (Orbifold equivalence $\alpha \sim \beta$) If $X \in \mathcal{B}(\alpha, \beta)$ has *invertible* $\dim(X) \in \operatorname{End}(1_{\beta})$, then:

 $-A := X^{\dagger} \otimes X$ is *separable* symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$ $-X : (\alpha, A) \rightleftharpoons (\beta, 1_{\beta}) : X^{\dagger}$ is adjoint equivalence in \mathcal{B}_{orb}

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category \mathcal{B}_{orb} :

- objects: Δ -separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories = bimodule categories

Theorem. $\mathcal{B} \hookrightarrow \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$

Theorem & Definition. (Orbifold equivalence $\alpha \sim \beta$) If $X \in \mathcal{B}(\alpha, \beta)$ has *invertible* dim $(X) \in \text{End}(1_{\beta})$, then: $-A := X^{\dagger} \otimes X$ is *separable* symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$

 $-X: (\alpha, A) \rightleftharpoons (\beta, 1_{\beta}) : X^{\dagger}$ is adjoint equivalence in \mathcal{B}_{orb}

Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013

Theorem & Definition. (Orbifold equivalence $\alpha \sim \beta$) If $X \in \mathcal{B}(\alpha, \beta)$ has *invertible* dim $(X) \in \text{End}(1_{\beta})$, then: $-A := X^{\dagger} \otimes X$ is *separable* symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$ $-X : (\alpha, A) \rightleftharpoons (\beta, 1_{\beta}) : X^{\dagger}$ is adjoint equivalence in \mathcal{B}_{orb}

Orbifold defect TQFT

Let $\mathcal{Z} \colon \operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT. Get new defect data $\mathbb{D}^{\operatorname{orb}}$ with $D_j^{\operatorname{orb}} := \{j \text{-cells of } (\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}\}.$

Orbifold defect TQFT

Let $\mathcal{Z} \colon \operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT. Get new defect data $\mathbb{D}^{\operatorname{orb}}$ with $D_j^{\operatorname{orb}} := \{j \text{-cells of } (\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}\}.$

Definition & Theorem. The orbifold defect TQFT

$$\mathcal{Z}_{\mathrm{orb}} \colon \operatorname{Bord}_{2,1}^{\mathrm{def}}(\mathbb{D}^{\mathrm{orb}}) \longrightarrow \mathcal{C}$$

is given by substratification:

Orbifold defect TQFT

Let $\mathcal{Z} \colon \operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT. Get new defect data $\mathbb{D}^{\operatorname{orb}}$ with $D_j^{\operatorname{orb}} := \{j \text{-cells of } (\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}\}.$

Definition & Theorem. The orbifold defect TQFT

$$\mathcal{Z}_{\operatorname{orb}} \colon \operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}^{\operatorname{orb}}) \longrightarrow \mathcal{C}$$

is given by substratification:

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$\mathcal{Z}_2^{\mathrm{ss}} \cong \left(\mathcal{Z}_2^{\mathrm{triv}}
ight)_{\mathrm{orb}}^{\odot}$$

Carqueville/Runkel 2012, Lauda/Pfeiffer 2005, Davydov/Kong/Runkel 2011, Mulevičius 2022

3-dimensional orbifold data

Let ${\mathcal T}$ be 3-category with duals. An orbifold datum ${\mathcal A}$ in ${\mathcal T}$ is

Carqueville/Runkel/Schaumann 2017

Which 3-category \mathcal{T}_{orb} are orbifold data objects of?

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}' be orbifold data in \mathcal{T} . An \mathcal{A}' - \mathcal{A} -bimodule \mathcal{M} is

subject to pentagon axioms.

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}' be orbifold data in \mathcal{T} . An \mathcal{A}' - \mathcal{A} -bimodule \mathcal{M} is

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}' be orbifold data in \mathcal{T} . An \mathcal{A}' - \mathcal{A} -bimodule \mathcal{M} is

(all Hom 2-categories of $\mathcal T$ must admit finite sifted 2-colimits that commute with composition)

The orbifold completion \mathcal{T}_{orb} of a 3-category with duals \mathcal{T} has

- objects: orbifold data
- 2-morphisms: maps of bimodules
- 1-morphisms: bimodules 3-morphisms: modifications
- compositions: relative products (computed via (2-)idempotents)

such that (among other axioms)

Mulevičius/Runkel 2020, Cargueville/Mulevičius/Runkel/Schaumann/Scherl 2021, Cargueville/Müller 2023

Theorem. T_{orb} is 3-category with adjoints for 1- and 2-morphisms.

Proof:

etc.

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-morphisms.

For
$$\mathcal{Z} \colon \operatorname{Bord}_{3,2}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$$
, get $\mathbb{D}^{\operatorname{orb}}$ from $(\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}$.

Definition & Theorem. The orbifold defect TQFT $\mathcal{Z}_{orb} \colon \operatorname{Bord}_{3,2}^{def}(\mathbb{D}^{orb}) \longrightarrow \mathcal{C}$

is given by substratification:

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-morphisms.

For
$$\mathcal{Z} \colon \operatorname{Bord}_{3,2}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$$
, get $\mathbb{D}^{\operatorname{orb}}$ from $(\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}$.

Definition & Theorem. The orbifold defect TQFT $\mathcal{Z}_{orb} \colon \operatorname{Bord}_{3,2}^{\operatorname{def}}(\mathbb{D}^{\operatorname{orb}}) \longrightarrow \mathcal{C}$

is given by substratification:

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$\mathcal{Z}_3^{\mathrm{ss}} \cong \left(\mathcal{Z}_3^{\mathrm{triv}}\right)_{\mathrm{orb}}^{\odot}$$

Carqueville/Müller 2023, Kitaev/Kong 2011, Meusburger 2022

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$\mathcal{Z}_3^{\mathrm{ss}} \cong \left(\mathcal{Z}_3^{\mathrm{triv}}
ight)_{\mathrm{orb}}^{\odot}$$

Theorem. $sFus_{k} \subset (B ssFrob(Vect_{k}))_{orb}^{\odot}$

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$\mathcal{Z}_3^{\mathrm{ss}} \cong \left(\mathcal{Z}_3^{\mathrm{triv}}\right)_{\mathrm{orb}}^{\odot}$$

Theorem. sFus_{\Bbbk} \subset $(B ssFrob(Vect_{\Bbbk}))_{orb}^{\odot}$

Theorem. Let \mathcal{M} be a modular fusion category. The 3-category in which

- objects are commutative $\Delta\text{-separable}$ Frobenius algebras in $\mathcal M,$
- 1-morphisms from B to A are $\Delta\mbox{-separable symmetric Frobenius algebras }F$ over (A,B),
- 2-morphisms from F to G are G-F-bimodules M over (A, B), and
- 3-morphisms are bimodule maps

is a subcategory of $(\mathrm{B}\Delta\mathrm{ssFrob}(\mathcal{M}))_{\mathrm{orb}}.$

⇒ recover **defect Reshetikhin–Turaev theory** à la Koppen–Mulevičius–Runkel–Schweigert

Summary and outlook

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-morphisms.

Summary and outlook

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-morphisms.

Get *n*-dimensional trivial defect **TQFT** from delooping $B\mathcal{D}_{\mathcal{Z}_{n-1}^{ss}}$.

n-dimensional defect state sum model is Euler completed orbifold of the trivial defect TQFT:

$$\mathcal{Z}_n^{\mathrm{ss}} = \left(\mathcal{Z}_n^{\mathrm{triv}}
ight)_{\mathrm{orb}}^{\odot}$$

Summary and outlook

Theorem. T_{orb} is 3-category with adjoints for 1- and 2-morphisms.

Get *n*-dimensional trivial defect **TQFT** from delooping $B\mathcal{D}_{\mathcal{Z}_{n-1}^{ss}}$.

n-dimensional defect state sum model is Euler completed orbifold of the trivial defect TQFT:

$$\mathcal{Z}_n^{\mathrm{ss}} = \left(\mathcal{Z}_n^{\mathrm{triv}}
ight)_{\mathrm{orb}}^{\odot}$$

Recover Douglas–Reutter invariants for n = 4.

Carqueville/Müller 2023, Carqueville/Mulevičius/Müller 20xx