Orbifold completion of 3-categories

Nils Carqueville

Universität Wien

based on joint work with Ilka Brunner, Catherine Meusburger, Vincentas Mulevičius, Daniel Plencner, Ana Ros Camacho, Ingo Runkel, Gregor Schaumann, Daniel Scherl, and Lukas Müller: arXiv:2307.06485 [math.QA]
overview: arXiv:2307.16674 [math-ph]
slides: https://carqueville.net/nils/3dorb.pdf

In a nutshell

Orbifold data ... are algebraic representations of Pachner moves
... are objects of a higher Morita category
... are special defects in defect TQFT
.... are gaugeable (non-invertible) symmetries
... give rise to state sum models

In a nutshell

Orbifold data are algebraic representations of Pachner moves
.... are objects of a higher Morita category
.... are special defects in defect TQFT
... are gaugeable (non-invertible) symmetries
...give rise to state sum models
Theorem. Let \mathcal{T} be 3-category with duals. The higher Morita category $\mathcal{T}_{\text {orb }}$ of orbifold data in \mathcal{T} has duals.

Theorem. Let \mathcal{Z} be 3d defect TQFT and $\mathcal{D}_{\mathcal{Z}}$ its 3-category with duals. From $\left(\mathcal{D}_{\mathcal{Z}}\right)_{\text {orb }}$ one obtains 3d defect TQFT $\mathcal{Z}_{\text {orb }}$.

Applications.

- "Defect state sum models are orbifolds of the trivial defect TQFT."
- "Reshetikhin-Turaev defect TQFTs without thinking"
- "Douglas-Reutter 4-manifold invariants via orbifolds"

Closed TQFT

An n-dimensional closed oriented TQFT is symmetric monoidal functor

Closed TQFT

An n-dimensional closed oriented TQFT is symmetric monoidal functor

Classification.

(1d closed oriented TQFTs) \cong (dualisable objects)
(2d closed oriented TQFTs) \cong (commutative Frobenius algebras)
(3d closed oriented TQFTs) \cong (J-algebras)
(4d closed oriented TQFTs) \cong ??

Defect TQFT

An n-dimensional defect TQFT is symmetric monoidal functor

$$
\operatorname{Bord}_{n, n-1}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \mathcal{C}
$$

depending on set of defect data \mathbb{D} consisting of

- set D_{n} of "bulk theories"
- sets D_{j} of j-dimensional "defects" for $j \in\{0,1, \ldots, n-1\}$
- adjacency rules...

Defect TQFT

An n-dimensional defect TQFT is symmetric monoidal functor

$$
\operatorname{Bord}_{n, n-1}^{\mathrm{def}}(\mathbb{D}) \longrightarrow \mathcal{C}
$$

depending on set of defect data \mathbb{D} consisting of

- set D_{n} of "bulk theories"
- sets D_{j} of j-dimensional "defects" for $j \in\{0,1, \ldots, n-1\}$
- adjacency rules...

Non-full embedding $\operatorname{Bord}_{n, n-1}^{\text {or }} \longleftrightarrow \operatorname{Bord}_{n, n-1}^{\text {def }}(\mathrm{D})$ for all $u \in D_{n}$

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}_{2}^{\text {triv }}: \operatorname{Bord}_{2,1}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow \operatorname{Vect}_{k}$

$$
\begin{aligned}
& D_{2}^{\text {triv } 2}:=\{\mathbb{k}\} \\
& D_{1}^{\text {triv2 }}:=\operatorname{Ob}\left(\text { vect }_{k}\right) \quad \mathcal{Z}_{2}^{\text {triv }}\left(\bigodot_{V_{m}}^{V_{1}} \begin{array}{c}
\vdots \\
V_{1}
\end{array}\right):=V_{1} \otimes \cdots \otimes V_{m} \\
& D_{0}^{\text {triv2 }}:=\operatorname{Mor}\left(\text { vect }_{k}\right)
\end{aligned}
$$

$$
\mathcal{Z}_{2}^{\text {triv }}(0):=\text { (evaluate } 0 \text { - und } 1 \text {-strata as string diagrams in vect }{ }_{\mathrm{k}} \text {) }
$$

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}_{2}^{\text {triv }}: \operatorname{Bord}_{2,1}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right) \longrightarrow$ Vect $_{k}$

$$
\begin{aligned}
& D_{2}^{\text {triv }}:=\{\mathbb{k}\} \\
& D_{1}^{\text {triv2 }}:=\operatorname{Ob}\left(\text { vect }_{k}\right) \quad \mathcal{Z}_{2}^{\text {triv }}(\underbrace{V_{1}}_{V_{m}} \begin{array}{l}
\vdots_{m}
\end{array}):=V_{1} \otimes \cdots \otimes V_{m} \\
& D_{0}^{\text {triv }}:=\operatorname{Mor}\left(\text { vect }_{k}\right)
\end{aligned}
$$

$$
\mathcal{Z}_{2}^{\text {triv }}(0):=\text { (evaluate } 0 \text { - und } 1 \text {-strata as string diagrams in vect } t_{k} \text {) }
$$

State sum models $\mathcal{Z}_{2}^{\text {ss }}$:
separable symmetric Frobenius \mathbb{k}-algebras and bimodules
B-twisted sigma models $\mathcal{Z}^{\mathrm{B} \sigma}$:
Calabi-Yau manifolds and their derived categories
Landau-Ginzburg models $\mathcal{Z}^{\mathrm{LG}}$:
isolated singularities and matrix factorisations

Higher categories from defect TQFTs

Theorem. For $\mathcal{Z}: \operatorname{Bord}_{2,1}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$, there is pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$ with

- objects: elements of D_{2}
- 1-morphisms $X: u \longrightarrow v$: lists of composable elements of D_{1}

$$
v=t\left(x_{1}\right) \quad \begin{array}{l|l|l|}
& \\
x_{1} & \ldots \\
x_{n-2}
\end{array}\left|s\left(x_{n-1}\right)=t\left(x_{n-2}\right) \downarrow t\left(x_{n}\right)=t\left(x_{n-1}\right)\right| \quad s\left(x_{n}\right)=u
$$

- composition: "pair-of-pants with defects"

Higher categories from defect TQFTs

Theorem. For $\mathcal{Z}: \operatorname{Bord}_{2,1}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$, there is pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$ with

- objects: elements of D_{2}
- 1-morphisms $X: u \longrightarrow v$: lists of composable elements of D_{1}

$$
v=t\left(x_{1}\right) \begin{array}{l|l|l|l}
& \\
x_{1} & \left.\begin{array}{l}
\ldots \\
x_{n-2}
\end{array} \right\rvert\, \psi\left(x_{n-1}\right)=t\left(x_{n-2}\right) \\
x_{n-1}
\end{array}\left|\begin{array}{r}
t\left(x_{n}\right)=t\left(x_{n-1}\right) \\
x_{n}
\end{array}\right| \quad s\left(x_{n}\right)=u
$$

- composition: "pair-of-pants with defects"

Examples. $\quad \mathcal{D}_{\mathcal{Z}_{2}^{\text {triv }}} \cong \mathrm{Bvect}_{\mathrm{k}}$

$$
\begin{aligned}
\mathcal{D}_{\mathcal{Z}_{2}^{\text {ss }}} & \cong \operatorname{ssFrob}\left(\text { vect }_{k k}\right) \cong\left(\mathcal{D}_{2}^{\text {triv }}\right)_{\text {orb }}^{\odot} \\
\mathcal{D}_{\mathcal{Z}_{2}^{\mathrm{LG}}} & \cong \mathcal{L G}
\end{aligned}
$$

Examples of 3d defect TQFTs

Reshetikhin-Turaev defect TQFT $\mathcal{Z}_{\mathcal{M}}^{\mathrm{RT}}$ for modular fusion category \mathcal{M} : $D_{3}^{\mathrm{RT}}:=\{$ commutative Δ-separable Frobenius algebras A in $\mathcal{M}\}$ $D_{2}^{\mathrm{RT}}:=\{\Delta$-sep. sym. Frobenius alg. F with comp. bimodule structure $\}$ $D_{1}^{\mathrm{RT}}:=\{$ multimodules $M\}$
$D_{0}^{\mathrm{RT}}:=\{$ multimodule maps $\}$

Trivial defect TQFT $\mathcal{Z}_{3}^{\text {triv }} \cong \mathcal{Z}_{\text {vect }_{\mathrm{k}} \mathrm{RT}}^{\left.\right|_{3} ^{\mathrm{RT}} \longrightarrow\{\mathrm{k}\}}{ }$

Higher categories from defect TQFTs

Theorem. For $\mathcal{Z}: \operatorname{Bord}_{3,2}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_{3}
- k-morphisms: $(3-k)$-fold cylinders over defect k-balls, $k \in\{1,2\}$
- 3-morphisms: \mathcal{Z} ("defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Higher categories from defect TQFTs

Theorem. For $\mathcal{Z}: \operatorname{Bord}_{3,2}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_{3}
- k-morphisms: $(3-k)$-fold cylinders over defect k-balls, $k \in\{1,2\}$
- 3-morphisms: \mathcal{Z} ("defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Higher categories from defect TQFTs

Theorem. For $\mathcal{Z}: \operatorname{Bord}_{3,2}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_{3}
- k-morphisms: $(3-k)$-fold cylinders over defect k-balls, $k \in\{1,2\}$
- 3-morphisms: \mathcal{Z} ("defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Examples. $\quad \mathcal{D}_{\mathcal{Z}_{3}^{\text {triv }}} \cong \mathrm{B} \operatorname{ssFrob}\left(\right.$ vect $\left._{\mathrm{k}}\right) \cong \mathrm{B} \mathcal{D}_{\mathcal{Z}_{2}^{\text {ss }}}$

$$
\begin{aligned}
\mathcal{D}_{\mathcal{Z}_{3}^{\text {ss }}} & \cong\left(\mathcal{D}_{\mathcal{Z}_{3}^{\text {triv }}}\right)_{\mathrm{orb}}^{\odot} \supset \mathrm{sFus}_{\mathrm{k}} \\
\mathcal{D}_{\mathcal{Z}_{\mathcal{M}}^{\mathrm{RT}}} & \cong(\mathrm{~B} \Delta \operatorname{ssFrob}(\mathcal{M})))_{\mathrm{orb}}
\end{aligned}
$$

Examples of n-dimensional defect TQFTs

Euler defect TQFT $\mathcal{Z}_{\Psi}^{\text {eu }}: \operatorname{Bord}_{n, n-1}^{\text {def }} \longrightarrow$ Vect $_{k}$, where

$$
\begin{aligned}
& \operatorname{Bord}_{n, n-1}^{\mathrm{def}}: \quad \text { stratified bordisms without labels } \\
& \Psi=\left(\psi_{1}, \ldots, \psi_{n}\right) \in\left(\mathbb{k}^{\times}\right)^{n}
\end{aligned}
$$

$\mathcal{Z}_{\Psi}^{\text {eu }}($ object $E):=\mathbb{k}$

$$
\mathcal{Z}_{\Psi}^{\mathrm{eu}}(\text { bordism } M):=\prod_{j=1}^{n} \prod_{j \text {-strata } \sigma_{j} \subset M} \psi_{j}^{\chi\left(\sigma_{j}\right)-\frac{1}{2} \chi\left(\partial \sigma_{j}\right)}
$$

Examples of n-dimensional defect TQFTs

Euler defect TQFT $\mathcal{Z}_{\Psi}^{\text {eu }}: \operatorname{Bord}_{n, n-1}^{\text {def }} \longrightarrow$ Vect $_{k}$, where

$$
\begin{aligned}
& \operatorname{Bord}_{n, n-1}^{\mathrm{def}}: \quad \text { stratified bordisms without labels } \\
& \Psi=\left(\psi_{1}, \ldots, \psi_{n}\right) \in\left(\mathbb{k}^{\times}\right)^{n}
\end{aligned}
$$

$\mathcal{Z}_{\Psi}^{\text {eu }}($ object $E):=\mathbb{k}$

$$
\mathcal{Z}_{\Psi}^{\mathrm{eu}}(\text { bordism } M):=\prod_{j=1}^{n} \prod_{j \text {-strata } \sigma_{j} \subset M} \psi_{j}^{\chi\left(\sigma_{j}\right)-\frac{1}{2} \chi\left(\partial \sigma_{j}\right)}
$$

Euler completion $\mathcal{Z} \odot$ of any defect TQFT \mathcal{Z} satisfies

$$
\left(\mathcal{Z}^{\odot}\right)^{\odot} \cong \mathcal{Z}^{\odot} \quad \mathcal{Z}^{\odot} \otimes \mathcal{Z}_{\Psi}^{\mathrm{eu}} \cong \mathcal{Z}^{\odot}
$$

Euler completion $\mathcal{D}_{\mathcal{Z}}^{\odot} \cong \mathcal{D}_{\mathcal{Z} \odot}$ of higher defect categories

Δ-separable symmetric Frobenius algebras

$A \in \mathcal{C}$ with

$$
\begin{array}{ll}
\mu=\boldsymbol{d}: A \otimes A \longrightarrow A & \mid: \mathbb{1} \longrightarrow A \\
\Delta=\{: A \longrightarrow A \otimes A & !: A \longrightarrow \mathbb{1}
\end{array}
$$

such that

$\oint=1=1$
 $p=\mid=\|$

(A need not be commutative.)

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in $\operatorname{Bord}_{2,1}^{\text {or }}$
(2) Decorate Poincaré dual graph with $(\mathbb{k}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2,1}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}(\Sigma)=\mathcal{Z}_{2}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord_{2}
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(D^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\mathrm{ss}}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\mathrm{ss}}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius C -algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord ${ }_{2}$
(2) Decorate Poincaré-dual graph with (C, A, μ, Δ):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):
c A_{A} c
(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(D^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):

\square
$\underbrace{A}_{A} A_{A}^{A} \mathrm{c}$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{C}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in Bord $_{2}$
(2) Decorate Poincaré-dual graph with ($\mathrm{C}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}^{\text {ss }}(\Sigma)=\mathcal{Z}^{\text {triv }}\left(\Sigma^{t, A}\right)$

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in $\operatorname{Bord}_{2,1}^{\mathrm{or}}$
(2) Decorate Poincaré dual graph with $(\mathbb{k}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2,1}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}(\Sigma)=\mathcal{Z}_{2}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}: \operatorname{Bord}_{2,1}^{\mathrm{or}} \longrightarrow$ Vect $_{\mathbb{k}}$.

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in $\operatorname{Bord}_{2,1}^{\mathrm{or}}$
(2) Decorate Poincaré dual graph with ($\mathbb{k}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2,1}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}(\Sigma)=\mathcal{Z}_{2}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}:$ Bord $_{2,1}^{\mathrm{or}} \longrightarrow$ Vect $_{k}$.
Proof sketch: Defining properties of (A, μ, Δ) encode invariance under Pachner moves \Longrightarrow independent of choice of triangulation:

State sum models

Input: Δ-separable symmetric Frobenius \mathbb{k}-algebra (A, μ, Δ)
(1) Choose oriented triangulation t for every bordism Σ in $\operatorname{Bord}_{2,1}^{\mathrm{or}}$
(2) Decorate Poincaré dual graph with ($\mathbb{k}, A, \mu, \Delta$):

(3) Obtain $\Sigma^{t, A}$ in $\operatorname{Bord}_{2,1}^{\text {def }}\left(\mathbb{D}^{\text {triv }}\right)$ and define $\mathcal{Z}_{A}(\Sigma)=\mathcal{Z}_{2}^{\text {triv }}\left(\Sigma^{t, A}\right)$

Theorem. Construction yields TQFT $\mathcal{Z}_{A}: \operatorname{Bord}_{2,1}^{\mathrm{or}} \longrightarrow$ Vect $_{k}$.

No need to consider only algebras over \mathbb{k} !

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2,1}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv\left(\mathcal{A}_{2}, \mathcal{A}_{1}, \mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-}\right)$:
\square

$\mathcal{A}_{1} \in D_{1}$

$\mathcal{A}_{0}^{+} \in D_{0}$

$\mathcal{A}_{0}^{-} \in D_{0}$
such that Pachner moves become identities under \mathcal{Z} :

Orbifolds

Definition. Let $\mathcal{Z}: \operatorname{Bord}_{2,1}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT.
An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv\left(\mathcal{A}_{2}, \mathcal{A}_{1}, \mathcal{A}_{0}^{+}, \mathcal{A}_{0}^{-}\right)$:

such that Pachner moves become identities under \mathcal{Z} :

Definition \& Theorem.

Triangulation $+\mathcal{A}$-decoration + evaluation with $\mathcal{Z}=\mathcal{A}$-orbifold TQFT

$$
\mathcal{Z}_{\mathcal{A}}: \text { Bord }_{2,1}^{\mathrm{or}} \longrightarrow \mathcal{C}
$$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{D}_{\mathcal{Z}}\right\}$

Algebraic characterisation of orbifolds

Theorem.

id defect TQFT $\mathcal{Z} \Longrightarrow$ pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$
Lemma.
$\{$ orbifold data for $\mathcal{Z}\} \cong\left\{\Delta\right.$-separable symmetric Frobenius algebras in $\left.\mathcal{D}_{\mathcal{Z}}\right\}$

Examples.

- Δ-separable symmetric Frobenius algebras in BVect $_{k}$
$=\Delta$-separable symmetric Frobenius \mathbb{k}-algebras
$\Longrightarrow \mathcal{Z}_{A}=\left(\mathcal{Z}^{\text {trip }}\right)_{A} \quad$ ("State sum models are orbifolds of the trivial TQFT.")
- A G-action in $\mathcal{D}_{\mathcal{Z}}$ is 2-functor $\rho: \mathrm{B} \underline{G} \longrightarrow \mathcal{D}_{\mathcal{Z}}$.

Lemma. $\quad A_{G}:=\bigoplus_{g \in G} \rho(g)$ is Δ-separable Frobenius algebra in $\mathcal{D}_{\mathcal{Z}}$.
$\Longrightarrow G$-orbifolds are orbifolds:

$$
\mathcal{Z}^{G}=\mathcal{Z}_{A_{G}}
$$

Orbifolds unify gauging of symmetry groups and state sum models.

Orbifold completion

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category $\mathcal{B}_{\text {orb }}$:

- objects: Δ-separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories $=$ bimodule categories

Theorem. $\mathcal{B} \longleftrightarrow \mathcal{B}_{\text {orb }} \cong\left(\mathcal{B}_{\text {orb }}\right)_{\text {orb }}$

Orbifold completion

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category $\mathcal{B}_{\text {orb }}$:

- objects: Δ-separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories $=$ bimodule categories

Theorem. $\mathcal{B} \longleftrightarrow \mathcal{B}_{\text {orb }} \cong\left(\mathcal{B}_{\text {orb }}\right)_{\text {orb }}$
Theorem \& Definition. (Orbifold equivalence $\alpha \sim \beta$) If $X \in \mathcal{B}(\alpha, \beta)$ has invertible $\operatorname{dim}(X) \in \operatorname{End}\left(1_{\beta}\right)$, then:

- $A:=X^{\dagger} \otimes X$ is separable symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$
$-X:(\alpha, A) \rightleftarrows\left(\beta, 1_{\beta}\right): X^{\dagger}$ is adjoint equivalence in $\mathcal{B}_{\text {orb }}$

Orbifold completion

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category $\mathcal{B}_{\text {orb }}$:

- objects: Δ-separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories $=$ bimodule categories

Theorem. $\mathcal{B} \longleftrightarrow \mathcal{B}_{\text {orb }} \cong\left(\mathcal{B}_{\text {orb }}\right)_{\text {orb }}$
Theorem \& Definition. (Orbifold equivalence $\alpha \sim \beta$) If $X \in \mathcal{B}(\alpha, \beta)$ has invertible $\operatorname{dim}(X) \in \operatorname{End}\left(1_{\beta}\right)$, then:

- $A:=X^{\dagger} \otimes X$ is separable symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$
$-X:(\alpha, A) \rightleftarrows\left(\beta, 1_{\beta}\right): X^{\dagger}$ is adjoint equivalence in $\mathcal{B}_{\text {orb }}$

Example. $\mathcal{B}=\mathcal{D}_{\mathcal{Z}^{\mathrm{LG}}} \quad \Longrightarrow$

A_{11}

E_{6}

Orbifold completion

Theorem \& Definition. (Orbifold equivalence $\alpha \sim \beta$)
If $X \in \mathcal{B}(\alpha, \beta)$ has invertible $\operatorname{dim}(X) \in \operatorname{End}\left(1_{\beta}\right)$, then:

- $A:=X^{\dagger} \otimes X$ is separable symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$
$-X:(\alpha, A) \rightleftarrows\left(\beta, 1_{\beta}\right): X^{\dagger}$ is adjoint equivalence in $\mathcal{B}_{\text {orb }}$

Orbifold defect TQFT

Let $\mathcal{Z}: \operatorname{Bord}_{2,1}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT.
Get new defect data $\mathbb{D}^{\text {orb }}$ with $D_{j}^{\text {orb }}:=\left\{j\right.$-cells of $\left.\left(\mathcal{D}_{\mathcal{Z}}\right)_{\text {orb }}\right\}$.

Orbifold defect TQFT

Let $\mathcal{Z}: \operatorname{Bord}_{2,1}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT.
Get new defect data $\mathbb{D}^{\text {orb }}$ with $D_{j}^{\text {orb }}:=\left\{j\right.$-cells of $\left.\left(\mathcal{D}_{\mathcal{Z}}\right)_{\text {orb }}\right\}$.

Definition \& Theorem.

The orbifold defect TQFT

$$
\mathcal{Z}_{\text {orb }}: \operatorname{Bord}_{2,1}^{\text {def }}\left(\mathbb{D}^{\text {orb }}\right) \longrightarrow \mathcal{C}
$$

is given by substratification:

Orbifold defect TQFT

Let $\mathcal{Z}: \operatorname{Bord}_{2,1}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT.
Get new defect data $\mathbb{D}^{\text {orb }}$ with $D_{j}^{\text {orb }}:=\left\{j\right.$-cells of $\left.\left(\mathcal{D}_{\mathcal{Z}}\right)_{\text {orb }}\right\}$.

Definition \& Theorem.

The orbifold defect TQFT

$$
\mathcal{Z}_{\text {orb }}: \operatorname{Bord}_{2,1}^{\text {def }}\left(\mathbb{D}^{\text {orb }}\right) \longrightarrow \mathcal{C}
$$

is given by substratification:

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$
\mathcal{Z}_{2}^{\text {ss }} \cong\left(\mathcal{Z}_{2}^{\text {triv }}\right)_{\text {orb }}^{\odot}
$$

3-dimensional orbifold data

Let \mathcal{T} be 3-category with duals. An orbifold datum \mathcal{A} in \mathcal{T} is

etc.

(O2)

(O3)

Which 3-category $\mathcal{T}_{\text {orb }}$ are orbifold data objects of?

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}^{\prime} be orbifold data in \mathcal{T}. An \mathcal{A}^{\prime} - \mathcal{A}-bimodule \mathcal{M} is

subject to pentagon axioms.

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}^{\prime} be orbifold data in \mathcal{T}. An \mathcal{A}^{\prime} - \mathcal{A}-bimodule \mathcal{M} is
 subject to pentagon axioms. A map of \mathcal{A}^{\prime} - \mathcal{A}-bimodules $\mathcal{F}: \mathcal{M} \longrightarrow \mathcal{M}^{\prime}$ is

such that

etc.

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}^{\prime} be orbifold data in \mathcal{T}. An \mathcal{A}^{\prime} - \mathcal{A}-bimodule \mathcal{M} is
 subject to pentagon axioms. A map of \mathcal{A}^{\prime} - \mathcal{A}-bimodules $\mathcal{F}: \mathcal{M} \longrightarrow \mathcal{M}^{\prime}$ is

such that

etc.

A modification $\xi: \mathcal{F} \longrightarrow \mathcal{F}^{\prime}$ is $\xi: F \longrightarrow F^{\prime}$ such that

Johnson-Freyd/Scheimbauer 2015, Carqueville/Müller 2023

3-dimensional orbifold completion

(all Hom 2-categories of \mathcal{T} must admit finite sifted 2-colimits that commute with composition)
The orbifold completion $\mathcal{T}_{\text {orb }}$ of a 3-category with duals \mathcal{T} has

- objects: orbifold data
- 1-morphisms: bimodules
- compositions: relative products (computed via (2-)idempotents) such that (among other axioms)

Mulevičius/Runkel 2020, Carqueville/Mulevičius/Runkel/Schaumann/Scherl 2021, Carqueville/Müller 2023

3-dimensional orbifold completion

Theorem. $\mathcal{T}_{\text {orb }}$ is 3 -category with adjoints for 1 - and 2 -morphisms.
Proof:

3-dimensional orbifold completion

Theorem. $\mathcal{T}_{\text {orb }}$ is 3 -category with adjoints for 1 - and 2-morphisms.
For $\mathcal{Z}: \operatorname{Bord}_{3,2}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$, get $\mathbb{D}^{\text {orb }}$ from $\left(\mathcal{D}_{\mathcal{Z}}\right)_{\text {orb }}$.
Definition \& Theorem. The orbifold defect TQFT

$$
\mathcal{Z}_{\text {orb }}: \operatorname{Bord}_{3,2}^{\text {def }}\left(\mathbb{D}^{\text {orb }}\right) \longrightarrow \mathcal{C}
$$

is given by substratification:

3-dimensional orbifold completion

Theorem. $\mathcal{T}_{\text {orb }}$ is 3-category with adjoints for 1 - and 2-morphisms.
For $\mathcal{Z}: \operatorname{Bord}_{3,2}^{\text {def }}(\mathbb{D}) \longrightarrow \mathcal{C}$, get $\mathbb{D}^{\text {orb }}$ from $\left(\mathcal{D}_{\mathcal{Z}}\right)_{\text {orb }}$.
Definition \& Theorem. The orbifold defect TQFT

$$
\mathcal{Z}_{\text {orb }}: \operatorname{Bord}_{3,2}^{\text {def }}\left(\mathbb{D}^{\text {orb }}\right) \longrightarrow \mathcal{C}
$$

is given by substratification:

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$
\mathcal{Z}_{3}^{\text {ss }} \cong\left(\mathcal{Z}_{3}^{\text {triv }}\right)_{\text {orb }}^{\odot}
$$

3-dimensional orbifold completion

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$
\mathcal{Z}_{3}^{\text {ss }} \cong\left(\mathcal{Z}_{3}^{\text {triv }}\right)_{\text {orb }}^{\odot}
$$

Theorem. sFus $_{k} \subset\left(\operatorname{B~ssFrob}_{\mathrm{k}}\left(\text { Vect }_{k}\right)\right)_{\text {orb }}^{\odot}$

3-dimensional orbifold completion

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$
\mathcal{Z}_{3}^{\text {ss }} \cong\left(\mathcal{Z}_{3}^{\text {triv }}\right)_{\text {orb }}^{\odot}
$$

Theorem. sFus $_{\mathfrak{k}} \subset\left(\mathrm{B}_{\operatorname{ssFrob}}\left(\mathrm{Vect}_{\mathfrak{k}}\right)\right)_{\text {orb }}^{\odot}$
Theorem. Let \mathcal{M} be a modular fusion category. The 3-category in which

- objects are commutative Δ-separable Frobenius algebras in \mathcal{M},
- 1-morphisms from B to A are Δ-separable symmetric Frobenius algebras F over (A, B),
- 2-morphisms from F to G are G - F-bimodules M over (A, B), and
- 3-morphisms are bimodule maps is a subcategory of $(\mathrm{B} \Delta \operatorname{ssFrob}(\mathcal{M}))_{\text {orb }}$.
\Longrightarrow recover defect Reshetikhin-Turaev theory à la
Koppen-Mulevičius-Runkel-Schweigert

Summary and outlook

Theorem. $\mathcal{T}_{\text {orb }}$ is 3-category with adjoints for 1- and 2-morphisms.

Summary and outlook

Theorem. $\mathcal{T}_{\text {orb }}$ is 3 -category with adjoints for 1 - and 2-morphisms.

Get n-dimensional trivial defect TQFT from delooping $\mathrm{B} \mathcal{D}_{\mathcal{Z}_{n-1}^{\text {ss }}}$.
n-dimensional defect state sum model is Euler completed orbifold of the trivial defect TQFT:

$$
\mathcal{Z}_{n}^{\text {ss }}=\left(\mathcal{Z}_{n}^{\text {triv }}\right)_{\text {orb }}^{\odot}
$$

Summary and outlook

Theorem. $\mathcal{T}_{\text {orb }}$ is 3 -category with adjoints for 1 - and 2-morphisms.

Get n-dimensional trivial defect TQFT from delooping $\mathrm{B} \mathcal{D}_{\mathcal{Z}_{n-1}^{\text {ss }}}$.
n-dimensional defect state sum model is Euler completed orbifold of the trivial defect TQFT:

$$
\mathcal{Z}_{n}^{\text {ss }}=\left(\mathcal{Z}_{n}^{\text {triv }}\right)_{\text {orb }}^{\odot}
$$

Recover Douglas-Reutter invariants for $n=4$.

