
Lattice QCD I - Christoph Lehner

Chapter 9: continuum limit and phase transitions
In this chapter we consider the behavior of lattice QCD calculations close to the continuum limit . We focus on pure SU(3) gauge theory with .

Scaling and beta function

Let  be a measurement on an ensemble with coupling  and lattice spacing . If the measurement has a continuum limit, we have

Therefore for sufficiently small  we must have

This expression separates the explicit lattice scale dependence of the measurement from the one introduced through the indirect dependence of the coupling constant  on

the lattice spacing. In a more general theory, such as QCD with dynamical quarks, we will have more couplings to tune which all also contribute to this equation similarly to .

For now, we continue to focus on the pure QCD case.

As an example, consider measuring the mass of a particle in lattice units . Then the corresponding mass in physical units, say GeV, is given by

For this measurement we therefore have

In general, for an operator  with mass dimension , we obtain

This term therefore accounts for the naive scaling dimension .

It is now useful to define the beta function

which encapsulates the scale dependence of the coupling constant . One can show in perturbation theory that for gauge group SU(N) with  massless fermions one has

with

For  and , we therefore have

Dimensional transmutation

We can solve the differential equation for , Eq. ,

by separation of variables

integrating with integration constant  yields
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We can re-write this expression as

with

where . The integration constant therefore has introduced a new dimensional variable to the theory that had no explicit dimensional parameters in the action before!

The effect of relating the dimensionless parameter  and the dimensionful parameter  is called dimensional transmutation.

Asymptotic freedom

We can also re-write the above equation as

This scale dependence of the coupling constant or running coupling is a feature of the quantization of the field theory. We have already observed the scale dependence of

the coupling in chapter 7 and noticed that the coupling gets weaker for shorter distances. The fact that the coupling vanishes in the limit , which is equivalent to

considering a free theory, is referred to as asymptotic freedom.

For sufficiently small coupling  it suffices to look at the leading-order perturbative result such that as long as , we are driven to a free theory. For a general gauge

group  and number of massless fermions , this holds as long as

For QCD (N=3) we therefore have asymptotic freedom as long as

or as long as we have at maximum 16 massless quarks. We have so far found 6 quark flavors in nature.

Another aspect worth highlighting is that due to asymptotic freedom, the continuum limit  of QCD corresponds to . Note that in a general quantum field theory

the continuum limit may be at non-trivial couplings as we will discuss again below.

Universality of two-loop perturbation theory

One can define different coupling constants  in addition to the bare lattice coupling . In continuum perturbation theory, e.g., one typically uses the  scheme and 

 at renormalization energy scale . There are also regulator independent momentum-subtraction schemes (RI-MOM), the Wilson-flow coupling, or a coupling defined

in short-distance perturbation theory of the static quark potential.

They all have in common that one can relate two different coupling constant definitions  and  in perturbation theory using

where  is computable in perturbation theory.

Homework: Using this equation, show that  and  are universal, i.e., they are the same for the  function of  and . Start by writing

and relate  to .

Higher orders in the beta expansion will no longer be universal. In addition, it should be noted that  depends on the definition of the coupling  and that the ratio of  for

different couplings can be calculation in perturbation theory.

Comparing the perturbative results to lattice data

Next, let us compare the perturbative predictions to actual lattice data. We now understand that for sufficiently small lattice spacing , perturbation theory must become a

good approximation, however, we do not yet know how fast this limit is approached.

One way to make progress is to measure  for a large number of  values in a lattice calculation, extending our exercise of chapter 7. This was done, e.g., in this paper,

where (2.6) of said paper finds

to approximate the lattice results with less than one per-cent error for .

Let us now compare this to the perturbative results.
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β ∈ [5.7, 6.92]

In [275… import numpy as np 
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from matplotlib import pyplot as plt 
 
def lattice_spacing_in_fm_wilson_action(beta):
    assert beta >= 5.7 and beta <= 6.92 
    return 0.5*np.exp(-1.6804 
                      -1.7331*(beta - 6) 
                      +0.7849*(beta - 6)**2 
                      -0.4428*(beta-6)**3) 
 
betas = np.arange(5.7,6.92,0.05) 
fig, ax = plt.subplots() 
plt.xlabel("beta") 
plt.ylabel("a / fm") 
ax.plot(betas, [lattice_spacing_in_fm_wilson_action(beta) for beta in betas], 
        ls='-', c='red', label="Non-perturbative result") 
plt.legend() 
plt.show() 
 
fig, ax = plt.subplots() 
plt.xlabel("g^2") 
plt.ylabel("a / fm") 
ax.plot([6/b for b in betas], [lattice_spacing_in_fm_wilson_action(beta) for beta in betas], 
        ls='-', c='red', label="Non-perturbative result") 
plt.legend() 
plt.show() 

In [282… from scipy.optimize import minimize 
 
def lattice_spacing_in_fm_two_loop(beta, lambda_l_in_GeV): 
    Nc = 3 
    beta0 = 1./(4.*np.pi)**2.*(11./3.*Nc) 
    beta1 = 1./(4.*np.pi)**4.*(34./3.*Nc**2.) 
    inv_lambda_l_in_fm = 0.1973/lambda_l_in_GeV 
    g2 = 2*Nc / beta 
    return inv_lambda_l_in_fm*(beta0*g2)**(-beta1/2./beta0**2.)*np.exp(-1./2./beta0/g2) 
 
# determine the Lambda parameter by minimizing the difference 
beta_match = 6.92 
lambda_l_in_GeV=minimize(lambda l_GeV: abs(lattice_spacing_in_fm_two_loop(beta_match, l_GeV) 
                                 - lattice_spacing_in_fm_wilson_action(beta_match)), 0.05, 
                              method = 'Nelder-Mead', tol=1e-15).x[0] 
 
print("Wilson Gauge Lambda_L / GeV",lambda_l_in_GeV) 
 
 
betas = np.arange(5.7,6.92,0.05) 
fig, ax = plt.subplots() 
plt.xlabel("beta") 
plt.ylabel("a / fm") 
ax.plot(betas, [lattice_spacing_in_fm_wilson_action(beta) for beta in betas], 
        ls='-', c='red', label="Non-perturbative result") 
ax.plot(betas, [lattice_spacing_in_fm_two_loop(beta, lambda_l_in_GeV) for beta in betas], 
        ls='-', c='blue', label=f"Two-loop result (Lambda_L = {lambda_l_in_GeV:.3g} GeV)") 
plt.legend() 
plt.show() 
 
fig, ax = plt.subplots() 
plt.xlabel("g^2") 
plt.ylabel("a / fm") 
ax.plot([6/b for b in betas], [lattice_spacing_in_fm_wilson_action(beta) for beta in betas], 
        ls='-', c='red', label="Non-perturbative result") 
ax.plot([6/b for b in betas], [lattice_spacing_in_fm_two_loop(beta, lambda_l_in_GeV) for beta in betas], 
        ls='-', c='blue', label=f"Two-loop result (Lambda_L = {lambda_l_in_GeV:.3g} GeV)") 
plt.legend() 
plt.show() 



Wilson Gauge Lambda_L / GeV 0.0062821932183028065 

We first note that even for  fm or  GeV, this expansion converges rather poorly. We should, however, also note that the expansion in terms of one coupling

constant  can converge differently from the expansion in a different coupling constant . So it may be worth exploring expanding, e.g., in the  coupling instead!

By matching perturbation theory with lattice at  we find  GeV. This is vastly different to what one finds in the  scheme!

One can show that the poor convergence of lattice perturbation theory, i.e., the expansion in the bare lattice coupling  and the large hierarchy of  parameters are related,

see this paper, where we also find

and

(Note the additional  factor absorbed in  in this paper compared to here.)

For concrete numbers and  we find

such that the  coupling is actually larger compared to the bare coupling . In general, however, the coefficients in terms of this larger coupling constant have a better

convergence property.

Phase transitions

We have already established that correlation functions of operators on the lattice that are displaced by  sites, after subtraction of possibly non-vanishing vacuum

expectation values, decay exponentially as  for a theory for which the first non-vacuum eigenstate has a finite energy gap to the vacuum. Such a gap is typically related

to the mass of a particle and we therefore refer to it as a mass gap.

Note that  is given in lattice units, i.e., it gives the typicall falloff distance in terms of lattice spacings. The continuum limit as we have discussed it so far, therefore

corresponds to a diverging correlation length .

Such diverging correlation lengths are typical for a system undergoing a second order phase transition. Interestingly, at a second order phase transition, one also observes

universality, i.e., the details of the interactions at the lattice scale become irrelevant and the system is dominated by its symmetry structure. Different lattice regulators

therefore fall into different universality classes depending on which symmetry they have or restore in the  limit.

In our subsequent discussion of the renormalization group, we will see how such universality can arise.

Exercise: continuum limit of improved gauge theory

As a warmup exercise for the remaining topics in this chapter, let us consider modifying the Wilson action to

with scalar plaquette and 2x1 rectangle terms
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and

We remember from chapter 6 that

and find in a straightforward computation that

Therefore in  the coefficient of the  operator has a prefactor

Since one of the three parameters , , and  is redundant, we often fix

and consider the theory with parameters .

We now generate ensembles with different values for  and  and study the resulting lattice spacing and string tensions.

β = . (35)
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In [12]: import gpt as g; 
import numpy as np; 
from matplotlib import pyplot as plt; 
 
def generate_ensemble(Ls, Lt, beta, c1, Nthermalize, Nmax, Nskip): 
    L = [Ls, Ls, Ls, Lt] 
 
    grid = g.grid(L, g.double) 
     
    w = g.qcd.gauge.action.improved_with_rectangle(beta, c1) 
     
    rng = g.random("test", "vectorized_ranlux24_24_64") 
    U = g.qcd.gauge.unit(grid) 
    Nd = len(U) 
 
    # improved actions with rectangle term have a larger 
    # footprint, so need masks that accommodate this 
    mask = [g.complex(grid) for i in range(4)] 
    assert all([l % len(mask) == 0 for l in L]) 
    pos = g.coordinates(grid) 
    for i, m in enumerate(mask): 
        m[:] = 0 
        m[pos[np.sum(pos, axis=1) % len(mask) == i]] = 1 
 
    g.default.set_verbose("su2_heat_bath", False) 
    markov = g.algorithms.markov.su2_heat_bath(rng) 
    plaquette_heatbath = [] 
    for it in range(Nmax): 
        plaq = g.qcd.gauge.plaquette(U) 
        plaquette_heatbath.append(plaq) 
        if it % (Nmax//20) == 0: 
            g.message(f"SU(2)-subgroup heatbath {it} has P = {plaq}") 
        for m in mask: 
            for mu in range(Nd): 
                markov(U[mu], w.staple(U, mu), m) 
        if it > Nthermalize and it % Nskip == 0: 
            g.default.push_verbose("io", False) 
            g.save(f"{Ls}c{Lt}_PR_{beta}_{c1}/su3.{it}",U) 
            g.default.pop_verbose() 
             
     
    fig, ax = plt.subplots() 
    ax.plot(range(len(plaquette_heatbath)), plaquette_heatbath, marker='+', ls='', c='red', label="Heatbath") 
    plt.legend() 
    plt.show() 
 
#for beta in [5.5, 5.6, 5.7, 5.8, 5.9]: 
#    for c1 in [-0.01,-0.005,0.0,0.001]: 
#        if not os.path.exists(f"8c8_PR_{beta}_{c1}/su3.105"): 
#            print(beta, c1) 
#            generate_ensemble(8, 8, beta, c1, 50, 300, 5) 

In [4]: from scipy.optimize import curve_fit 
 
g.default.set_verbose("io", False) 
 
def jackknife_covariance_estimator(f, x): 
    N = len(x) 
    X = sum(x) / N 
    mean = f(X) 
    def outer_sqr(a): 
        return np.outer(a,a) 
    return sum([outer_sqr(f((N*X - x[j])/(N-1)) - mean) for j in range(N)])*(N-1)/N 
 
def V(t0, configurations): 
    U = g.load(configurations[0]) 
 
    Wt = [{},{}] 
     
    for t in [t0,t0+1]: 



8c8_PR_5.5_-0.01/su3.295 
8c8_PR_5.5_-0.01/su3.295 
0.15810282203051035 0.003498859247574835 

        for r in range(1,5): 
            Wt[t-t0][r] = g.qcd.gauge.transport(U,[g.qcd.gauge.path().f(3,t).f(nu,r).b(3,t).b(nu,r) 
                                     for nu in range(3)]) 
        for r in [1,2]: 
            Wt[t-t0][np.sqrt(2.)*r] = g.qcd.gauge.transport(U,  
                                            [g.qcd.gauge.path().f(3,t).f(nu,r).f(rho,r).b(3,t).b(rho,r).b(nu,r) 
                                             for nu in range(3) for rho in range(3) if nu != rho]) 
 
    Wlc = [] 
    for conf in configurations: 
        U = g.load(conf) 
         
        for i in range(4): 
            U = g.qcd.gauge.smear.stout(U, rho=1.0/12.0,orthogonal_dimension=3) 
     
        print(conf, end="\r") 
        Wlc.append([[sum([g.sum(g.trace(l)).real for l in wti[r](U)]) for wti in Wt] for r in Wt[0]]) 
      
    Wlc = np.array(Wlc) 
    Wl_mean = np.mean(Wlc,axis=0) 
    V_mean = [np.log(Wl_mean[i,0]/Wl_mean[i,1]) for i in range(len(Wl_mean))] 
    rs = [r for r in Wt[0]] 
    V_cov = jackknife_covariance_estimator(lambda x: np.array([np.log(x[i,0]/x[i,1]) for i in range(len(Wl_mean))]), 
                                          Wlc) 
    V_err = [V_cov[i,i]**0.5 for i in range(len(V_mean))] 
    print() 
    return rs, V_mean, V_err, V_cov 
 
def lattice_spacing(configurations): 
    def model(r,*p): 
        return p[0] + p[1]/r + p[2]*r 
 
    def model_gradient(r,*p): 
        return np.array([r**0,r**-1,r]).T 
     
    rs1, Vm1, Ve1, Vc1 = V(1, configurations) 
    rs2, Vm2, Ve2, Vc2 = V(2, configurations) 
 
    par_mean, par_cov = curve_fit(model, rs2, Vm2, p0=[0.5,0.5,0.5], sigma=Vc2, absolute_sigma=True, jac=model_gradient) 
    a_in_fm = ((par_mean[1] + 1.65)/par_mean[2])**-0.5 * 0.5 
 
    a_in_fm_dpar1 = -0.5 * ((par_mean[1] + 1.65)/par_mean[2])**-1.5 * 0.5 * 1.0 / par_mean[2] 
    a_in_fm_dpar2 = 0.5 * ((par_mean[1] + 1.65)/par_mean[2])**-1.5 * 0.5 * 1.0 * (par_mean[1] + 1.65) / par_mean[2]**2 
    a_in_fm_dpar = np.array([0,a_in_fm_dpar1,a_in_fm_dpar2]) 
 
    a_in_fm_err = np.dot(a_in_fm_dpar,np.dot(par_cov,a_in_fm_dpar))**0.5 
    print(a_in_fm, a_in_fm_err) 
 
    def err_f(r,p,cov_p): 
        return np.dot(model_gradient(r,*p), np.dot(cov_p, model_gradient(r,*p)))**0.5 
 
    rrange = np.arange(0.1, 5.0, 0.01) 
    fy = np.array([model(r,*par_mean) for r in rrange]) 
    fyerr = np.array([err_f(r,par_mean,par_cov) for r in rrange]) 
 
    fig, ax = plt.subplots() 
 
    plt.ylim(0,2.5) 
    plt.xlim(0,5) 
 
    plt.xlabel("r/a") 
    plt.ylabel("aV(r)") 
    ax.fill_between(rrange,fy-fyerr,fy+fyerr,alpha=0.1,color="blue") 
    ax.plot(rrange,fy,c="blue") 
     
    ax.errorbar(rs2, Vm2, Ve2, fmt="o", label="V(r) with t=2") 
    ax.errorbar(rs1, Vm1, Ve1, fmt="o", label="V(r) with t=1") 
 
    plt.legend() 
    plt.show() 
 
    return (a_in_fm, a_in_fm_err, rs2, Vm2, Ve2, par_mean, par_cov) 

In [15]: betas = [5.5, 5.6, 5.7, 5.8, 5.9] 
c1s = [-0.01,-0.005,0.0,0.001] 
lattice_spacings = {} 
for beta in betas: 
    for c1 in c1s: 
        lattice_spacings[(beta,c1)] = lattice_spacing([f"8c8_PR_{beta}_{c1}/su3.{it}" for it in range(105,300,5)]) 



8c8_PR_5.5_-0.005/su3.295 
8c8_PR_5.5_-0.005/su3.295 
0.1868994068833518 0.004208694244922055 

8c8_PR_5.5_0.0/su3.295 
8c8_PR_5.5_0.0/su3.295 
0.21718319816941065 0.013083435455633596 

8c8_PR_5.5_0.001/su3.295 
8c8_PR_5.5_0.001/su3.295 
0.2539060665234701 0.010557821408040645 

8c8_PR_5.6_-0.01/su3.295 
8c8_PR_5.6_-0.01/su3.295 
0.12164264923548306 0.00292567534000254 

8c8_PR_5.6_-0.005/su3.295 
8c8_PR_5.6_-0.005/su3.295 
0.15047127976527147 0.0034932025893514157 



8c8_PR_5.6_0.0/su3.295 
8c8_PR_5.6_0.0/su3.295 
0.20086459794990957 0.00634641716209961 

8c8_PR_5.6_0.001/su3.295 
8c8_PR_5.6_0.001/su3.295 
0.2138736834711988 0.006997106174368788 

8c8_PR_5.7_-0.01/su3.295 
8c8_PR_5.7_-0.01/su3.295 
0.09192037765225937 0.0026468316372939005 

8c8_PR_5.7_-0.005/su3.295 
8c8_PR_5.7_-0.005/su3.295 
0.1293335414227953 0.0024809239670201167 

8c8_PR_5.7_0.0/su3.295 
8c8_PR_5.7_0.0/su3.295 
0.1573308742079209 0.0025845724865758432 



8c8_PR_5.7_0.001/su3.295 
8c8_PR_5.7_0.001/su3.295 
0.1687132194522321 0.003445718886308644 

8c8_PR_5.8_-0.01/su3.295 
8c8_PR_5.8_-0.01/su3.295 
0.09203400893716623 0.0029059888297853723 

8c8_PR_5.8_-0.005/su3.295 
8c8_PR_5.8_-0.005/su3.295 
0.1006433813360252 0.0025320263861270975 

8c8_PR_5.8_0.0/su3.295 
8c8_PR_5.8_0.0/su3.295 
0.1294152500355272 0.0033037499656259793 

8c8_PR_5.8_0.001/su3.295 
8c8_PR_5.8_0.001/su3.295 
0.14188732621769773 0.003144769408094298 



8c8_PR_5.9_-0.01/su3.295 
8c8_PR_5.9_-0.01/su3.295 
0.08010883389432717 0.0029945879102213032 

8c8_PR_5.9_-0.005/su3.295 
8c8_PR_5.9_-0.005/su3.295 
0.10991342324028512 0.0024540176462637463 

8c8_PR_5.9_0.0/su3.295 
8c8_PR_5.9_0.0/su3.295 
0.10996826346055882 0.003386320680349076 

8c8_PR_5.9_0.001/su3.295 
8c8_PR_5.9_0.001/su3.295 
0.10904119309010185 0.003992690555767243 

In [52]: fig = plt.figure(figsize=(10,10)) 
ax = fig.add_subplot(111, projection='3d') 
 
ax.set_xlabel('beta') 



No error bars here as they are difficult to see and errors are sufficiently small 

Note the rotated angle.  Continuum limit now in the back.  1sigma shifted as transparent. 

ax.set_ylabel('c1') 
ax.set_zlabel('a / fm') 
X = np.array([[beta for beta in betas] for c1 in c1s]) 
Y = np.array([[c1 for beta in betas] for c1 in c1s]) 
Z = np.array([[lattice_spacings[(beta, c1)][0] for beta in betas] for c1 in c1s]) 
ax.plot_wireframe(X, Y, Z) 
 
print("No error bars here as they are difficult to see and errors are sufficiently small") 
plt.show() 

In [65]: fig = plt.figure(figsize=(10,10)) 
ax = fig.add_subplot(111, projection='3d') 
 
ax.set_xlabel('beta') 
ax.set_ylabel('c1') 
ax.set_zlabel('sigma / (GeV/fm)') 
X = np.array([[beta for beta in betas] for c1 in c1s]) 
Y = np.array([[c1 for beta in betas] for c1 in c1s]) 
Z = np.array([[ 
    lattice_spacings[(beta, c1)][5][2]*0.1973/lattice_spacings[(beta, c1)][0]**2. 
    for beta in betas] 
    for c1 in c1s 
]) 
Z_err = np.array([[ 
    lattice_spacings[(beta, c1)][6][2,2]**0.5*0.1973/lattice_spacings[(beta, c1)][0]**2. 
    for beta in betas] 
    for c1 in c1s 
]) 
 
print("Note the rotated angle.  Continuum limit now in the back.  1sigma shifted as transparent.") 
ax.view_init(elev=20., azim=130) 
ax.plot_wireframe(X, Y, Z) 
ax.plot_wireframe(X, Y, Z + Z_err, alpha=0.3) 
plt.show() 



The additional parameter  leads to the same theory in the continuum limit but may reduce/enhance discretization errors. The additional operator corresponding to  is

therefore irrelevant to the physics of the continuum limit.

We also show the string tension  as a function of  for the case , which has a flatter continuum extrapolation compared to the  case of chapter 7:

Homework: Repeat the discussion of the continuum limit of the Coulomb coefficient in the static quark potential with  and . You may

use the above code to generate the needed ensembles.

Continuum effective theory and Symanzik improvement

We constructed our lattice gauge theory by considering the similarities with a continuum theory with Lagrange density

c1 c1

σ a c1 = −0.01 c1 = 0

In [85]: fig, ax = plt.subplots() 
plt.xlabel("a/fm") 
plt.ylabel("sigma/(GeV/fm)") 
#plt.ylim(0.69,1.2) 
 
# merge all
a_in_fm = [] 
sigma_in_GeV = [] 
sigma_in_GeV_err = [] 
for b in [5.5, 5.6, 5.7]: 
    ame = lattice_spacings[(b, -0.01)] 
    a_in_fm.append(ame[0]) 
    sigma_in_GeV.append(ame[5][2]/ame[0]**2.*0.1973) 
    sigma_in_GeV_err.append(ame[6][2,2]**0.5/ame[0]**2.*0.1973) 
 
ax.errorbar(a_in_fm, sigma_in_GeV, sigma_in_GeV_err, fmt="o", label=f"c_1 = {-0.01}, beta in [5.5,5.6,5.7]") 
 
a_in_fm = [] 
sigma_in_GeV = [] 
sigma_in_GeV_err = [] 
for b in [5.5, 5.6, 5.7, 5.8, 5.9]: 
    ame = lattice_spacings[(b, 0.0)] 
    a_in_fm.append(ame[0]) 
    sigma_in_GeV.append(ame[5][2]/ame[0]**2.*0.1973) 
    sigma_in_GeV_err.append(ame[6][2,2]**0.5/ame[0]**2.*0.1973) 
 
ax.errorbar(a_in_fm, sigma_in_GeV, sigma_in_GeV_err, fmt="o", label=f"c_1 = {0.0}, beta in [5.5,5.6,5.7,5.8,5.9]") 
 
plt.legend() 
plt.show() 

c1 = −0.01 β ∈ [5.2, 5.3, 5.4, 5.5, 5.6]

L = Tr FμνF
μν . (40)

1

2



In chapter 5, we considered the construction of this theory based on the symmetries of the continuum limit of QCD. Extending this line of reasoning, we can also write down

a continuum effective theory that has the continuum symmetries for  but the reduced lattice symmetries for . We can do this by adding higher-dimensional

operators to the action with explicit lattice spacing factors  such that the total mass dimension of the Lagrange density remains unchanged.

If we do this for concreteness in the Euclidean space version, we find to order 

What about terms linear in ? Such terms have to violate parity symmetry and are therefore absent. In general, we can only write down terms that are consistent with the

symmetries of the lattice action.

We can now compute a sufficient number of observables both in lattice gauge theory and using such a continuum effective theory to determine the corresponding

coefficients  explicitly. Since both theories need to yield the same results for all observables, we first see that pure gauge theory on the lattice does not have linear  errors

und that by modifying the lattice gauge action, we may be able to set  in the corresponding continuum effective action. Adding additional operators to the lattice

action to achieve this is also referred to as Symanzik improvement. If one were to perform a tree-level perturbation theory calculation, one finds that it would be sufficient

to set  in our above example to remove all order  errors. Of course, loop effects violate this statement such that there are  errors left with .

If we consider matrix elements of operators different than the Hamiltonian of the system, we also need to consider a continuum effective version of this operator with higher-

dimensional terms added to account for the effects of higher powers in . Therefore it is not sufficient to improve the action, one also has to improve the operators for which

one intends to measure matrix elements.

Finally, when we perform the matching between the continuum effective theory and a lattice theory, we find that the coefficients  can depend on  themselves. Since

the coupling constant itself is scale dependent, a general functional ansatz for a continuum extrapolation in pure gauge theory is

Renormalization group

We have already seen above that adding a rectangle term to the Wilson gauge action was an irrelevant to the continuum limit of the theory but modified discretization errors

and the mapping of  to the lattice spacing . One could, however, also imagine theories for which additional parameters have a relevant role to play in the continuum limit

of the theory. An example would be that after adding quarks with mass  to the theory, we must be able to find a family of well-defined continuum limits corresponding to

the different physical quark masses. We will now bring more order to this discussion.

Consider integrating out short distances (blocking) or high momenta following a given scheme in our theory without violating its symmetries. The long-distance physics will

not be modified by such changes on very short distances (see the universality discussion above) such that

for all measured masses/correlation lengths . In addition discretization errors may also change such that more generally we can consider the effect of such a blocking

operation to define a flow in the space of actions

where we could consider matching both actions  and  to a continuum effective action

and to consider the effect on the coefficients  of the corresponding operators  in these actions. Such a blocking operation therefore defines a flow of coefficients

This operation has the structure of a semigroup and is referred to as the Wilson renormalization group. We can consider writing a corresponding flow with lattice spacing

for each coefficient

If  keeps decreasing as , we call irrelevant, if  keeps increasing as , we call relevant. In other cases, we call marginal.

The marginal/relevant parameters in the  limit define the critical surface of the theory due to the second-order phase transition at  described above. The fact

that the critical surface is typically low-dimensional is they key to understanding universality of the quantum field theory continuum limit. All details of the lattice regulators

must correspond to irrelevant operators and we can study different theories on the critical surface. (Again for pure QCD the critical surface is a single point, QCD with 

quark flavors has a  dimensional critical surface corresponding to the physical quark masses.)

Finally, we note that the blocking operation can also have a fixed point with . Such a fixed point may be found at  (ultraviolet fixed point) or  (infrared

fixed point) or also in between. Note that the neighborhood of a fixedpoint can have attractive and repulsive sub-regions as .

Continuum trajectory

a = 0 a ≠ 0

a

a2

L = ∑
μ,ν

Tr F 2
μν

+ r1a
2∑

μ,ν

Tr FμνD
2
μFμν

+ r2a
2∑

μ,ν

Tr DμFνσDμFνσ

+ r3a
2∑

μ,ν

Tr DμFμσDνFνσ

+ … . (41)

1

2

a

ri a

ri = 0

c1 = −1/12 a2 αsa
2 αs = g2/(4π)

a

ri αs(a)

f(a) = f0 + a2f1 + a2αs(a)f2 + O(a4, a2α2
s) . (42)

β a

m

a → a′ = λa ,

mlat → m′
lat = λmlat

(43)

(44)

mlat

S → S ′ (45)

S S ′

S = ∫ dxciOi(x) ,

S ′ = ∫ dxc′
iOi(x)

(46)

(47)

ci Oi

ci → c′
i
. (48)

ci(a) . (49)

ci a → 0 Oi ci a → 0 Oi Oi

a → 0 a → 0

nf

nf

λ = 1 a = 0 a → ∞

a → 0



Once we understand how many relevant/marginal operators we have in a theory, we can define a continuum trajectory as a scheme that fixes all coefficients of

relevant/marginal operators by defining a condition for the lattice spacing  and a sufficient number of physical measurements to tune the remaining parameters. In pure

QCD we only have one relevant operator and only need one condition for the lattice spacing. In QCD with one quark flavor , we have two relevant/marginal operators and

we need both a condition for the lattice spacing and an additional condition to tune the quark mass such as the ratio of a corresponding meson mass to the string tension.

We then can consider the subset of coefficients that lie on this continuum trajectory, which will define a one-dimensional flow in the lattice spacing .

a

m

a


