Chapter 8: strong coupling expansion

In this chapter we perform a strong-coupling expansion of the path integral and the expectation value of a Wilson loop

$$
\begin{equation*}
W_{C}=\operatorname{Tr}\left[\prod_{\mu_{i}, x_{i}, m_{i} \in C} U_{\mu_{i}}^{m_{i}}\left(x_{i}\right)\right] \tag{1}
\end{equation*}
$$

where $m_{i} \in\{\dagger, 1\}$. The path C could, e.g., describe a plaquette, a rectangle, or more complicated closed paths.
We will perform the expansion using the Wilson gauge action

$$
\begin{equation*}
S_{W}=\beta \sum_{x} \sum_{\mu<\nu}\left(1-P_{\mu \nu}(x)\right) \tag{2}
\end{equation*}
$$

with scalar plaquette

$$
\begin{align*}
P_{\mu \nu}(x) & =\frac{1}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{\mu \nu}(x) \tag{3}\\
U_{\mu \nu}(x) & =U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x) \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\beta=\frac{2 N_{c}}{g^{2}} \tag{5}
\end{equation*}
$$

The expansion in a large coupling parameter g, therefore corresponds to an expansion in a small number β.
The expectation value of a Wilson loop is then given by

$$
\begin{align*}
\left\langle W_{C}\right\rangle & =\frac{\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \exp \left[-\beta \sum_{x} \sum_{\mu<\nu}\left(1-P_{\mu \nu}(x)\right)\right]}{\int d[U] \exp \left[-\beta \sum_{x} \sum_{\mu<\nu}\left(1-P_{\mu \nu}(x)\right)\right]} \tag{6}\\
& =\frac{\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \exp \left[\beta \sum_{x} \sum_{\mu<\nu} P_{\mu \nu}(x)\right]}{\int d[U] \exp \left[\beta \sum_{x} \sum_{\mu<\nu} P_{\mu \nu}(x)\right]} \tag{7}\\
& =\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \exp \left[\beta \sum_{x} \sum_{\mu<\nu} P_{\mu \nu}(x)\right](1+O(\beta)) \tag{8}\\
& =\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \exp \left[\frac{\beta}{N_{c}} \sum_{x} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr} U_{\mu \nu}(x)\right](1+O(\beta)) \tag{9}\\
& =\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \exp \left[\frac{\beta}{2 N_{c}} \sum_{x} \sum_{\mu<\nu}\left(\operatorname{Tr} U_{\mu \nu}(x)+\operatorname{Tr} U_{\mu \nu}^{\dagger}(x)\right)\right](1+O(\beta)) \tag{10}\\
& =\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \exp \left[\frac{\beta}{2 N_{c}} \sum_{x} \sum_{\mu \neq \nu} \operatorname{Tr} U_{\mu \nu}(x)\right](1+O(\beta)) \tag{11}\\
& =\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{\beta}{2 N_{c}}\right)^{n}\left(\sum_{P} \operatorname{Tr} U_{P}\right)^{n}(1+O(\beta)) \tag{12}
\end{align*}
$$

where in the last line we sum over all possible plaquettes P (every spacetime-point and every x).
Let us now first consider the leading order $n=0$ term for which we need to perform the integral

$$
\begin{equation*}
\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \tag{13}
\end{equation*}
$$

Note that for any closed Wilson loop, each link $U_{\mu}(x)$ or its adjoint only appears once. In the case of the plaquette, e.g.,

$$
\begin{equation*}
U_{\mu \nu}(x)=U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x) \tag{14}
\end{equation*}
$$

such that if we integrate over $U_{\mu}(x)$ first, we are performing an integral of the type

$$
\begin{equation*}
M_{a b}=\int d\left[U_{\mu}(x)\right]\left(U_{\mu}(x)\right)_{a b} \tag{15}
\end{equation*}
$$

One can show that for any $V \in \mathrm{SU}(3)$, we have

$$
\begin{equation*}
(V M)_{a b}=\int d\left[U_{\mu}(x)\right]\left(V U_{\mu}(x)\right)_{a b}=\int d\left[U_{\mu}(x)\right]\left(U_{\mu}(x)\right)_{a b}=M_{a b} \tag{16}
\end{equation*}
$$

due to the invariance of the Haar measure. In matrix form, we have

$$
\begin{equation*}
V M=M \tag{17}
\end{equation*}
$$

for any group element V. One can show that this can only be satisfied for

$$
\begin{equation*}
M=0 . \tag{18}
\end{equation*}
$$

Before moving on to the $n=1$ term, we first verify the integral equation numerically by a straightforward extension of our Haar integration routine to $\mathrm{SU}(3)$.

```
mport gpt as 
mport numpy as np
import scipy.linalg
su3_generators = g.object_type.ot_matrix_su_n_fundamental_algebra(3).generators(np.complex128)
U = [np.matrix(scipy.linalg.expm(2j*sum([np.random.normal()*p.array for p in su3_generators]))) for i in range(40)]
for u in U:
    assert np.linalg.norm(u * u.H - np.identity(3)) < 1e-14
np.random.seed(13)
def haar_integrate(f, U, N, NskipToMakeIndependent):
    u0 = U[np.random.randint(0,len(U))]
    val = 0.0
    val2 = 0.0
    n = 0.0
    for i in range(N):
        v = f(u0).real
        val += v
        val2 += v**2
        n += 1
        for j in range(NskipToMakeIndependent):
            u0 = U[np.random.randint(0,len(U))] * u0
    # just use biased estimator for error
    return (val/n, (val2/n - (val/n)**2)**0.5 / n**0.5 )
for a in range(3):
    for b in range(3)
        print(f"\int dU U_{a}{b}",haar_integrate(lambda u: u[a,b], U, 10000, 2))
\int dU U 00 (0.012514483442892249, 0.0040934094282299)
\int dU U_01 (0.006719000502069609, 0.004046532911347319)
\int dU U_02 (-0.001452925711356024, 0.004136127321453077)
\int dU U_10 (0.0009426477768964693, 0.0040616879424338545)
\int dU U_11 (-0.00044307235985169323, 0.004088854622644644)
\int dU U_12 (-0.002986773309435577, 0.004102720114800084)
\int dU U_20 (-0.005149322584176619, 0.004073162320270486)
\int dU U_21 (-0.00013018166498728664, 0.004102016198185097)
\int dU U_22 (-0.0015228645553870606, 0.004093229510335719)
We now consider the next term in the strong coupling expansion, i.e., the \(n=1\) term. We have to compute
\[
\begin{equation*}
\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \frac{\beta}{2 N_{c}} \sum_{P} \operatorname{Tr} U_{P}(1+O(\beta)) . \tag{19}
\end{equation*}
\]
```

Let us for concreteness look at the term, where P is the counter-clockwise plaquette at the origin in the $0-1$ plane and that we consider a wilson loop in the $0-1$ plane with size 6×4. We plot this scenario below:

In [53]:

```
import matplotlib.pyplot as plt
def draw_U(x,mu):
    plt.arrow(x[0],x[1],mu[0],mu[1])
    plt.arrow(x[0],x[1],mu[0]*0.5,mu[1]*0.5, head_width=0.1, head_length=0.1, fc='k', ec='k')
def draw_P(x):
    a = \overline{0.2; oma = 1.0 - a; l = 1.0 - 2*a;}
    draw_U([x[0]+a,x[1]+a],[1,0.0])
    draw_U([x[0]+oma,x[1]+oma],[-1,0.0])
    draw_U([x[0]+oma,x[1]+a],[0.0,1])
    draw_U([x[0]+a,x[1]+oma],[0.0,-1])
fig, ax = plt.subplots()
plt.axis("off")
ax.set_aspect('equal')
nx = 6
ny = 4
plt.xlim(-0.1,nx + 0.1)
plt.ylim(-0.1,ny + 0.1)
for x in range(nx):
    draw_U([x,0],[1,0])
    draw_U([x+1,ny],[-1,0])
for y in range(ny):
    draw_U([0,y+1],[0,-1])
    draw_U([nx,y],[0,1])
draw_P([0,0])
plt.show()
```


In this case there are a lot of links that only appear once and therefore their integrals vanish. In addition, however, there are some links that appear twice as in the integral

$$
\begin{equation*}
M_{a b, c d}^{(2)}=\int d\left[U_{\mu}(x)\right]\left(U_{\mu}(x)\right)_{a b}\left(U_{\mu}(x)\right)_{c d} . \tag{20}
\end{equation*}
$$

One can show that such integrals have to vanish. We check this again numerically.
In [94]:

```
np.random.seed(13)
for a in range(3):
    for b in range(3):
        for c in range(3):
            for d in range(3):
            v, e = haar_integrate(lambda u: u[a,b]*u[c,d], U, 4000, 2)
            if abs(v) >= 3*e:
                print(a,b,c,d, v, e)
```

We see that the configurations with minimal power of β that can survive are those where each link in W_{C} is matched by the inverse link of a given plaquette. The corresponding configuration is plotted below.

In [66]:

```
fig, ax = plt.subplots()
plt.axis("off")
ax.set_aspect('equal')
def draw_invP(x):
    a = 0.2; oma = 1.0 - a; l = 1.0 - 2*a;
    draw_U([x[0]+oma,x[1]+a],[-1,0.0])
    draw_U([x[0]+a,x[1]+oma],[1,0.0])
    draw_U([x[0]+oma,x[1]+oma],[0.0,-1])
    draw_U([x[0]+a,x[1]+a],[0.0,1])
nx = 6
ny = 4
plt.xlim(-0.1,nx + 0.1)
plt.ylim(-0.1,ny + 0.1)
for }x\mathrm{ in range(nx):
    draw_U([x,0],[1,0])
    draw_U([x+1,ny],[-1,0])
for y in range(ny):
    draw_U([0,y+1],[0,-1])
    draw_U([nx,y],[0,1])
for x in range(nx):
    for y in range(ny):
        draw_invP([x,y])
plt.show()
```


In this configuration, we only have to consider integrals of the type

$$
\begin{equation*}
N(X)_{a b}=\int d\left[U_{\mu}(x)\right]\left(U_{\mu}(x) X U_{\mu}(x)^{\dagger}\right)_{a b} \tag{21}
\end{equation*}
$$

for which we can show that for every group element V, we have

$$
\begin{equation*}
(V N(X))_{a b}=\int d\left[U_{\mu}(x)\right]\left(V U_{\mu}(x) X U_{\mu}(x)^{\dagger}\right)_{a b}=\int d\left[U_{\mu}(x)\right]\left(U_{\mu}(x) X U_{\mu}(x)^{\dagger} V\right)_{a b}=(N(X) V)_{a b} \tag{22}
\end{equation*}
$$

We therefore have that $N(X)$ commutes with every group element V and therefore by Schur's lemma it must be proportional to the identity matrix, i.e.,

$$
\begin{equation*}
N(X)_{a b}=\int d\left[U_{\mu}(x)\right]\left(U_{\mu}(x) X U_{\mu}(x)^{\dagger}\right)_{a b}=n(X) \delta_{a b} \tag{23}
\end{equation*}
$$

We also have that $N(X)$ must be linear in X such that we must be able to write

$$
n(X)=n_{a b} X_{b a} .
$$

Since this needs to hold for arbitrary X, we now have the identity

$$
\begin{equation*}
\int d\left[U_{\mu}(x)\right]\left(U_{\mu}(x)\right)_{a b}\left(U_{\mu}(x)^{\dagger}\right)_{c d}=n_{b c} \delta_{a d} \tag{24}
\end{equation*}
$$

We now determine $n_{b c}$ by setting $a=d$ and summing over them such that we have

$$
\begin{equation*}
\delta_{b c}=n_{b c} N_{c} . \tag{25}
\end{equation*}
$$

We therefore finally arrive at the most important integration formula for this chapter

$$
\begin{equation*}
\int d\left[U_{\mu}(x)\right]\left(U_{\mu}(x)\right)_{a b}\left(U_{\mu}(x)^{\dagger}\right)_{c d}=\frac{1}{N_{c}} \delta_{b c} \delta_{a d} \tag{26}
\end{equation*}
$$

Let us first verify this numerically:

```
np.random.seed(13)
for a in range(3):
    for b in range(3):
            print(f"checking all a={a}, b={b}")
            for c in range(3):
            for d in range(3):
                v, e = haar_integrate(lambda u: u[a,b]*u.H[c,d], U, 2000, 2)
                err = abs(v - (1.0/3.0 if b == c and a == d else 0.0))
                assert err < 3*e
checking all a=0, b=0
checking all a=0, b=1
checking all a=0, b=2
checking all a=1, b=0
checking all a=1, b=1
checking all a=1, b=2
checking all a=2, b=0
checking all a=2, b=1
checking all a=2, b=2
The lowest-order }\beta\mathrm{ contribution for a }\mp@subsup{n}{s}{}\times\mp@subsup{n}{t}{}\mathrm{ Wilson loop is therefore given by
```

$$
\begin{equation*}
\left\langle W_{C}\right\rangle=\int d[U] \operatorname{Tr}\left[\prod_{\mu_{i}, x_{i} \in C} U_{\mu_{i}}\left(x_{i}\right)\right] \frac{1}{\left(n_{s} n_{t}\right)!}\left(\frac{\beta}{2 N_{c}}\right)^{n_{s} n_{t}}\left(\sum_{P} \operatorname{Tr} U_{P}\right)^{n_{s} n_{t}}(1+O(\beta)) \tag{27}
\end{equation*}
$$

We now need to count how many link pairs we have in this case. We first note that we have $\left(n_{s} n_{t}\right)$! permutations of the individual plaquettes. Let us now first integrate over the internal plaquette pairs. We can write such a pair as

$$
\int d\left[U_{\mu}(x)\right] \operatorname{Tr}\left[A U_{\mu}(x)\right] \operatorname{Tr}\left[B U_{\mu}(x)^{\dagger}\right]=\frac{1}{N_{c}} \operatorname{Tr}[B A]
$$

Therefore for each removed link we get a factor of $\frac{1}{N_{c}}$ and obtain a joint loop with the integrated link removed. This could look like:

```
In [79]:
fig, ax = plt.subplots()
plt.axis("off")
ax.set_aspect('equal')
def draw_invP_2(x):
    \(\mathrm{a}=\overline{0} .2 ; \overline{\mathrm{o}} \mathrm{ma}=1.0-\mathrm{a} ; 1=1.0-2\) *a;
    tma \(=2.0-a ; ~ t l=1.0-a ;\)
    draw_U([x[0]+oma, x[1]+a],[-1,0.0])
    draw_U([x[0]+a, x[1]+tma],[1,0.0])
    draw_U([x[0]+oma, x[1]+tma-tl],[0.0,-tl])
    draw_U([x[0]+oma, x[1]+tma],[0.0,-tl])
    draw_U([x[0]+a, x[1]+a],[0.0,tl])
    draw_U ([x[0]+a, x[1]+tl+a],[0.0,tl])
\(n \mathrm{n}=6\)
ny \(=4\)
plt.xlim(-0.1,nx + 0.1)
plt.ylim(-0.1,ny + 0.1)
for \(x\) in range( \(n x)\) :
    draw_U([x,0],[1,0])
    draw_U([x+1,ny],[-1,0])
for \(y\) in range(ny):
    draw_U ([0,y+1],[0,-1])
    draw_U([nx,y],[0,1])
for \(x\) in range( nx ):
    for \(y\) in range(ny):
        if \(x!=0\) or \(y>=2\) :
            draw_invP([x,y])
    draw_invP_2([0,0])
    plt.show()
```


Combining the factorial and $1 / N_{c}$ powers, we find for the lowest-order β contribution for a $n_{s} \times n_{t}$ Wilson loop

$$
\begin{align*}
\left\langle W_{C}\right\rangle & =\left(\frac{\beta}{2 N_{c}^{2}}\right)^{n_{s} n_{t}} \operatorname{Tr}[1](1+O(\beta)) \tag{28}\\
& =N_{c} \exp \left(n_{s} n_{t} \log \left(\frac{\beta}{2 N_{c}^{2}}\right)\right)(1+O(\beta)), \tag{29}
\end{align*}
$$

If we now again identify the Wilson loop with the static quark potential $V\left(n_{s}\right)$, we find

$$
\begin{equation*}
\left\langle W_{C}\right\rangle \propto \exp \left(-n_{t} V\left(n_{s}\right)\right) \tag{30}
\end{equation*}
$$

for sufficiently large n_{t}. We can therefore at leading order in β identify

$$
\begin{equation*}
V\left(n_{s}\right)=-n_{s} \log \left(\frac{\beta}{2 N_{c}^{2}}\right) \tag{31}
\end{equation*}
$$

We indeed find a linear growth of the potential in distance n_{s}. The strong-beta expansion converges quite poorly such that the numerical value of the resulting string tension is not significant, however, we can read off

$$
\begin{equation*}
\sigma=-\log \left(\frac{\beta}{2 N_{c}^{2}}\right) \tag{32}
\end{equation*}
$$

which for our coarsest simulation at $\beta=5.5$ corresponding to $a=0.25 \mathrm{fm}$ would yield

$$
\begin{equation*}
\sigma=-\log \left(\frac{\beta}{2 N_{c}^{2}}\right) \approx 1.2 \times \frac{0.1973 \mathrm{GeV} \mathrm{fm}}{(0.25 \mathrm{fm})^{2}} \approx 3.8 \frac{\mathrm{GeV}}{\mathrm{fm}} \tag{33}
\end{equation*}
$$

quite a bit larger than the approximate $1 \mathrm{GeV} / \mathrm{fm}$ found numerically in the continuum limit of pure QCD in the last chapter.

