
Lattice QCD I - Christoph Lehner

Chapter 6: gauge theories on a lattice
In this chapter we explore how we can construct a field theory on a lattice that keeps the gauge symmetry intact.

Covariant derivatives in the continuum

In the last chapter we considered generators  of a gauge symmetry group, which in the case of SU(3) are traceless Hermitian matrices ( , ). We found

that we can define covariant derivatives  that transformed as

under infinitesimal gauge transformations. Finite gauge transformations can then be written as

with

These then allowed for the definition of a gauge invariant kinetic term of a fermionic field  that transforms as

using

Discrete derivatives on a lattice

We now consider fields  that live on a discrete lattice with  and  with lattice dimension  and lattice spacing . Then an approximations of the

partial derivatives in direction  can be writte, e.g., as

with unit vectors  in direction . If we imagine  being a sufficiently differentiable field in  instead, we find

and if we take a symmetric combination

we find

Homework: Show this for the symmetric derivative by performing a corresponding Taylor expansion.

Covariant derivatives on a lattice

We have just seen that on a lattice we need to approximate derivatives with finite differences of fields shifted in discrete steps on the lattice. We can make this more explicit

by defining shift operators

such that

If we assume again that under a gauge transformation each field transforms as

the partial derivatives  again would not have a well-defined behavior under gauge transformations. What we would need is a covariant shift operation

which should obey

G(x) G† = G TrG = 0

Dμ

Dμ → [1 + iG(x)]Dμ[1 − iG(x)] (1)

Dμ → V (x)DμV (x)† (2)

V (x) = exp(iG(x)) . (3)

ψ(x)

ψ(x) → V (x)ψ(x) ,

ψ̄(x) → ψ̄(x)V (x)†

(4)

(5)

L = ψ̄iγμDμψ . (6)

ψ(x) x ∈ Λ Λ = {an|n ∈ Z
d} d a

μ

a
→
∂μψ(x) = ψ(x + aμ̂) − ψ(x) ,

a
←
∂μψ(x) = ψ(x) − ψ(x − aμ̂)

(7)

(8)

μ̂ μ ψ R
d

→
∂μψ(x) = (ψ(x + aμ̂) − ψ(x)) = ∂μψ(x) + O(a) ,

←
∂μψ(x) = (ψ(x) − ψ(x − aμ̂) = ∂μψ(x) + O(a)

(9)

(10)

1

a
1

a

↔
∂μ = (

←
∂μ +

→
∂μ) (11)

1

2

↔
∂μψ(x) = (ψ(x + aμ̂) − ψ(x − aμ̂)) = ∂μψ(x) + O(a2) . (12)

1

2a

S+
μ ψ(x) = ψ(x + aμ̂) ,

S−
μ ψ(x) = ψ(x − aμ̂)

(13)

(14)

↔
∂μψ(x) = (S+

μ − S−
μ )ψ(x) (15)

1

2a

ψ(x) → V (x)ψ(x) (16)

↔
∂μψ(x)

C+
μ ψ(x) = Uμ(x)ψ(x + aμ̂) (17)

C+
μ ψ(x) → V (x)C+

μ ψ(x) (18)

https://homepages.uni-regensburg.de/~lec17310/teaching/wise2122/lqft.html
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under a gauge transformation. This can be achieved if the  above were to transform as

under gauge transformations. Then we could also define a covariant backwards shift operation

that would transform as

under gauge transformations.

Then by replacing all shifts by covariant shifts, we can construct a covariant derivative

As operators, we can write

We can also consider the  as parallel transporters of the gauge group.

The parallel transport matrices  therefore seem to play the role of transporting a field  between  and . It is therefore only natural to assume geometrically

that  corresponds to a link on the lattice between those two sites.

If we furthermore make the ansatz

with gauge fields  living on the links, we find

The operator  is the path-ordering operator that arises from the limit of multiplying the individual factors.

Note that  is the coupling constant that we introduced at the end of the previous chapter.

Homework: Show this equation by explicit Taylor expansion in .

Pure gauge theory

Consider the smallest possible parallel transport around a  square in the -  plane, the plaquette,

transforming to

We can then create a gauge-invariant contribution to an action by taking the trace of . Before doing this, however, let us consider what this corresponds to in terms of

gauge fields . The plaquette is also the simplest of the Wilson loops, i.e., parallel transports around a closed loop.

If we use the Baker-Campbell-Hausdorff formula

and combine the terms to a single exponential, we find

We can then consider the gauge-invariant trace for a gauge group SU

and

Next we take the real part to create a real-valued contribution to the action and use that

such that

Uμ(x)

Uμ(x) → V (x)Uμ(x)V (x + aμ̂)† (19)

C−
μ ψ(x) = U †

μ(x − aμ̂)ψ(x − aμ̂) (20)

C−
μ ψ(x) → V (x)C−

μ ψ(x) (21)

Dμψ(x) = (C+
μ − C−

μ )ψ(x) = (Uμ(x)ψ(x + aμ̂) − U †
μ(x − aμ̂)ψ(x − aμ̂)) . (22)

1

2a

1

2a

C+
μ = Uμ(x)S+

μ ,

C−
μ = S−

μ U
†
μ(x) .

(23)

(24)

C±
μ

Uμ(x) ψ x x + aμ̂

Uμ(x)

Uμ(x) = (1 + ig Aμ(x))(1 + ig Aμ (x + μ̂))⋯(1 + ig Aμ(x + μ̂))

n→∞
= P exp(ig ∫

a

0
dsAμ(x + sμ̂)) = exp(igaAμ(x + aμ̂) + O(a3))

(25)

(26)

a

n

a

n

a

n

a

n

a(n − 1)

n

1

2

Aμ

Dμψ(x) = (∂μ + igAμ(x))ψ(x) + O(a2) . (27)

P

g

a

1x1 μ ν

Uμν(x) = Uμ(x)Uν(x + aμ̂)U †
μ(x + aν̂)U †

ν (x) (28)

Uμν(x) → V (x)Uμν(x)V (x)† . (29)

Uμν

Aμ

exp(aA) exp(aB) = exp(aA + aB + a2[A,B] + O(a3)) (30)
1

2

Uμν(x) = exp(ia2gFμν(x) + O(a3)) (31)

(Nc)

Tr Uμν(x) = Nc + ia2gTr Fμν(x) − a4g2Tr (Fμν(x))2 + O(a5) (32)
1

2

Tr (1 − Uμν(x)) = −ia2gTr Fμν(x) + a4g2Tr (Fμν(x))2 + O(a5) . (33)
1

2

F
†
μν = Fμν (34)

Re Tr (1 − Uμν(x)) = a4g2 Tr (Fμν(x))2 + O(a5) , (35)
1

2



where no sum over repeated indices is implied. In order to recover the continuum action at leading order, we therefore need to divide by  and sum over ,  and .

This yields the Wilson gauge action

where  is the space-time dimensionality of the theory. For gauge group SU  in the fundamental representation, we customarily define

with scalar plaquette

and

Note that we used

to replace the sum over  with a sum over .

Improved gauge theory

We can show that also other Wilson loops locally look like the field-strength tensor , albeit with different discretization errors. By taking appropriate combinations of

Wilson loops, we can create an improved gauge action which reduces the discretization errors to a higher power in . At this point, we could already determine the classically

optimal combination of, e.g., the  and  rectangle terms, however, we will later see that quantum effects can disturb this cancellation. We will revisit this point at a later

time.

Path integral measure
One can show that for finite groups  that for any element , the sequence  and the sequence  are just

reorderings of the sequence . Therefore averaging a function  over all elements of a finite group satisfies

For continuous Lie groups that we consider in this chapter as gauge groups one can define the Haar integration measure  that satisfies

for group elements  and . Equivalently

for each group element . Using such an integration measure, the integral over link variables  then also is gauge invariant since

If the action and integral measure is explicitly invariant under our gauge transformation, then the quantized theory as defined by the path integral is also explicitly gauge

invariant. This is crucial since the measure may in principle violate symmetries of the action or in other words, a quantized theory may exhibit lower symmetries than the

action itself has.

In a later discussion we will give a procedure to derive the Haar measure for a given parametrization of a group manifold. For now, we just observe that in a stochastic

sampling of the integral all we have to follow is to pick random elements  of the gauge group and to consistently multiply them from the left or right to the existing links 

 to update them. As long as we make sure that any group element can be reached by a product of these random , the construction explicitly follows the Haar

integration measure as defined by its invariance properties. For completeness, we note that the Haar measure is only unique up to a constant factor that can be fixed, e.g.,

by requiring .

Markov chains for pure gauge theories
For pure gauge theories, there are various competitive algorithms to generate a Markov chain:

The first is a local metropolis using a checkerboarding strategy as we have done before for scalar field theory.

Another is to explicitly parametrize the Haar measure for SU(2) subgroups of the SU  gauge group and to draw such SU(2) matrices directly from the correct

probability distribution. This is the so-called SU(2)-subgroup heatbath algorithm. We will discuss it in detail in the next lecture.

We could also integrate a stochastic differential equation, called a Langevin integrator, and show explicitly that the correct stationary distribution is found. We will also

discuss this method in the next lecture.

Finally, one can also use a combination of molecular dynamics evolution with random momentum sampling, the hybrid monte carlo method. We will dedicate an entire

chapter to this method due to its importance in state-of-the-art calculations.

In the following, we first demonstrate the ensemble generation with GPT using some of these algorithms.

First using the local Metropolis:

g2 x ∈ Λ μ ν

SW = ∑
x

d−1

∑
μ,ν=0

Re Tr (1 − Uμν(x)) = a4 ∑
x

d−1

∑
μ,ν=0

Tr (Fμν(x))2 + O(a5) , (36)
1

g2

1

2

d (Nc)

SW = β∑
x

d−1

∑
μ,ν=0

(1 − Pμν(x)) = β∑
x

∑
μ<ν

(1 − Pμν(x)) (37)
1

2

Pμν(x) = Re Tr Uμν(x) (38)
1

Nc

β = . (39)
2Nc

g2

Uμν(x)† = Uν(x)Uμ(x + aν̂)Uν(x + aμ̂)†Uμ(x)† = Uνμ(x) (40)

μ, ν μ < ν

Fμν

a

1x1 2x1

G = {g1, … , gn} gi ∈ G gig0, gig1, … , gign g0gi, g1gi, … , gngi
g0, … , gn f

∑
g

f(g) = ∑
g

f(gig) = ∑
g

f(ggi) . (41)
1

n

1

n

1

n

d[U ]

∫ d[U ]f(U) = ∫ d[U ]f(VU) = ∫ d[U ]f(UV ) (42)

U V

d[VU ] = d[U ] = d[UV ] (43)

V Uμ(x)

d[V (x)Uμ(x)V (x + aμ̂)†] = d[Uμ(x)] . (44)

V

Uμ(x) V

∫ d[U ] = 1

(Nc)

In [3]: import gpt as g; 



GPT :     113.770477 s : Initializing gpt.random(test,vectorized_ranlux24_24_64) took 4.60148e-05 s 
GPT :     113.785935 s : Local metropolis 0 has P = 1.0 
GPT :     118.091342 s : Local metropolis 50 has P = 0.6232448286480373 
GPT :     122.690226 s : Local metropolis 100 has P = 0.558342350853814 
GPT :     126.951510 s : Local metropolis 150 has P = 0.5412292811605666 
GPT :     131.852604 s : Local metropolis 200 has P = 0.5315725008646647 
GPT :     136.840365 s : Local metropolis 250 has P = 0.5241931941774156 
GPT :     142.993895 s : Local metropolis 300 has P = 0.5202440818150839 
GPT :     147.940617 s : Local metropolis 350 has P = 0.5177053146892124 
GPT :     152.788150 s : Local metropolis 400 has P = 0.5131866865687901 
GPT :     157.826834 s : Local metropolis 450 has P = 0.5104659663306342 
GPT :     162.208752 s : Local metropolis 500 has P = 0.5131155252456665 
GPT :     166.561504 s : Local metropolis 550 has P = 0.5085434781180488 
GPT :     171.248844 s : Local metropolis 600 has P = 0.5039165417353312 
GPT :     175.708371 s : Local metropolis 650 has P = 0.506249725818634 
GPT :     180.486332 s : Local metropolis 700 has P = 0.5023225479655796 
GPT :     185.004515 s : Local metropolis 750 has P = 0.5003030101458231 
GPT :     189.150137 s : Local metropolis 800 has P = 0.4997691445880466 
GPT :     193.177941 s : Local metropolis 850 has P = 0.5011237727271186 
GPT :     197.519407 s : Local metropolis 900 has P = 0.5038102865219116 
GPT :     201.544591 s : Local metropolis 950 has P = 0.5002213915189108 

Next we consider the Heatbath algorithm.

GPT :     300.293935 s : SU(2)-subgroup heatbath 0 has P = 1.0 
GPT :     313.256864 s : SU(2)-subgroup heatbath 50 has P = 0.5022712548573812 
GPT :     326.851409 s : SU(2)-subgroup heatbath 100 has P = 0.4951641890737746 
GPT :     341.379575 s : SU(2)-subgroup heatbath 150 has P = 0.49848774406645036 
GPT :     356.706945 s : SU(2)-subgroup heatbath 200 has P = 0.5004462268617418 
GPT :     373.774078 s : SU(2)-subgroup heatbath 250 has P = 0.49490469694137573 
GPT :     389.923751 s : SU(2)-subgroup heatbath 300 has P = 0.49955056111017865 
GPT :     405.860566 s : SU(2)-subgroup heatbath 350 has P = 0.49755699104732937 
GPT :     420.428378 s : SU(2)-subgroup heatbath 400 has P = 0.499170528517829 
GPT :     435.301122 s : SU(2)-subgroup heatbath 450 has P = 0.5017324553595649 

Finally, we demonstrate the Langevin algorithm.

 
L = [8, 8, 8, 8] 
grid = g.grid(L, g.single) 
grid_eo = g.grid(L, g.single, g.redblack) 
 
rng = g.random("test", "vectorized_ranlux24_24_64") 
U = g.qcd.gauge.unit(grid) 
Nd = len(U) 
 
# red/black mask
mask_rb = g.complex(grid_eo) 
mask_rb[:] = 1 
 
# full mask
mask = g.complex(grid) 
 
# simple plaquette action 
def staple(U, mu): 
    st = g.lattice(U[0]) 
    st[:] = 0 
    Nd = len(U) 
    for nu in range(Nd): 
        if mu != nu: 
            st += g.qcd.gauge.staple(U, mu, nu) / U[0].otype.Nc 
    return st 
 
# g.default.push_verbose("local_metropolis", True) # activaties display of acceptance rate 
markov = g.algorithms.markov.local_metropolis(rng, step_size=0.5) 
beta = 5.5 
 
plaquette_local_metropolis = []
for it in range(1000): 
    plaq = g.qcd.gauge.plaquette(U) 
    plaquette_local_metropolis.append(plaq) 
    if it % 50 == 0: 
        g.message(f"Local metropolis {it} has P = {plaq}") 
    for cb in [g.even, g.odd]: 
        mask[:] = 0 
        mask_rb.checkerboard(cb) 
        g.set_checkerboard(mask, mask_rb) 
 
        for mu in range(Nd): 
            st = g.eval(beta * staple(U, mu)) 
            markov(U[mu], st, mask) 

In [7]: g.default.push_verbose("su2_heat_bath", False) 
markov = g.algorithms.markov.su2_heat_bath(rng) 
U = g.qcd.gauge.unit(grid) 
plaquette_heatbath = [] 
for it in range(500): 
    plaq = g.qcd.gauge.plaquette(U) 
    plaquette_heatbath.append(plaq) 
    if it % 50 == 0: 
        g.message(f"SU(2)-subgroup heatbath {it} has P = {plaq}") 
    for cb in [g.even, g.odd]: 
        mask[:] = 0 
        mask_rb.checkerboard(cb) 
        g.set_checkerboard(mask, mask_rb) 
 
        for mu in range(Nd): 
            st = g.eval(beta * staple(U, mu)) 
            markov(U[mu], st, mask) 



GPT :     511.601426 s : Langevin_bf(eps=0.02) 0 has P = 0.913337786992391 
GPT :     514.370879 s : Langevin_bf(eps=0.02) 50 has P = 0.566335055563185 
GPT :     517.300690 s : Langevin_bf(eps=0.02) 100 has P = 0.5438746478822496 
GPT :     520.499172 s : Langevin_bf(eps=0.02) 150 has P = 0.5410566197501289 
GPT :     523.587544 s : Langevin_bf(eps=0.02) 200 has P = 0.533349891503652 
GPT :     527.598893 s : Langevin_bf(eps=0.02) 250 has P = 0.5256600843535529 
GPT :     532.062941 s : Langevin_bf(eps=0.02) 300 has P = 0.5235162112447951 
GPT :     535.788070 s : Langevin_bf(eps=0.02) 350 has P = 0.5187506278355917 
GPT :     541.385091 s : Langevin_bf(eps=0.02) 400 has P = 0.5197881857554117 
GPT :     547.443904 s : Langevin_bf(eps=0.02) 450 has P = 0.5210425655047098 
GPT :     552.004728 s : Langevin_bf(eps=0.02) 500 has P = 0.5160737898614671 
GPT :     555.507547 s : Langevin_bf(eps=0.02) 550 has P = 0.5104968547821045 
GPT :     559.059208 s : Langevin_bf(eps=0.02) 600 has P = 0.5076582895384895 
GPT :     562.807271 s : Langevin_bf(eps=0.02) 650 has P = 0.5071470008956062 
GPT :     566.821152 s : Langevin_bf(eps=0.02) 700 has P = 0.5031868351830376 
GPT :     570.149039 s : Langevin_bf(eps=0.02) 750 has P = 0.5077733132574294 
GPT :     573.409066 s : Langevin_bf(eps=0.02) 800 has P = 0.498729235596127 
GPT :     576.775995 s : Langevin_bf(eps=0.02) 850 has P = 0.5024757583936056 
GPT :     579.928553 s : Langevin_bf(eps=0.02) 900 has P = 0.5047208666801453 
GPT :     583.567940 s : Langevin_bf(eps=0.02) 950 has P = 0.5034748845630223 

Homework: Measure the average 1x1 and 2x1 Wilson loops for . Write your own implementation based on the g.cshift function and compare to

g.qcd.gauge.rectangle. See this test for an explanation of the latter function.

Haar integration for SU(2)

Before explaining in detail how the heat bath algorithm works, we first discuss the Haar integration for SU(2) in some detail.

Haar measure for explicit parametrization

If we parametrize a general 2x2 matrix

its inverse (if it exists) can be written as

such that for  we find

and therefore

A general SU(2) matrix can thus be written as

with

In [9]: U = g.qcd.gauge.unit(grid) 
w = g.qcd.gauge.action.wilson(beta) 
l = g.algorithms.markov.langevin_bf(rng, epsilon=0.02) 
plaquette_langevin = [] 
for it in range(1000): 
    l(U, w) 
    plaq = g.qcd.gauge.plaquette(U) 
    plaquette_langevin.append(plaq) 
    if it % 50 == 0: 
        g.message(f"Langevin_bf(eps=0.02) {it} has P = {plaq}") 

In [16]: from matplotlib import pyplot as plt 
fig, ax = plt.subplots() 
 
plt.ylim([0.4,0.7]) 
ax.plot(range(len(plaquette_local_metropolis)), plaquette_local_metropolis, marker='+', ls='', c='blue', label="Local metropolis") 
ax.plot(range(len(plaquette_heatbath)), plaquette_heatbath, marker='+', ls='', c='red', label="SU(2) Heatbath") 
ax.plot(range(len(plaquette_langevin)), plaquette_langevin, marker='+', ls='', c='green', label="Langevin (BF scheme, eps=0.02)") 
 
plt.legend() 
plt.show() 

β = 5.5

U = (
a b

c d
) (45)

U−1 = (
d −b

−c a
) (46)

1

det(U)

U ∈ SU(2)

U−1 = (
d −b

−c a
) = U † = (

a∗ c∗

b∗ d∗ ) (47)

d = a∗ , c = −b∗ . (48)

U = (
a b

−b∗ a∗ ) (49)

https://github.com/lehner/gpt/blob/master/tests/qcd/gauge.py


can therefore also be expressed as

with ,  and

and Pauli matrices

such that

This parametrization allows for a straightforward definition of a Haar integration measure. It is straightforward to show that for

we have

and therefore

is a Haar integration measure. For concreteness, we can transform this to spherical coordinates with

and write

Therefore we obtain the standard normalization

for

or

One can show that the Haar integration satisfies

It is straightforward to show this using the explicit parametrization that we just obtained, however, we can also check this against our simple stochastic sampling

implementation discussed in the previous subsection.

Stochastic integration using Haar measure

|a|2 + |b|2 = 1 . (50)

U = Σ ⋅ x (51)

a = x0 + ix3 b = x2 + ix1

Σ0 = 1 ,

Σi = iσi

(52)

(53)

σ1 = (
0 1

1 0
) , σ2 = (

0 −i

i 0
) , σ3 = (

1 0

0 −1
) . (54)

det(U) = |x|2 = 1 . (55)

V = Σ ⋅ y ,

UV = Σ ⋅ z ,

(56)

(57)

det( ) = det(V )2 = 1 (58)
∂zμ

∂xν

d[U ] = dx0dx1dx2dx3δ(|x| − 1) (59)

x0 = cos(φ0) ,

x1 = sin(φ0) cos(φ1) ,

x2 = sin(φ0) sin(φ1) cos(φ2) ,

x3 = sin(φ0) sin(φ1) sin(φ2) ,

(60)

(61)

(62)

(63)

∫ d[U ]f(U) = ∫
π

0
dφ0 ∫

π

0
dφ1 ∫

2π

0
dφ2 sin(φ0)2 sin(φ1)f(U) . (64)

∫ d[U ] = 1 (65)

∫ d[U ]f(U) = ∫
π

0

dφ0 ∫
π

0

dφ1 ∫
2π

0

dφ2 sin(φ0)2 sin(φ1)f(U) (66)
1

2π2

d[U ] = dx0dx1dx2dx3δ(|x| − 1) . (67)
1

2π2

∫
SU(2)

d[U ]UabU
†
cd

= δadδbc . (68)
1

2

In [3]: import gpt as g 
import numpy as np 
import scipy.linalg 
 
pauli = [np.matrix([[0,1],[1,0]]), np.matrix([[0,-1j],[1j,0]]), np.matrix([[1,0],[0,-1]])] 
U = [np.matrix(scipy.linalg.expm(2j*sum([np.random.normal()*p for p in pauli]))) for i in range(40)] 
for u in U: 
    assert np.linalg.norm(u * u.H - np.identity(2)) < 1e-14 
     
def haar_integrate(f, U, N, NskipToMakeIndependent): 
    u0 = U[np.random.randint(0,len(U))] 
    val = 0.0 
    val2 = 0.0 
    n = 0.0 
    for i in range(N): 
        v = f(u0).real 
        val += v 
        val2 += v**2 



\int dU U_00 U^\dagger_00 = (0.4963044822891241, 0.002874731877928811) 
\int dU U_00 U^\dagger_01 = (0.007828394800862332, 0.0028740171419067277) 
\int dU U_00 U^\dagger_10 = (-0.001844956947146266, 0.0028647142161262475) 
\int dU U_00 U^\dagger_11 = (0.0026751189098447098, 0.0040610681617341) 
\int dU U_01 U^\dagger_00 = (0.0004471683358340047, 0.0029073253833936242) 
\int dU U_01 U^\dagger_01 = (0.0034909122072718794, 0.004106166013781911) 
\int dU U_01 U^\dagger_10 = (0.4978861456473543, 0.0028930697294849385) 
\int dU U_01 U^\dagger_11 = (0.0026898438724813297, 0.0028914647379603485) 
\int dU U_10 U^\dagger_00 = (0.000477677892407116, 0.002863568675674644) 
\int dU U_10 U^\dagger_01 = (0.49465169552991295, 0.0029002791419250867) 
\int dU U_10 U^\dagger_10 = (0.0025135099129404356, 0.00402159882946753) 
\int dU U_10 U^\dagger_11 = (0.008233227681888599, 0.0028798633019951943) 
\int dU U_11 U^\dagger_00 = (0.004582479741889893, 0.004133579983541516) 
\int dU U_11 U^\dagger_01 = (0.0020417697565920964, 0.0028761547175931634) 
\int dU U_11 U^\dagger_10 = (-0.004925965656714123, 0.0028903740046162135) 
\int dU U_11 U^\dagger_11 = (0.4987628291665141, 0.002880979866428887) 

Haar measure using invariant length elements

Before moving on to the heat bath, we observe that there is also another straightforward way to determine the Haar integration measure by studying invariant length

elements

that by construction is invariant under  and . For the angular parametrization of SU(2), this yields

with

Therefore there is a different basis of 1-forms  for which the length element is simply

corresponding to the integration measure

and

and thus

which agrees with our previous result up to the constant factor that only changes the normalization of the integral. Since we could re-define the invariant length-element 

by a constant prefactor, this procedure gives us the properly normalized Haar measure only after normalizing the integral to .

Heat bath algorithm

Let us now consider the heat bath algorithm to perform the integral over a single gauge link  SU(2). In order to extend this to integrals over SU(3) or more generally SU(

), we can then consider the SU(2) subgroups of SU( ) and re-write the integral over SU( ) as a sufficient number of integrals over SU(2) subgroups. This is what the

heat bath studied numerically in the last lecture does.

With  SU(2), we need to integrate over

with staple matrix , which itself is a sum over SU(2) matrices. As we have seen above, each SU(2) matrix can be written of the form  such that sums of SU(2) matrices

always have to be proportional to a SU(2) matrix again. Therefore, we can make the ansatz

with

        n += 1 
        for j in range(NskipToMakeIndependent): 
            u0 = U[np.random.randint(0,len(U))] * u0 
    # just use biased estimator for error 
    return (val/n, (val2/n - (val/n)**2)**0.5 / n**0.5 ) 
 
for a in range(2): 
    for b in range(2): 
        for c in range(2): 
            for d in range(2): 
                print(f"\int dU U_{a}{b} U^\dagger_{c}{d} =", 
                      haar_integrate(lambda u: u[a,b]*u.H[c,d], U, 10000, 2)) 

ds2 = Tr [(dUU †)(dUU †)†] (69)

U → VU U → UV

ds2 = 2dφ2
0 + 2dφ2

1 sin(φ0)2 + 2dφ2
2 sin(φ0)2 sin(φ1)2 = ( dφ0 dφ1 dφ2 )G

⎛
⎜
⎝

dφ0

dφ1

dφ2

⎞
⎟
⎠

(70)

G =
⎛
⎜
⎝

2

2 sin(φ0)2

2 sin(φ0)2 sin(φ1)2

⎞
⎟
⎠

. (71)

dβμ

ds2 = dβ2
0 + dβ2

1 + dβ2
2 (72)

d[U ] = dβ0dβ1dβ2 (73)

⎛
⎜
⎝

dβ0

dβ1

dβ2

⎞
⎟
⎠

= G1/2
⎛
⎜
⎝

dφ0

dφ1

dφ2

⎞
⎟
⎠

(74)

d[U ] = dφ0dφ1dφ2√det(G) = √8dφ0dφ1dφ2 sin(φ0)2 sin(φ1) (75)

ds2

∫ d[U ] = 1

U ∈

Nc Nc Nc

U ∈

dP(U) = d[U ] exp( Re Tr UA) (76)
β

2

A Σ ⋅ x

A = aV (77)



It can also be shown that . If , then  and  such that we can simply integrate over the Haar measure. If , we proceed as follows.

We define a matrix  in SU(2) and use the Haar invariance  to find

The strategy is now to generate matrices  following this distribution and to use  to recover the desired gauge link . We write

with

and

such that

We note that only  remains in the exponential and therefore it is useful to separate integral by writing

with . We now write  in spherical coordinates  such that

We now need to sample  from the distribution

which can be performed by first defining

such that we need to sample  from

this in turn can be generated by sampling four random numbers  uniformly distribute in  and defining

which we accept only if .

The value  is then fixed by . The remaining random variables  and  can then be sampled from a uniform distribution  and .

The implementation of this algorithm in GPT can be studied here.

The Langevin algorithm

The Langevin algorithm demonstrated above generates a Markov chain by integrating a stochastic differential equation. We will illustrate the algorithm for the simple case of

a continuous random variable  following the distribution

however, the generalization of the algorithm to integrals over gauge groups is straightforward albeit tedious.

We define a discrete stochastic process by

with

with  satisfying

a = √det(A) . (78)

det(A) ≥ 0 det(A) = 0 a = 0 A = 0 a ≠ 0

X = UV d[U ] = d[X]

dP(U) = d[X] exp( Re Tr X) . (79)
βa

2

X U = XV † = XA†/a U

X = Σ ⋅ x (80)

d[X] = dx0dx1dx2dx3δ(|x| − 1) (81)
1

2π2

Tr X = 2x0 (82)

dP(U) = dx0dx1dx2dx3δ(|x| − 1) exp(βax0) . (83)
1

2π2

x0

dP(U) = dx0dx1dx2dx3δ(√x2
0 + |→x|2 − 1) exp(βax0)

= dx0dx1dx2dx3 δ(|→x| −√1 − x2
0) exp(βax0) .

(84)

(85)

1

2π2

1

2π2

Θ(1 − x2
0)

|→x|

→x
T = (x1,x2,x3) →x r,φ, θ

dP(U) = dx0dθdφdrr
2 sin(θ) δ(r −√1 − x2

0) exp(βax0)

= dx0dθdφdr sin(θ)Θ(1 − x2
0)√1 − x2

0δ(r −√1 − x2
0) exp(βax0) .

(86)

(87)

1

2π2

Θ(1 − x2
0)

r
1

2π2

x0

dp(x0) = dx0Θ(1 − x2
0)√1 − x2

0 exp(βax0) (88)

x0 = 1 − 2λ2 (89)

λ ∈ [0, 1]

dp(λ) ∝ dλλ2√1 − λ2 exp(−2βaλ2) (90)

r1, r2, r3, r4 ]0, 1]

λ2 = − (ln(r1) + cos(2πr2)2 ln(r3)) (91)
1

2aβ

r2
4 ≤ 1 − λ2

r r = √1 − x2
0 z = cos(θ) φ z ∈ [−1, 1] φ ∈ [0, 2π[

x

p(x) = e−S(x) , (92)

xn+1 = xn + Δn(xn) (93)

Δn(x) = −εS ′(x) + √εηn (94)

η

⟨η2N+1
n ⟩ = 0 , ⟨ηnηm⟩ = 2δnm (95)

https://github.com/lehner/gpt/blob/master/lib/gpt/algorithms/markov/su2_heat_bath.py


for all integer . The details of distribution of  beyond the first two moments do not matter at this point.

Fokker-Planck equation

For now, let us assume there is a stationary probability distibution of  for sufficiently large . Then the probability  to find the value  at step  follows from the

Fokker-Planck equation

with

We can define the operation of a transition matrix  on a function  as

Therefore

and more generally

with  and .

Stationary probability distribution

We now need to study the right-eigensystem of . A stationary probability distribution  requires the presence of an eigenvalue 1 and corresponds to its eigenvector. All

other eigenvalues need to be smaller than one such that the stationary distribution is approached in the limit .

The stationary distribution exists if  or equivalently

or

has a solution for a constant . This is solved by

for all . If we now insist that  and its derivative vanish for sufficiently large , only  is allowed. On compact spaces one similarly imposes the compactification on 

and its derivatives to determine additional integration constants. The overall constant is determined by probability conservation.

Therefore we have shown that if a stationary probability distribution exists, it follows the desired

We next show that the system indeed converges to a stationary probability distribution up to the  corrections which we have previously neglected. One can construct

higher-order stochastic differential equations, which eliminate additional powers of .

Convergence

A similarity transform of the operator

by

with

N η

xn n P(n,x) x n

P(n + 1,xn+1) = ∫ dxnP(n,xn ∩ n + 1,xn+1)

= ∫ dxnP(n + 1,xn+1|n,xn)P(n,xn)

(96)

(97)

P(n + 1,xn+1|n,xn) = ⟨δ (xn+1 − xn − Δn(xn))⟩

= δ(xn+1 − xn)

+ ε [S ′(xn)δ ′(xn+1 − xn) + δ ′′(xn+1 − xn)]

+ O(ε2) .

(98)

(99)

T f

(T ∘ f)(x) ≡ ∫ dyP(n + 1,x|n, y)f(y)

= {1 + ε∂x [S ′(x) + ∂x] + O(ε2)}f(x) .

(100)

(101)

P(n + 1,xn+1) = (T ∘ P(n))(xn+1) (102)

P(n + N ,xn+N) = (T N ∘ P(n))(xn+N) (103)

T N ∘ f = T N−1 ∘ (T ∘ f) T 1 ∘ f = f

T
¯̄¯̄
P

n → ∞

T
¯̄¯̄
P =

¯̄¯̄
P

0 = ∂x [
¯̄¯̄
P S ′ +

¯̄¯̄
P

′
]+ O(ε) (104)

¯̄¯̄
P

′
(x) = −

¯̄¯̄
P (x)S ′(x) + c1 + O(ε) (105)

c1

¯̄¯̄
P (x) = c0e

−S(x) + c1e
−S(x) ∫

x

1
dy eS(y) (106)

c0
¯̄¯̄
P x c1 = 0

¯̄¯̄
P

¯̄¯̄
P (x) = e−S(x) . (107)

O(ε)

ε

ΔT = ∂x [S ′(x) + ∂x] (108)

~
ΔT = eS(x)/2ΔTe−S(x)/2

= eS(x)/2∂xe
−S(x)/2 [ S ′(x) + ∂x]

= − [ S ′(x) − ∂x] [ S ′(x) + ∂x]

= −Q†Q

(109)

(110)

(111)

(112)

1

2

1

2

1

2

Q = S ′(x) + ∂x (113)
1

2



shows that the self-adjoint operator  is real and semi-negative definite. Therefore, the stochastic process is driven towards the stationary solution .

The implementation of this algorithm in GPT can be studied here.

Homework: Calculate  for  following a normal distribution with 0 mean and variance 1 by implementing a Langevin process.

~
ΔT

¯̄¯̄
P

⟨x2⟩ x

In [ ]:   

https://github.com/lehner/gpt/blob/master/lib/gpt/algorithms/markov/langevin.py

