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Chapter 5: symmetries of fundamental field theories
In this chapter we explore how symmetries constrain the construction of an action for a theory of interest. We start by discussing the spacetime symmetries.

The Lorentz group

Minkowski space

Let us consider a photon moving with the speed of light . It shall propagate for a distance  in an infinitesimal time , i.e.,

If we consider a transformation of space and time coordinates  to  the statement that the speed of light  is the same in the new coordinate system is equivalent

to the statement that also

This property can now be expressed in a convenient mathematical representation by introducing vectors in a four-dimensional pseudo-Euclidean vector space with metric

This vector space is called Minkowski space. The infinitesimal time  and the corresponding vector  are combined to a four vector  and the above

equation can be written as

In this framework the transformations of coordinates that leave the speed of light invariant are just the isometries that leave the inner products of infinitesimal difference

vectors invariant.

For convenience we adopt natural units in the remainder of this chapter and set  (as we previously also had set ).

Poincaré group

The group of isometries of the Minkowski space is the Poincaré group consisting of all transformations of the affine form

with

where  is an infinitesimal difference vector in Minkowski spacetime,  is a real four-by-four matrix and  is a four vector describing translations. The above equation

implies that

or

This defining condition can be written in matrix form as

and thus

The subgroup defined by , i.e., the subgroup of all linear transformations, is the Lorentz group and its elements are called Lorentz transformations.

Restricted Lorentz group

Let us first consider Lorentz transformations that are continuously connected to the identity transformation . Lorentz transformations with this property live in a

subgroup called the restricted Lorentz group. Since a continuous transformation cannot change the sign of , restricted Lorentz transformations have .

A well-known subgroup of the restricted Lorentz group is the group of rotations with

where , . Now by first rotating the spatial components appropriately we can restrict the remaining discussion to the two-dimensional subspace of

vectors . The relevant Lorentz transformations are then of the form

c d x dt
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Thus for infinitesimal transformations  the defining condition of  yields , and therefore

or  and . A finite transformation is thus given by

with arbitrary . Let us try to understand what the parameter  means. Consider an infinitesimal vector  that transforms to

Now we define a transformed velocity

with . If we have  in the untransformed system we have  in the transformed system. Therefore transformations of this type describe a change of

coordinates to a frame of reference that moves with a constant velocity of  relative to the original frame of reference. These are the boosts in the special theory of

relativity with rapidity .

Let us define . Since , we can show that

Therefore we can express the transformation also by the matrix

Discrete Lorentz transformations

Consider the vector  which is invariant under rotations and transforms to

under a boost with rapidity . Since , we conclude that the sign of  is invariant under boosts and thus under the complete restricted Lorentz group.

Therefore, in order to obtain all possible Lorentz transformations, the discrete Lorentz transformation

needs to be included in addition to restricted Lorentz transformations. This is the time reversal operator. Furthermore the space inversion or parity operator

is also not a part of the restricted Lorentz group and needs to be included separately.

The quotient group of the Lorentz group and the restricted Lorentz group is the discrete group with elements

In other words, the Lorentz group can be partitioned in four disconnected parts defined by

We call transformations with proper Lorentz transformations and transformations with orthochronous Lorentz transformations.

Generators of the restricted Lorentz group

Recall that infinitesimal restricted Lorentz transformations  satisfy
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We write  in block form

where  only acts on the temporal component,  only acts on the spatial components, and  and  mix spatial and temporal components. In this way the above

equation can be expressed as

where  is the three-dimensional identity matrix. Therefore the defining conditions for generators of the restricted Lorentz group are

This implies the following generators of the restricted Lorentz group.

The boosts are generated by

with  and . They satisfy

with  defined below.

The rotations are generated by

with  and . They satisfy

Hence boosts do not form a subgroup of the restricted Lorentz group, but rotations do.

Note that

The Lie algebra of the restricted Lorentz group is therefore given by

A finite transformation is given by

where  contains the angles of a rotation and  contains the rapidities of a boost.

A convenient representation of the generators is given by

with  and . We find

Therefore the group algebra factorizes in a direct product of two  algebras (this is of course not true in terms of groups). We can express  and  in terms of  as

Therefore  can be written as
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with .

Translations in space and time

The Casimir operators of  and  can now be used to classify the representations of the restricted Lorentz group. These Casimir operators are, however, no invariants of

representations of the complete Poincaré group since they do not commute with all translations of space and time. In this section we show that the spin of a massive particle

is, nevertheless, a well-defined quantity.

We extend the Minkowski space by a fifth dimension so that we can express a general transformation of the Poincaré group conveniently as

with Lorentz transformation , a four-dimensional translation vector , , and

in block notation. The generators of translations in space and time  are therefore given by the matrices

in block notation. A finite translation is given by

We can now determine the algebra of the complete Poincaré group,

The Poincaré algebra has two Casimir operators. The first one is given by

Note that for the matrix  given above this always vanishes, however, we can also consider different representations satisfying the same algebra with different . We

check explicitly that

for arbitrary  and . Let us pause at this point and ask what this means for a theory of a free particle with energy  and momentum . In quantum mechanics the generator

of the translations in space, , measures the th component of the momentum, and the generator of the translations in time, , measures the energy. Therefore if we let 

 act on a free particle state  with energy  and momentum  we find

where  is the mass of the particle. We can conclude that the mass of a particle is invariant under the Poincaré group and can be considered a well-defined property of a

particle.

The second Casimir operator  can be conveniently defined in terms of the Pauli-Lubanski vector  with

It is given by

In order to prove that  is indeed a Casimir operator we first show that  commutes with translations, i.e.,

Next we discuss the commutators of  with boosts and calculate

and

xi = ϕi + isi
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[Pμ,W0] = [Pμ, JjPj] = [Pμ, Jj]Pj = (1 − δμ0)εμjkPkPj = 0 ,
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[P0,Wi] = −εilk[P0,Kl]Pk = εilkPlPk = 0 .

(54)

(55)

(56)

Wμ

[Kj,W0] = [Kj, JiPi] = [Kj, Ji]Pi + Ji[Kj,Pi]

= εjikKkPi + JjP0 = Wj (57)
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We finally calculate the commutators of  with rotations and find

We observe that  has the same commutation relations with the other parts of the algebra as , and therefore  is also a Casimir operator.

For a massive particle we can calculate the action of  in its rest frame, i.e.,

Therefore  must also be an eigenstate of  and the corresponding eigenvalues  correspond to the spin or intrinsic rotation of the point-like particle. In other

words, massive particles can be classified according to their spin as defined by their behavior under the rotation group.

For a massless particle there is no rest frame and thus the situation is more complicated. It turns out that for massless particles the projection of the spin to the momentum,

is a well-defined property and assumes the role of the spin of massive particles. This property is called helicity.

For a detailed discussion of the representation theory of the complete Poincaré group, see, e.g., books of Weinberg or Ryder.

In the following discussion, we construct a Lagrangian of massive spin  and spin  particles that are invariant under orthochronous Lorentz transformations.

Spinor representations

Note that the sub-sectors  and  of the restricted Lorentz group both transform identically under rotations with

Since  are the angles of a rotation in space and the  span the algebra of  the different representations of  correspond to different spin states. Possible

representations of  are

The

representation is the singlet representation, i.e., fields  transforming in this representation do not change under a restricted Lorentz transformation. Such fields therefore

correspond to spin  particles. In the next lecture, we complete the construction of a minimal Lagrangian for a spin  particle and extend the discussion to spin  particles

as well.

The Lagrangian of spin 0 fields

We first consider the  representation of  for which fields  transform as

under the restricted Lorentz group. Additionally, the derivatives transform as

such that

We also remind the reader that since , the integral measure  is invariant under the restricted Lorentz group.

The action of chapter 4

is therefore invariant under the restricted Lorentz group. The factor of  and for that matter any factor of the kinetic term (derivative term) can be absorbed in a re-

definition of the fields, over which we will integrate. The only relevant quantity here is the relative coefficient of the  mass term and the kinetic term.

Linear terms in the field are redundant

Consider shifting the fields by a constant, i.e.,  then

so this transformation generates a linear term in , a constant term, and a term proportional to
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αΛμ

β = ∂α∂βgαβ = ∂μ∂μ . (68)
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0
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Such a term, however, vanishes as long as we assume that  vanishes at sufficiently long distances or we consider a path integral in which the fields live on a torus.

Therefore linear terms in  in the action can be absorbed by a constant shift in fields in the path integral and are therefore redundant.

Action dimensionality and higher-dimensional contributions

Finally, we note that the action must have mass dimension 0. This can be quickly verified for the 1d free particle case

Because of this, any additional terms in the action with higher mass dimensions must also be accompanied with additional dimensionful constant prefactors. We will

investigate the role of such terms when we discuss the continuum limit of field theories.

Klein-Gordon equation

The equations of motion

yield the Klein-Gordon equations of relativistic scalar particles

The Lagrangian of spin  fields

We now try to construct a theory of spin  particles such as electrons, neutrons or protons. To this end we first consider fields that transform in the 

representations of . We set

with Pauli matrices  and consider two-dimensional spinors  which transform as

under the restricted Lorentz group.

Let us try to construct a Lagrangian with fields . Each term in the Lagrangian has to satisfy the following properties: (i) Due to relativity each term has to be a Lorentz

scalar. (ii) The Lagrangian has to be real. (iii) Each term has to have mass dimension of  (the action has to be dimensionless).

The mass term

One may be tempted to write down a simple mass term of the form

Unfortunately, such a term does not satisfy (i) and is therefore not allowed in the Lagrangian. We discuss how a proper mass term can be constructed if we consider the

representation  of  below. This is the mass term relevant for QCD. It is, however, instructive to consider another way to construct an invariant mass

term that involves only  and , the Majorana mass term . First note that  with anticommutator , and therefore

where no sum over  is implied. Thus , and for infinitesimal transformations with coordinates  we find

In order to make this term real we need to also include its complex conjugate. Since  is purely imaginary we write

Note that for a two-component field  we find . Therefore if we consider  and  to be ordinary numbers, the Majorana mass term

would vanish identically. However, in a quantized theory we will later show that  and  anticommute since they correspond to fermions, and the Majorana mass term is

nonzero.

The kinetic term

In this subsection we consider terms of the form

where  contains objects that transform non-trivially under the restricted Lorentz group. We use the first non-trivial ansatz including Lorentz vectors

where  is a contravariant vector,  is a matrix in the two-dimensional spin space and the sum over  is implied. Note that  is not a Lorentz vector. Therefore under

Lorentz transformations we find

∫ d4x∂μ∂μϕ(x) . (71)

ϕ

ϕ

[S] = [∫ dtp2/2/m] = [t] + 2[p] − [m] = −1 + 2 − 1 = 0 . (72)

− ∂μ = −(m2 + ∂μ∂μ)ϕ = 0 . (73)
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∂ϕ
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S+
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i = 0 (75)
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σi ψ+
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σT
i σ2σi = (−1)δi2σiσ2σi = (−1)δi2(−σ2 + 2δi2σi) = −σ2 , (78)

i σT
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T
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σ2

LMajorana mass = im((ψ+)Tσ2ψ+ − (ψ+)†σ2(ψ+)∗) . (80)
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a b

(ψ+)†Rψ+ , (81)
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In order to construct an invariant term we need

Let us first consider a infinitesimal boost in  direction, i.e., ,  with , and

Now Eq.  gives

This has to hold for all  so that we need

Now this means that

Next, we consider a rotation about the  axis, i.e., ,  with , and

Now Eq.  gives

This has to hold for all  so that we need

and thus

For  this means that  for arbitrary . This is only satisfied for

For  with  this means that

We know that this is satisfied by the Pauli matrices

We determine  from Eq.  and  and find . It is easy to check that if we would have considered the sector  instead of  the solution would be 

. We define and  so that

is invariant under the restricted Lorentz group. While  does not transform as a Lorentz vector, we can conclude that

does transform as a Lorentz vector. Note that the relevant matrices for the  sector are  and .

By substituting  we can thus construct an invariant kinetic term that only involves  fields.

Chirality

Let us consider all orthochronous Lorentz transformations, i.e, let us include the parity operator in addition to the restricted Lorentz transformations. The action of parity is

defined by

due to , , and . Equation  has to hold for all representations, and therefore the action  of Lorentz transformations  on  yields

with . We observe that the field  transforms according to the  representation of . Therefore if we want to construct a theory that is also

invariant under parity, we need to include a spin  representation of  as well. The twofold structure that emerges from the  representation of  is

called chirality.

We consider a spinor

where  transform according to the  representation of . The action of parity shall be given by
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r ϕ = 0 si = δirs s ≪ 1

v′μ = vμ + sK
μ
r νv

ν . (85)

(84)

Mμv
μ !

= [1 + sσr/2]Mμv
′μ[1 + sσr/2]
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ν
r μ + {σr,Mμ}/2 = M0δrμ + δμ0Mr + {σr,Mμ}/2 . (87)
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μ
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(84)

Mμv
μ !

= Mμv
′μ = [1 + iϕσr/2]Mμ[vμ + ϕJ

μ
r νv

ν][1 − iϕσr/2]

= Mμv
μ + ϕ(MνJ

ν
r μv

μ + i[σr/2,Mμ]vμ) . (90)

vμ

0 = MνJ
ν
r μ + i[σr/2,Mμ] = −εμri(1 − δμ0)Mi + i[σr/2,Mμ] , (91)

[σr,Mμ] = i2εrμi(1 − δμ0)Mi . (92)

μ = 0 [σr,M0] = 0 r

M0 = c1 . (93)

μ = j j = 1, 2, 3

[σr,Mj] = i2εrjiMi . (94)

Mj = σj . (95)

c (88) {σr,σi} = 21δri c = −1 − +

c = 1 (Mμ) = (σ+
μ ) = (−1,σ1,σ2,σ3) (σ

μ

+) = (−1, −σ1, −σ2, −σ3)

(ψ+)†σ+
μ v

μψ+ = (ψ+)†σ+
ν g

μνvμψ
+ = (ψ+)†σ

μ

+vμψ
+ (96)

σ
μ

+

(ψ+)†σ
μ

+ψ
+ (97)

− (σ−
μ ) = (1,σ1,σ2,σ3) (σ

μ

−) = (1, −σ1, −σ2, −σ3)

vμ = ∂μ +

Λ(s,ϕ)P = P 2Λ(s,ϕ)P = PΛ(−s,ϕ) (98)

P 2 = 1 PKiP = −Ki PJiP = Ji (98) D(Λ) Λ ψ+

(D(P)ψ′
+) = D(P)D(Λ(s,ϕ))ψ+ = D(Λ(−s,ϕ))(D(P)ψ+) (99)

ψ′
+ = D(Λ(s,ϕ))ψ+ D(P)ψ+ 1/2 S−

1/2 S− (1/2) ⊕ (1/2) S+ ⊕ S−

ψ = (
ψ−

ψ+
) , (100)

ψ± 1/2 S±



in accordance with Eq. . We can write down a mass term

with

that is invariant under orthochronous Lorentz transformations, see Eq. , repeated here:

We already know that

and

are both invariant under the restricted Lorentz group. Under parity we have  and  for  so that

Therefore we can construct a real and Lorentz invariant kinetic term

with

The factor  is needed since  is anti-Hermitian, i.e.,

for arbitrary fields  and  with vanishing spacetime boundary contributions.

We write out the gamma matrices as

with  and note that

The total Lagrangian of a noninteracting, massive spin  particle of mass  is thus given by

It is apparent that this Lagrangian is also invariant under translations of space and time. The corresponding equation of motion is the Dirac equation of a free spin  field

with Dirac operator .

Note that we do not have to consider  and  as independent fields. If we identify

it follows from , see Eq. , that under restricted Lorentz transformations

in accordance with Eq. . The mass terms then become Majorana mass terms, and it can be shown that the fields  become their own antiparticles. This, however,

implies that they are not allowed to carry a nonzero charge and therefore excludes this scenario for the quarks of QCD.

Gamma matrices and Lorentz structure

Before we continue with the discussion of gauge symmetries a few notes about the algebra of gamma matrices are in order. The gamma matrices satisfy the Clifford-

algebra relation

The parity operator can be written in terms of  as

D(P)ψ = (
ψ+

ψ−

) , (101)

(99)

Lmass = mψ̄ψ (102)

ψ̄ = (ψ†
+ ψ

†
−
) (103)

(41)

Λ = exp[−ixiS
+
i ] exp[−ix∗

iS
−
i ] . (104)

(ψ+)†σ
μ

+∂μψ
+ (105)

(ψ−)†σ
μ

−∂μψ
− (106)

ψ+ ↔ ψ− ∂i → −∂i i = 1, 2, 3

σ
μ

+∂μ ↔ −σ
μ

−∂μ . (107)

Lkinetic = i[(ψ−)†σ
μ

−∂μψ
− − (ψ+)†σ

μ

+∂μψ
+]

= ψ̄iγμ∂μψ (108)

γμ = (
0 −σ

μ

+

σ
μ

− 0
) . (109)

i ∂μ

⟨ψ′|∂x|ψ⟩ = ∫ dx ψ′∗(x)∂xψ(x) = − ∫ dx(∂xψ
′∗(x))ψ(x)

= −⟨ψ|∂μ|ψ′⟩∗ (110)

ψ ψ′

γ0 = (
0 1

1 0
) , γ i = (

0 σi

−σi 0
) (111)

i = 1, 2, 3

ψ̄ = ψ†γ0 . (112)

1/2 m

L = ψ̄(iγμ∂μ − m)ψ . (113)

1/2

(iγμ∂μ − m)ψ = (iD − m)ψ = 0 (114)

D = γμ∂μ

ψ− ψ+

ψ− = iσ2ψ∗
+ (115)

σ2σ∗
i σ2 = −σi (78)

ψ′
− = iσ2[exp[(si − iϕi)σi/2]ψ+]∗ = exp[(si + iϕi)σ

2σ∗
i
σ2/2]iσ2ψ∗

+

= exp[(−si − iϕi)σi/2]ψ− , (116)

(99) ψ+

{γμ, γν} = γμγν + γνγμ = 2gμν . (117)

γ0

D(P)ψ = γ0ψ . (118)



Furthermore, it is convenient to define

which allows to project on the  and  sectors by

where  is the identity matrix in the respective space. The matrix  anticommutes with all other gamma matrices,

with .

Note that the gamma matrices can be used to construct field bilinears that transform in a well-defined way under the orthochronous Lorentz group. Under restricted Lorentz

transformations  we find

see Eq. . The action of parity  on , ,  and  is given by

Therefore  transforms as a vector,  transforms as an axial vector,  transforms as a scalar and  transforms as a pseudoscalar.

Gauge symmetry

In the last section we have constructed a relativistically invariant Lagrangian of a massive spin  field. Up to now the particles represented by the field do not interact with

each other. In the following we add a local internal symmetry (or gauge symmetry) to the Lagrangian and show that such a modification introduces an interaction between

the spin  particles that is mediated by massless spin  particles.

Internal symmetries

Consider the Lagrangian of Eq. , i.e.,

with fields  in spinor space. The operation of the matrices  on  is given by the matrix-vector multiplication in this space. The most trivial way to add an additional

symmetry  is to choose a new symmetry group  that is a direct product of the Poincaré symmetry group  and ,

In such a modification we call  an internal symmetry of the Lagrangian. The fields  must transform in representations of the bigger symmetry group  and therefore live

in a product space of the spinor space and the vector space of the internal symmetry.

Local symmetries

Let us choose  to consist of spacetime-dependent transformations of  with infinitesimal transformations  defined by

where the action of  on  is the matrix-vector multiplication in the internal symmetry space. We ignore terms of order  throughout the remainder of this section.

The mass term of Eq. ,

is symmetric under Eq.  if

i.e., if  generates unitary transformations. The kinetic term

however, transforms to

under unitary transformations. An invariant term can only be constructed if we replace

with

γ5 = iγ0γ1γ2γ3 = (
−1

1
) (119)

− +

P± = , (120)
1 ± γ5

2

1 γ5

{γ5, γμ} = 0 (121)

μ = 0, 1, 2, 3

Λ

vμ = ψ̄γμψ → Λμ
νv

ν ,

aμ = ψ̄γμγ5ψ → Λμ
νa

ν ,

s = ψ̄ψ → s ,

p = ψ̄γ5ψ → p , (122)

(97) P v a s p

vμ → −vμ + 2g0μv0 ,

aμ → aμ − 2g0μa0 ,

s → s ,

p → −p . (123)

vμ aμ s p

1/2

1/2 1

(113)

L = ψ̄(iγμ∂μ − m)ψ (113)

ψ γμ ψ

Si S Sp Si

S = Sp ⊗ Si . (124)

Si ψ S

Si ψ(x) G(x)

ψ(x) → ψ(x) + iG(x)ψ(x) , (125)

G(x) ψ(x) G2

(113)

Lmass = mψ̄ψ , (126)

(125)

G(x)† = G(x) , (127)

G(x)

Lkinetic = ψ̄(iγμ∂μ)ψ , (128)

L
′
kinetic = Lkinetic − ψ̄(∂μG(x))γμψ (129)

∂μ → Dμ (130)

Dμ → [1 + iG(x)]Dμ[1 − iG(x)†] (131)



under Eq. , where  is the identity matrix. We call  a covariant derivative. The covariant derivative has to generate a kinetic term for the spin  fields, and

therefore we use the ansatz

where  has to transform under  in a way that satisfies Eq. . Note that  can act non-trivially on the internal symmetry space. Since  is an anti-Hermitian

operator, we require  so that the Lagrangian is real. In accordance with Eq.  we request that the transformed  satisfies

where we used the Hermiticity of . Thus we can construct an invariant kinetic term if  transforms as

We conclude that we can construct a Lagrangian

that is invariant under the symmetry group  with internal symmetry  defined by the infinitesimal transformation

Note that the  also transform in the fundamental representation of the restricted Lorentz symmetry group,

under Lorentz transformation . The spin operator of the fundamental representation of the restricted Lorentz group is given by  with  and .

Therefore we have introduced fields  of spin  that interact with the spin  fields due to the term

in the Lagrangian. Since the Lagrangian has to be invariant under Eq.  the fields  are not allowed to have a quadratic mass term and must therefore correspond to

massless particles. They can, however, have a kinetic term that allows them to propagate in spacetime. To second order in  the only term that is invariant under  and 

 is proportional to

where the trace  acts on the internal symmetry space. This is the Yang-Mills term. The invariance under  is due to the covariance of

under Eq. . We define the field-strength tensor

and express the total Lagrangian conveniently as

Note that if the local symmetry group is not abelian, the term  introduces a self-interaction between the massless spin  particles.

If we choose the first non-trivial unitary symmetry group , we recover the theory of electrodynamics coupled to a spin  field. The photons are now given by the spin 

 fields . The equations of motion of the fields  can readily be identified with Maxwell's equations of electrodynamics.

The Lagrangian of QCD

The internal symmetry group of QCD is given by . If we choose  to live in the group algebra of , we can write

where the matrices  ( ) span the algebra of . The eight fields  now correspond to eight independent gluons. The quarks live in the internal symmetry

space of . Its fundamental representation is three-dimensional and therefore there are three different quark fields, or three different colors of quarks (The name

quantum chromodynamics is due to this interpretation of the three different quark fields as different colors of quarks.). The bound states of quarks and anti-quarks, called

hadrons, must transform as singlets of  and are therefore color neutral. There are two types of hadrons: mesons and baryons. Mesons, such as the pion, are bosonic

hadrons that consist of a quark and an anti-quark. Baryons, such as the proton or neutron, are fermionic hadrons that consist of three quarks.

Note that since  is non-abelian, gluons are self-interacting. This property can be shown to lead to the asymptotic freedom of QCD, i.e., for high energies the strength

of the interaction becomes weaker.

We rescale the fields  and change the prefactor of the kinetic term of gluons so that we can adjust the strength of the interaction of quarks and gluons explicitly.

The Lagrangian of a quark coupled to the gluons then reads

with

It turns out that in nature there are more than one kind of quarks which differ by their mass and electromagnetic charge. One currently has experimental evidence for 

different types of quarks, called different quark flavors, of which three have a fractional electromagnetic charge of  and three have a fractional electromagnetic charge

of . Two quarks are very light and thus play an important role in the low-energy physics of QCD discussed in the remainder of this thesis. They are called up and down

(125) 1 Dμ 1/2

Dμ = ∂μ + iAμ , (132)

Aμ Si (131) Aμ ∂μ

A = A† (131) A′
μ

∂μ + iA′
μ = [1 + iG(x)](∂μ + iAμ)[1 − iG(x)†]

= ∂μ + iAμ − i(∂μG(x)) − [G(x),Aμ] , (133)

G(x) Aμ

A′
μ = Aμ − (∂μG(x)) + i[G(x),Aμ] . (134)

L = ψ̄(iγμDμ − m)ψ = ψ̄(iγμ∂μ − m)ψ − ψ̄γμAμψ (135)

S Si

ψ(x) → ψ(x) + iG(x)ψ(x) ,

Aμ → Aμ − (∂μG(x)) + i[G(x),Aμ] . (136)

Aμ

Aμ → Λμ
νAν (137)

Λ Sj = iJj S2 = s(s + 1) s = 1

Aμ 1 1/2

Linteraction = −ψ̄γμAμψ (138)

(???) Aμ

∂μAν Si

Sp

LYM ∝ Tr [Dμ,Dν][Dμ,Dν] , (139)

Tr Si

[Dμ,Dν] → [1 + iG(x)][Dμ,Dν][1 − iG(x)†] (140)

(???)

Fμν = −i[Dμ,Dν] = (∂μAν) − (∂νAμ) + i[Aμ,Aν] (141)

L = ψ̄(iγμDμ − m)ψ + Tr FμνF
μν . (142)

1

2

[Aμ,Aν] 1

U(1) 1/2

1 Aμ Aμ

SU(3) Aμ SU(3)

Aμ = Aa
μλa , (143)

λa a = 1, … , 8 SU(3) Aa
μ

SU(3)

Si

SU(3)

Aμ → gAμ

L = ψ̄(iγμ∂μ − m)ψ + Tr FμνF
μν − gAa

μψ̄γ
μλaψ (144)

1

2

Fμν = (∂μAν) − (∂νAμ) + ig[Aμ,Aν] . (145)

6

+2/3

−1/3



quarks (corresponding to their respective fractional electromagnetic charges  and ). The next heavier quark is called strange quark and has a fractional

electromagnetic charge of . Their masses are related approximately by

where , ,  are the masses of up, down and strange quark. Note that these relations are only order-of-magnitude estimates. The total Lagrangian of QCD thus reads

We observe that, depending on the quark masses, the total Lagrangian has an additional symmetry in flavor space. This symmetry will force some of the hadrons to be

particularly light. More on this in a later chapter.

+2/3 −1/3

−1/3

≈ 20 , ≈ , (146)
ms

md

mu

md

1

2

mu md ms

LQCD =
6

∑
f=1

ψ̄f(iγμ∂μ − mf)ψf + Tr FμνF
μν

− g
6

∑
f=1

Aa
μψ̄fγ

μλaψf . (147)

1

2


