
Lattice QCD I - Christoph Lehner

Chapter 1: path integral formulation of quantum mechanics
We start with a simple one-particle one-dimensional Hamiltonian  with coordinate , momentum , and potential , i.e.,

where  is the particle's mass. We will use a unit system with . In the quantum mechanics lecture, we have already established that

 yields

which we will use in this chapter.

Homework: derive this equation again.

Real-time evolution

Let us consider the amplitude for a free particle with

to move from position  to  during time 
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where

This integral only converges if Re , so a limiting procedure is needed to have this procedure be well-defined for real  and . We will

address this issue in the next sub-section, when we define Euclidean path integrals.

If we, however, wanted to calculate the amplitude

for the full theory, the situation is more complicated as the momentum states  are not eigenstates of . We can, however, use the Trotter

formula

This is great, because we already know the matrix element . Nevertheless, the formula only has small errors for sufficiently small

. Therefore, we rewrite

with  such that
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with

This looks just like a discrete version of the action, i.e., the time integral over the Lagrange function .

In the limit  we have

with  for a given differentiable function .

Euclidean path integrals

As we noted above, the proper definition of the real-time path integral involves a limiting procedure to keep the momentum integral

convergent. If we, however, used a purely imaginary time, we get a real Euclidean time  with

With such a choice the integrals would surely be convergent since  is then strictly positive. We would then find for  that
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with

Note the changed relative sign between the kinetic and the potential term! This follows from  since one term came with positive and

the other with negative power.

Again in the limit  we have

with  for a given differentiable function .

The transfer matrix

It is useful to define the transfer matrix

which evolves states in our Hilbert space by real time . This matrix is unitary and this preserves the probability interpretation of states.

On the same Hilbert space, we can also define a Euclidean transfer matrix

which is a non-unitary operator. Since the exponential function of a matrix is just a power series
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both  and  have the same eigenvectors as . For this reason, the eigenstates of the Hamiltonian are also eigenstates of the transfer

matrices. We will use this property to extract information about the spectrum and matrix elements of a given quantum system using the path

integral formulation. This will be a core concept of lattice quantum field theory. For now, we continue to focus on the quantum mechanical

example.

Interpretation as a thermal system

The canonical partition function of a quantum system is given by

with

and temperature  if we set the Boltzmann constant . This can be directly expressed in terms of the Euclidean path integral

with  and . We can therefore interpret a Euclidean path integral with periodic boundary conditions in time, i.e.,  as

the canonical partition function of the corresponding thermal system.

We can use this relation to extract information about the spectrum and eigenstates of the system. We know that if  are the eigenstates of 

with eigenvalues , then
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For a system with a non-discrete spectrum, we need to replace the sum over  with an integral. Therefore, if the system has a distinct ground

state with energy  and a finite energy gap , we can study the large  limit and find

By studying the  and  dependence, we can extract both the ground state energy and the norm of the wavefunction

We will do this in the numerical exercise at the end of this chapter.

Correlation functions

The path integral formulation also allows for the study of correlation functions, which allow for access to additional matrix elements. In general

all of them follow from the operator expectation value

A concrete example is the two-time correlator

with sums over eigenstates  and  of , , , and . We will use such correlators in this lecture to get

access to general matrix elements  as well as the spectrum. All of these methods will trivially extend to quantum field theories.

Discretization errors
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We have so far not commented on the error term . We can interpret the  times  as points on a finite lattice with

lattice spacing

and the error term as . In this sense, this term can then be viewed as a discretization error of the path integral.

The origin of this term was a particular choice of Trotter formula, which had third-order errors. We could, however, have chosen a higher or

lower-order Trotter formula instead, which would have lead to a different power for the discretization error, say , and a corresponding

different discretized version of .

Homework: use the lower-order Trotter formula

and derive the corresponding discretization of the action.

Numerical demonstration in case of harmonic oscillator

from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt

# define Euclidean action for mass m=1 and V(x)=x^2/2
def S(x, beta):
    N = len(x) - 1
    a = beta / N
    return sum([1/2*(x[j+1]-x[j])**2/a + 1/4*(x[j+1]**2+x[j]**2)*a for j in range(N)])

# Test of action
S([0.5,1,2,3], 6)

10.1875

def Z(n, beta, x0):
    N = n + 1
    a = beta / N
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    A = (1.0 / 2.0 / np.pi / a) ** (N/2)
    return integrate.nquad(lambda *x: A*np.exp(-S([x0]+list(x)+[x0],beta)), 
                           [[-np.inf, np.inf] for i in range(n)], opts = {"epsabs": 1e-3, "epsrel": 1e-3})

print(Z(1, 1, 1.0))

(0.23455706230134904, 0.0008964712634385308)

xs = np.arange(0.01,2.0,0.25)
beta_test = 3.0

# test different number of N
ys1 = [Z(1,beta_test,x)[0] for x in xs]

ys2 = [Z(2,beta_test,x)[0] for x in xs]

ys3 = [Z(3,beta_test,x)[0] for x in xs]

Test against exact solution with

and

ys_exact = [1 / np.pi**0.5 * np.exp(-beta_test*0.5) * np.exp(-x**2.) for x in xs]

fig, ax = plt.subplots()

ax.scatter(xs, ys1, c='blue', label="n=1, N=2")
ax.scatter(xs, ys2, c='red', label="n=2, N=3")
ax.scatter(xs, ys3, c='orange', label="n=3, N=4")
ax.scatter(xs, ys_exact, c='black', label="exact")

ax.legend()
plt.show()
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Homework: repeat the exercise for 

Make sure to explore both the , i.e.,  as well as the  limit. What do both control?

We notice that already for , the integration is quite slow. There must be a better way to compute these integrals. This will be the topic of

the next chapter.
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