Exercise: Quantum Computing

Problem set 8 (to be discussed in week of December 19, 2022)

Problem 1 Operator sum representation of CNOT

The first entangled state that we discussed in the lecture was the Bell state that we prepared by a Hadamard followed by a CNOT gate on a two-qubit system. We will now consider a two-qubit system with least-significant qubit (0) being the principal system and the most-significant qubit (1) being the environment and describe the entangling CNOT in the operator sum representation.

Consider a system that originally is in the unentangled state $\rho \equiv \rho_{\mathrm{P}} \otimes \rho_{\mathrm{E}}$ with density matrices for the principal system ρ_{P} and for the environment ρ_{E}. Without loss of generality, you may assume $\rho_{\mathrm{E}}=\left|e_{0}\right\rangle\left\langle e_{0}\right|$, i.e., the environment starts in a pure state. (If it were not, you could use the purification technique described in the lecture.)

Let $\operatorname{CNOT}(i, j)$ be the CNOT gate with control bit i and target bit j and

$$
\begin{equation*}
\mathcal{E}_{U}\left(\rho_{\mathrm{P}}\right) \equiv \operatorname{Tr}_{\mathrm{E}}\left[U \rho U^{\dagger}\right] \tag{1}
\end{equation*}
$$

Find the operator sum representation, i.e., find operators E_{k} for which

$$
\begin{equation*}
\mathcal{E}_{U}\left(\rho_{\mathrm{P}}\right)=\sum_{k} E_{k} \rho_{\mathrm{P}} E_{k}^{\dagger} \tag{2}
\end{equation*}
$$

for $U=\operatorname{CNOT}(0,1)$ as well as $U=\operatorname{CNOT}(1,0)$. Give explicit matrix representations of the E_{k}. It may be helpful to first write out the matrix representation of $U=U_{a b ; c d}|a b\rangle\langle c d|$ with sum over repeated indices implied.

Problem 2 Generalized amplitude damping

Consider the generalized amplitude damping channel described by Kraus operators E_{k} in

$$
\begin{equation*}
\mathcal{E}(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger} \tag{3}
\end{equation*}
$$

with

$$
\begin{array}{ll}
E_{0}=\sqrt{p}\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1-\gamma}
\end{array}\right), & E_{1}=\sqrt{p}\left(\begin{array}{cc}
0 & \sqrt{\gamma} \\
0 & 0
\end{array}\right), \\
E_{2}=\sqrt{1-p} X\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{1-\gamma}
\end{array}\right) X, & E_{3}=\sqrt{1-p} X\left(\begin{array}{cc}
0 & \sqrt{\gamma} \\
0 & 0
\end{array}\right) X, \tag{5}
\end{array}
$$

NOT matrix X , and $\gamma \equiv 1-e^{-t / T_{1}}$, and $p \in[0,1]$. This channel can describe the energy relaxation process with relaxation time T_{1} at finite temperature T :
a) We can define a discrete time-series of density matrices ρ_{n} defined by

$$
\begin{equation*}
\rho_{n+1}=\mathcal{E}\left(\rho_{n}\right) \tag{6}
\end{equation*}
$$

given a starting matrix ρ_{0}. One can show that at sufficiently large n for a general ρ_{0}, the system stabilizes to

$$
\begin{equation*}
\rho_{\infty}=\mathcal{E}\left(\rho_{\infty}\right) \tag{7}
\end{equation*}
$$

Find ρ_{∞}.
b) At finite temperature we expect a Boltzmann distribution $p_{n}=e^{-E_{n} /\left(k_{B} T\right)} / \mathcal{Z}$ with $\mathcal{Z}=$ $\sum_{n} e^{-E_{n} /\left(k_{B} T\right)}$ with energies E_{n} of states n and Boltzmann constant k_{B}. In our case we have two states $|0\rangle$ and $|1\rangle$ with energies E_{0} and E_{1}. What temperature does ρ_{∞} correspond to?

