Exercise: Quantum Computing

Problem set 1 (to be discussed in week of October 31st, 2022)

Problem 1 Matrix representation of CNOT

In the lecture we showed that the matrix representation of

is

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{1}\\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Remember that we draw the least-significant qubit at the top and use the standard basis $|00\rangle$, $|01\rangle,|10\rangle,|11\rangle$. Derive the matrix representation for

in the same basis.

Problem 2 Inverse of CNOT

Show that

Problem 3 Relation of SWAP and CNOT

Show that

Problem 4 Universal one qubit gates

Show that the H and R_{ϕ} gates can generate an arbitrary two-dimensional unitary matrix. You may first show

$$
\begin{equation*}
X=H R_{\pi} H \tag{2}
\end{equation*}
$$

and then restrict yourself to infinitesimal unitary matrices of the form

$$
\begin{equation*}
U=\mathbb{1}+i \varepsilon M+O\left(\varepsilon^{2}\right) \tag{3}
\end{equation*}
$$

with Hermitian matrix $M^{\dagger}=M$ and $\varepsilon \in \mathbb{R}$. Show that

$$
\begin{equation*}
U_{1}=H R_{\varepsilon 2 x} H, \quad U_{2}=R_{\pi / 2} H R_{\varepsilon 2 y} H R_{-\pi / 2}, \quad U_{3}=R_{\varepsilon z}, \quad U_{4}=X R_{\varepsilon t} X \tag{4}
\end{equation*}
$$

with $x, y, z, t \in \mathbb{R}$ are all of this form and their product maps out a general M.

Problem 5 Universal gates

Show that adding a CNOT gate to a universal one-qubit gate is sufficient to generate an arbitrary unitary matrix in S^{N}. Use the gate $s^{(i j)}$ defined in the lecture to extend the proof of Problem 4 to the general case of M in 2^{N} dimensions.

