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Chapter 2: Markov Chain Monte Carlo (MCMC) methods
As seen in the last chapter, we can learn about the spectrum and matrix elements in the Hilbert space of our Hamiltonian from correlation functions of operators. In this

chapter we discuss how we can compute such correlation functions by interpreting the Euclidean path integral in a probabilistic manner.

Probabilistic interpretation of correlation functions

The Euclidean correlators discussed in the last chapter can be written as

with probability density

This is possible since  is purely real and bound to a finite domain. Therefore the above normalization process yields a  with

and

In this chapter, we explore how to generate variables  following a given probability distribution. We first introduce a new statistical concept.

Markov chain over a finite set of states

Let us consider a sequence of random variables

with  with finite set  and .

The probability of drawing a particular finite sequence from  to  shall then be given by

We call such a process a Markov chain if

If there is no explicit dependence on , we call such a chain time-homogenous and define the transition probability

This matrix trivially must satisfy  and .

We now define a probability vector  by its elements

with . With this we find

or in matrix form

and therefore also

Numerical example with three states

We first define a system with three possible states "A", "B", and "C". We then consider a Markov chain with given transition probability.

⟨f(x1, … ,xN)⟩ = ∫ dx1 ⋯ dxNf(x1, … ,xN)p(x1, … ,xN) (1)

p(x1, … ,xN) = .
e−SE(x1,…,xN ,x1)

∫ dx1 ⋯ dxNe
−SE(x1,x2,…,xN ,x1)

e−SE(x1,…,xN ,x1) p(x1, … ,xN)

p(x1, … ,xN) ≥ 0

∫ dx1 ⋯ dxNp(x1, … ,xN) = 1 .

x1, … ,xN

x0,x1, … (2)

xi ∈ X X = {1, … ,n} n ∈ N

x0 xm

P(xm ∩ xm−1 ∩ … ∩ x0) = P(xm|xm−1 ∩ … ∩ x0)P(xm−1 ∩ … ∩ x0) . (3)

P(xm|xm−1 ∩ … ∩ x0) = P(xm|xm−1) . (4)

m

Tij = P(xm = j|xm−1 = i) . (5)

Tij ≥ 0 ∑n

j=1 Tij = 1

pm

(pm)i = P(xm = i) (6)

∑i(pm)i = 1

(pm)j = P(xm = j) = P(xm = j|xm−1 = i)P(xm−1 = i) = Tij(pm−1)i (7)

pTm = p
T
m−1T (8)

pTm = pT0 T
m . (9)

In [1]: import random 
import matplotlib.pyplot as plt 
import numpy as np 
 
T = { 
    "A": { "A" : 0.5, "B" : 0.25, "C" : 0.25}, 
    "B": { "A" : 0.1, "B" : 0.5, "C" : 0.4}, 
    "C": { "A" : 0.2, "B" : 0.1, "C" : 0.7} 
} 
 
def update(state): 
    return random.choices( 
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A -> A 
A -> B 
B -> B 
B -> B 
B -> C 
C -> C 
C -> B 
B -> C 
C -> C 
C -> A 

Next, we check our implementation against the given transition probability.

T(A -> A) = 0.5008999999999612 versus 0.5 
T(A -> B) = 0.24949999999998884 versus 0.25 
T(A -> C) = 0.24959999999998883 versus 0.25 
T(B -> A) = 0.1023000000000019 versus 0.1 
T(B -> B) = 0.4968999999999616 versus 0.5 
T(B -> C) = 0.4007999999999722 versus 0.4 
T(C -> A) = 0.20209999999999406 versus 0.2 
T(C -> B) = 0.10420000000000196 versus 0.1 
T(C -> C) = 0.6936999999999399 versus 0.7 

Next, let us create a Markov chain of length , starting from state "A" and look at the distribution of states.

Next let us study a matrix version of the transition probability and its left eigensystem.

        population = [k for k in T[state]], 
        weights = [T[state][k] for k in T[state]], 
        k = 1 
    )[0] 
 
s = "A" 
for i in range(10): 
    sp = update(s) 
    print(s,"->",sp) 
    s = sp 

In [2]: for start in [ "A", "B", "C" ]: 
    histogram = { "A" : 0, "B": 0 , "C": 0} 
    N = 10000 
    for i in range(N): 
        histogram[update(start)] += 1.0 / N 
    for target in [ "A", "B", "C" ]: 
        print(f"T({start} -> {target}) = {histogram[target]} versus {T[start][target]}") 

N

In [3]: def distribution(N, start = "A", nsamples = 200): 
    all_histograms = [] 
    for j in range(nsamples): 
        chain = [start] 
        for i in range(N): 
            chain.append(update(chain[-1])) 
     
        histogram = { "A" : 0, "B": 0 , "C": 0} 
        for c in chain: 
            histogram[c] += 1.0 / (N+1) 
         
        all_histograms.append([ histogram[k] for k in T]) 
 
    return np.mean(all_histograms, axis=0), np.std(all_histograms, axis=0) / np.sqrt(nsamples) 
 
Ns = list(range(2,40,5)) 
Ds = [distribution(N) for N in Ns] 
 
fig, ax = plt.subplots() 
 
ax.errorbar(Ns, [d[0][0] for d in Ds], [d[1][0] for d in Ds], c='blue', label="P(A)")
ax.errorbar(Ns, [d[0][1] for d in Ds], [d[1][1] for d in Ds], c='red', label="P(B)") 
ax.errorbar(Ns, [d[0][2] for d in Ds], [d[1][2] for d in Ds], c='green', label="P(C)") 
 
ax.legend() 
plt.ylim(0,1) 
plt.xlabel("N") 
plt.show() 

In [4]: matT = np.matrix([ [ T[A][B] for B in T ] for A in T]) 
print("T=",matT) 
 
mat_evals, mat_evecs = np.linalg.eig(matT.T) 
print("Eigenvalues of T^T:",mat_evals) 
 



T= [[0.5  0.25 0.25] 
 [0.1  0.5  0.4 ] 
 [0.2  0.1  0.7 ]] 
Eigenvalues of T^T: [1.  +0.j        0.35+0.1118034j 0.35-0.1118034j] 
First left-eigenvector of T: [[0.25287356+0.j] 
 [0.22988506+0.j] 
 [0.51724138+0.j]] corresponding to eigenvalue (0.9999999999999987+0j) 

So we have one eigenvalue 1 and other eigenvalues of smaller magnitude. After a large number of applications of , and therefore after many steps in a Markov chain, the

probability distribution in this example will converge to a stationary probability distribution with probabilities.

P(A)= 0.25287356321839094 
P(B)= 0.22988505747126417 
P(C)= 0.5172413793103449 

Let us add this to the plot and make plots for starting state "A", "B", and "C".

So it seems like these Markov chains tend to forget about their starting conditions and settle on a stationary probability distribution. Let us next explore the precise

conditions that need to be satisfied for this to happen.

unit_evec=mat_evecs[:,0]/np.sum(mat_evecs[:,0]) 
print("First left-eigenvector of T:",unit_evec,"corresponding to eigenvalue",mat_evals[0]) 

T

In [5]: print("P(A)=",unit_evec[0,0].real) 
print("P(B)=",unit_evec[1,0].real) 
print("P(C)=",unit_evec[2,0].real) 

In [6]: for start in ["A","B","C"]: 
    Ns = list(range(2,200,20)) 
    Ds = [distribution(N, start=start) for N in Ns] 
     
    fig, ax = plt.subplots() 
 
    ax.errorbar(Ns, [d[0][0] for d in Ds], [d[1][0] for d in Ds], c='blue', label="P(A)") 
    ax.errorbar(Ns, [d[0][1] for d in Ds], [d[1][1] for d in Ds], c='red', label="P(B)") 
    ax.errorbar(Ns, [d[0][2] for d in Ds], [d[1][2] for d in Ds], c='green', label="P(C)")
    ax.hlines([unit_evec[0,0].real],0,200,color='blue') 
    ax.hlines([unit_evec[1,0].real],0,200,color='red') 
    ax.hlines([unit_evec[2,0].real],0,200,color='green') 
    ax.legend() 
    plt.ylim(0,1) 
    plt.title(f"Start = {start}") 
    plt.xlabel("N") 
    plt.show() 



If there is a finite sequence from state  to state  through intermediate states  such that

we say  communicates with  and write . This property is transitive and allows for the definition of equivalence classes. If a Markov chain just has a single equivalence

class (here called communication class), we say the chain is irreducible.

We call  a stationary distribution of a Markov chain if

If  is irreducible, one can show that  exists, is unique, and  for all .

We define the set of return times for state  as

and the period

If , we call the state periodic else aperiodic. One can show that if  is irreducible, all periods are identical  and we call the entire chain periodic or

aperiodic.

In practice we typically will have irreducible chains with at least one state  for which  so that the typical case is irredicuble aperiodic chains.

In this lecture we discuss only irreducible aperiodic chains for which the Perron-Frobenius theorem states that  has a non-degenerate largest eigenvalue  with

strictly positive left and right eigenvectors as well as that all other eigenvalues have . Such Markov chains forget about their initial conditions and settle on a

stationary distribution .

Homework: find a transition matrix that is not irreducible and aperiodic and repeat the numerical exercises.

Reversible and ergodic Markov chains

We call a Markov chain reversible with respect to  if

or equivalently

for each  (no summation convention here!). This is also called the detailed balance condition and can be written in matrix form as

with .

If we implement a transition probability that satisfies the detailed balance condition it has a stationary distribution . This is straightforward to see by summing Eq.  over 

. If it is also irreducible, then the stationary distribution is unique. If it is also aperiodic, then it is ergodic (can reach all possible states).

Note that a Markov chain does not neet to be reversible for it to be irreducible and aperiodic, as in our three-state example:

[0.25287356321839094, 0.22988505747126417, 0.5172413793103449] 
0.06321839080459773 != 0.02298850574712642 

Metropolis algorithm

A simple way to generate a Markov chain with a desired stationary distribution is to propose a new state  given state  with probability  and to accept the proposal with

probability . This transition probability for  is then given by

If we use

we can show the detailed balance equation. Consider without loss of generality that , then

This choice of transition probability is called the Metropolis algorithm.

For  the the detailed balance condition always holds. The transition probability in this case is

Therefore also

i j l0 = i, l1, … , lm−1, lm = j

Tls,ls+1 > 0 , (10)

i j i ↔ j

π

πT = πTT . (11)

T π πi > 0 i

i

T (i) ≡ {k ≥ 1|(T k)ii > 0} (12)

P(i) ≡ gcd T (i) . (13)

P(i) > 1 T P(i) = P

i Tii > 0

T λ1 = 1

|λi| < 1

π

pm−1 = π

P(xm = j ∩ xm−1 = i) = P(xm = i ∩ xm−1 = j) (14)

πiTij = πjTji (15)

i, j

ΠT = (ΠT )T = T TΠ (16)

(Π)ij = δijπi

π (15)

j

In [7]: # check detailed balance 
P = [unit_evec[i,0].real for i in range(3)] 
 
print(P) 
print(P[0] * T["A"]["B"], "!=", P[1] * T["B"]["A"]) 

j i Pij

Aij i ≠ j

Tij = AijPij . (17)

Aij = min(1, ) (18)
πjPji

πiPij

πjPji > πiPij

πiTij = πiPij = AjiπjPji = πjTji . (19)

i = j

Tii = AiiPii +∑
j≠i

Pij(1 − Aij) = Pii +∑
j≠i

Pij(1 − Aij) . (20)



Homework: compute

by creating your own Markov chain with the desired distribution using Metropolis and computing the statistical mean of  in this distribution.

Example: Harmonic oscillator

We now use the Metropolis algorithm to generate a Markov chain of positions  distributed according to  of the beginning of this chapter. Note

that each possible tuple of positions  corresponds to one state in the system. This system has uncountably infinitely many states, however, previous discussion

also applies to this case. If we generate the Markov chain using a computer which has a finite-bit representation of floating point numbers (say 64 bit double precision), the

state space is finite in any case.

-0.03349999999999986 
-0.0335 
-0.5811300000000001 
-0.5811300000000001 
-1.5282800000000003 
-1.52828 

acceptance rate 0.496915 
acceptance rate 0.498035 
acceptance rate 0.498465 
acceptance rate 0.49787 
acceptance rate 0.49846 
acceptance rate 0.497795 
acceptance rate 0.494775 
acceptance rate 0.497665 
acceptance rate 0.496965 
acceptance rate 0.49543 

∑
j

Tij = Tii +∑
j≠i

PijAij ,

= Pii +∑
j≠i

(PijAij + Pij(1 − Aij)) ,

= Pii +∑
j≠i

Pij ,

= ∑
j

Pij = 1 .

(21)

(22)

(23)

(24)

∫ dxx2e−x2/2

∫ dxe−x2/2

x2

(x1, … ,xN) p(x1, … ,xN)

(x1, … ,xN)

In [8]: # define Euclidean action for mass m=1 and V(x)=x^2/2 
def S(x, beta): 
    N = len(x) - 1 
    a = beta / N 
    return sum([1/2*(x[j+1]-x[j])**2/a + 1/4*(x[j+1]**2+x[j]**2)*a for j in range(N)]) 
 
# contribution from x[j] 
def Sj(x, j, beta): 
    N = len(x) - 1 
    a = beta / N 
    jp = (j+1) % N 
    jm = (j+N-1) % N 
    return x[j]*(x[j] - (x[jp]+x[jm]))/a + 1/2*x[j]**2*a 

In [9]: print(S([0.1,0.33,0.52,0.1], 10)-S([0.2,0.33,0.52,0.2], 10)) 
print(Sj([0.1,0.33,0.52,0.1],0, 10)-Sj([0.2,0.33,0.52,0.2],0, 10)) 
 
print(S([0.1,0.33,0.52,0.1], 10)-S([0.1,0.33*2,0.52,0.1], 10)) 
print(Sj([0.1,0.33,0.52,0.1],1, 10)-Sj([0.1,0.33*2,0.52,0.1],1, 10)) 
 
print(S([0.1,0.33,0.52,0.1], 10)-S([0.1,0.33,0.52*2,0.1], 10)) 
print(Sj([0.1,0.33,0.52,0.1],2, 10)-Sj([0.1,0.33,0.52*2,0.1],2, 10)) 

In [10]: # since only ratios of probabilities appear, can ignore overall constant factor 
def P(x, j, beta): 
    # make periodic 
    return np.exp(-Sj(x+[x[0]],j,beta)) 
 
def sample(N, beta, n_updates, epsilon): 
    result = [] 
    accepted = 0 
    rejected = 0 
    x = [0.0 for i in range(N)] 
    for i in range(n_updates): 
        for j in range(N): 
            x1 = [x[l] if l != j else x[l] + random.uniform(-epsilon,epsilon) for l in range(N)] 
            r = P(x1,j, beta) / P(x,j, beta) 
            l = random.uniform(0.0,1.0) 
            if l < r: 
                # accept 
                accepted += 1 
                x = x1 
            else: 
                rejected += 1 
        result.append(x) 
    print("acceptance rate",accepted / (accepted+rejected)) 
    return result 
         
random.seed(13) 
X = [sample(20, 10, 10000, 1.4)[400:] for i in range(20)] 



acceptance rate 0.49469 
acceptance rate 0.49657 
acceptance rate 0.49571 
acceptance rate 0.49553 
acceptance rate 0.49579 
acceptance rate 0.4962 
acceptance rate 0.496715 
acceptance rate 0.497305 
acceptance rate 0.49608 
acceptance rate 0.49575 

Next we compute

Note that , such that the only non-vanishing matrix elements are between neighboring states. We have for the first two states

This is straightforward to compute from the wavefunctions

For sufficiently large  and small  we only have  contribute and because of the matrix elements

Next, we check numerically the matrix elements by integrating the wavefunction:

|psi(0)|^2= (1.0, 8.012979811542269e-09) 
|psi(1)|^2= (1.000000000000002, 3.931389091993226e-09) 
|psi(2)|^2= (0.9999999999999994, 9.015428609661171e-09) 
|psi(3)|^2= (1.0000000000000007, 3.897728507258696e-09) 
|psi(4)|^2= (1.0000000000000007, 1.1156813993696975e-09) 
<0|x|0>= (0.0, 0.0) 
<0|x|1>= (0.7071067811865492, 1.2850956593672991e-08) 
<0|x|2>= (0.0, 0.0) 
<0|x|3>= (-3.400058012914542e-16, 2.9488804553452953e-09) 
<0|x|4>= (0.0, 0.0) 
<1|x|0>= (0.7071067811865492, 1.2850956585037702e-08) 
<1|x|1>= (0.0, 0.0) 
<1|x|2>= (0.9999999999999999, 1.3187266250307033e-08) 
<1|x|3>= (0.0, 0.0) 
<1|x|4>= (2.1163626406917047e-16, 3.3229850548566938e-09) 

Now we perform a statistical average using the Markov chain data to extract the energies and matrix elements.

20 

⟨xfxi⟩ = ∑
n,m

⟨n|x|m⟩⟨m|x|n⟩e−Em(τf−τi)e−En(β−τf+τi) . (25)
1

Z

x̂ ∝ â + â
†

⟨0|x|1⟩ = ,

⟨1|x|0⟩ = ,

⟨1|x|2⟩ = 1 .

(26)

(27)

(28)

1

√2
1

√2

ψn(x) = Hn(x)e−x2/2 .
π−1/4

√2nn!

β τf − τi n = 0

⟨xfxi⟩ ≈ |⟨1|x|0⟩|2e−E1(τf−τi)e−E0(β−τf+τi)

≈ |⟨1|x|0⟩|2e−(E1−E0)(τf−τi) .

(29)

(30)

1

Z

In [11]: from scipy import special, integrate 
H = [special.hermite(n) for n in range(5)] # get first 5 Hermite polynomials 
def psi(x, n): 
    return H[n](x)*np.exp(-x**2/2)/np.pi**(1/4)/np.sqrt(2**n * np.math.factorial(n)) 
 
# test norms 
for n in range(5): 
    print(f"|psi({n})|^2=",integrate.quad(lambda x: psi(x,n)**2, -np.inf, np.inf)) 
     
# compute matrix elements of x operator 
for n in range(5): 
    print(f"<0|x|{n}>=",integrate.quad(lambda x: psi(x,0)*x*psi(x,n), -np.inf, np.inf)) 
     
# compute matrix elements of x operator 
for n in range(5): 
    print(f"<1|x|{n}>=",integrate.quad(lambda x: psi(x,1)*x*psi(x,n), -np.inf, np.inf)) 
     

In [12]: print(len(X)) 
 
def correlator(X): 
    T = 20 
    return [ sum([ x[s]*x[(s+t)%T] for s in range(T) for x in X ]) / len(X) / T for t in range(T) ] 
 
correlator_average = [correlator(x) for x in X] 

In [13]: fig, ax = plt.subplots() 
 
ts = list(range(20)) 
ax.scatter(ts, correlator_average[0], c='blue', label="C(t)") 
 
ax.legend() 
 
plt.xlabel("t") 
plt.show() 
 
fig, ax = plt.subplots() 



The plateau correspond to  of the Harmonic oscillator with .

 
ax.plot([x[0] for x in X[0]]) 
ax.plot([x[0] for x in X[1]]) 
 
plt.show() 

In [14]: ts = list(range(7)) 
 
def effective_mass(C): 
    a = 0.5 
    return[np.log(C[i]/C[i+1])/a for i in range(7)] 
 
emp = np.array([effective_mass(C) for C in correlator_average]) 
emp_mean = np.mean(emp, axis=0) 
emp_error = np.std(emp, axis=0) / np.sqrt(len(X)) 
 
fig, ax = plt.subplots() 
 
plt.ylim([0,2]) 
ax.errorbar(ts, emp_mean, emp_error, c='blue', label="E_1 - E_0") 
 
ax.legend() 
plt.show() 

E1 − E0 = 1 m = 1

In [15]: aDeltaE=0.5 
opmatel=np.array([[C[t] / (np.exp(-aDeltaE*t) + np.exp(-aDeltaE*(20-t))) for t in range(7)] for C in correlator_average]) 
 
opmatel_mean = np.mean(opmatel, axis=0) 
opmatel_error = np.std(opmatel, axis=0) / np.sqrt(len(X)) 

In [16]: fig, ax = plt.subplots() 
 
plt.ylim([0,1]) 
ax.errorbar(ts, opmatel_mean, opmatel_error, c='blue', label="|<0|x|1>|^2") 
 
ax.legend() 
plt.show() 



This needs to be compared with the known .

Homework: Study the discretization errors (  dependence) in the Harmonic oscillator example. Then also try the operators  instead of . How do the above plots

change. Explain why!

In the next chapter we study more advanced statistical methods to reduce the cost of the current analysis significantly. Before venturing on, however, we complete our

analytic study of Markov chains by looking at the correlation of variables between two different steps in the Markov chain.

Convergence and autocorrelation in reversible Markov chains

In this section we discuss only irreducible aperiodic chains for which the Perron-Frobenius theorem states that  has a non-degenerate largest eigenvalue  with

strictly positive left and right eigenvectors as well as that all other eigenvalues have .

We first define the matrix

which for reversible chains is symmetric since

From eigenvectors  of  with eigenvalues  we can then construct right-eigenvectors

of  since

We already know the eigenvalues of  such that . We also know that

must be left-eigenvectors of  with same eigenvalues since

We can therefore diagonalize  by

or

We furthermore have

such that

It therefore follows that

Since  is the stationary state, we know that  and therefore , , and

So for sufficiently large  we may approximate . We call such values of thermalized and compute the autocovariance

by

| < 1|x|0 > |2 = 1
2

N x3 x

T λ1 = 1

|λi| < 1

S ≡ Π1/2TΠ−1/2 (31)

S = Π1/2TΠ−1/2 = Π−1/2ΠTΠ−1/2 = Π−1/2T TΠΠ−1/2 = Π−1/2T TΠ1/2 = (Π1/2TΠ−1/2)T = ST . (32)

vn S
~
λn

rn = Π−1/2vn (33)

T

Trn = Π−1/2Π1/2TΠ−1/2vn = Π−1/2Svn =
~
λnΠ−1/2vn =

~
λnrn . (34)

T
~
λn = λn

ln = Πrn = Π1/2vn (35)

T

lTnT = vTnΠ1/2TΠ−1/2Π1/2 = vTnSΠ1/2 = vTnΠ1/2λn = λnl
T
n . (36)

S

S = ∑
n

λnvnv
T
n (37)

T = Π−1/2SΠ1/2 = ∑
n

λnΠ−1/2vnv
T
nΠ1/2 = ∑

n

λnrnl
T
n . (38)

δnm = vTnvm = lTnrm (39)

T k = ∑
n

λknrnl
T
n . (40)

pTk = ∑
n

λknp
T
0 rnl

T
n . (41)

π π = l1 (r1)i = 1 pT0 r1 = ∑
i
(p0)i = 1

lim
k→∞

pT
k

= pT0 r1l
T
1 = πT . (42)

k pk = π k

Cov(t) = ⟨f(xk+t)f(xk)⟩ − ⟨f(xk+t)⟩⟨f(xk)⟩ (43)



with  and . Finally, using , we find

and we define the autocorrelator

with

The autocovariance therefore falls off exponentially. The function  determines how large the contribution of the various exponentials is. If there was a single dominant mode

 with  and , we would therefore have

Calculate autocorrelation numerically:

In the next chapter, we will see how the autocorrelation in a Markov chain relates to the statistical precision of our measurements.

Cov(t) + ⟨f(xk+t)⟩⟨f(xk)⟩ = ⟨f(xk+t)f(xk)⟩ = ∑
xk+t,xk

f(xk+t)f(xk)P(xk+t ∩ xk)

= ∑
xk+t,xk

f(xk+t)f(xk)P(xk)(T t)xk,xk+t
= ∑

j,i

FjFiπi(T
t)ij = F TΠT tF

= ∑
n

λtnF
TΠrnl

T
nF = ∑

n

λtnF
T lnl

T
nF = ∑

n

λtnc
2
n

(44)

(45)

(46)

Fi = f(i) cn = F T ln ⟨f(xk+t)⟩ = F Tπ = c1

Cov(t) = ∑
n≥2

λtnc
2
n (47)

C(t) ≡ = ∑
n≥2

Sign(λn)te−t/τn~c2
n (48)

Cov(t)

Cov(0)

~c2
n ≡ , τn = − . (49)

c2
n

∑m≥2 c
2
m

1

log(|λn|)

f

τ2 λ2 > 0 ~c2 ≫ ~c3,4,…

C(t) = e−t/τ2 .

In [17]: def autocovariance(Y, max_dt): 
    mean = sum(Y)/len(Y) 
    return [sum([ Y[t]*Y[t+dt] for t in range(len(Y) - dt) ])/(len(Y) - dt) - mean**2. for dt in range(max_dt) ] 
 
def autocorrelator(Y, max_dt): 
    Cov = autocovariance(Y, max_dt) 
    return [ Cov[t] / Cov[0] for t in range(len(Cov))] 

In [18]: C = np.array([autocorrelator([ Xj[i][0] for i in range(len(Xj)) ], 40) for Xj in X]) 
C_mean = np.mean(C, axis=0) 
C_error = np.std(C, axis=0) / np.sqrt(len(X)) 
 
fig, ax = plt.subplots() 
 
plt.ylim([0,1.1]) 
ax.errorbar(range(len(C_mean)), C_mean, C_error, marker='+', ls='', c='blue', label="autocorrelation of x[0]") 
 
ax.legend() 
plt.show() 


