Lattice QCD1 - Christoph Lehner

Chapter 11: symmetries of the Wilson action

In this chapter we study in more detail the symmetries of the lattice action of QCD. In order to do so, we first remind ourselves of the full lattice action with gauge links Uu

and a single fermion field 1. We have

_ 1 — =
S:Zd’(w) (ZFY#D#+m7§ZD#D#> d)(w)Jr,BZZ(lfPW(z))
T I3 3 T p<v
with
Du:%(gquBu) :%(C;*C;:) s

— =
D,D,=C}+C, -2,
Clrp(z) = Uy(z)p(z + aft),

3
8

< =

Ul(z — ap)p(z — afi),

1
= TcRe Tr U (),

Uu(2)U,(z + aft)Uy(z + an)'U,(2)'.

8

S
A <
A E X
& 8 & &

Particle and antiparticle solutions in Minkowski space
In chapter 5 we learned that the wavefunction of a free Dirac particle in Minkowski space satisfies
(iv°8) — m)3(t) = 0
if we assume that it is invariant in space, i.e., 8;1 = 0. This equation has solutions
P(t) = (1 - 7)™
and
P (1) = (L+7%)e ™,

since 72(1 — %) = —(1 —4°%) and v°(1 +9°) = 1 +~°. Here 1/)5’ are vectors selecting a spin configuration. We can think of 1" as the particle and ¢/~ as the
antiparticle solution.

We can now consider the charge conjugation transformation C' that maps particles to antiparticles and vice versa. Since ('yo)* = 'yo and

i1 £y =154°

we find
O (t) = =i (W (0))" = —ir (1 F 1) " (45"
=iy’ (LF ") e ™ in (y)*
= (1£9")e™ ™ i (¥5)"
=7 (t)
if we identify

' (05)" = ¥
The charge conjugation operation defined in this way therefore relates particle solutions of a given spin to antiparticle solutions of a different spin configuration.
We can generalize this discussion beyond free-field solutions studying the charge conjugation operation C' that replaces

P =90 = —iy*y = —iy’ (Y1) = —in?(¥7°)"
= —ivy*9" .
Charge-conjugation symmetry
In Euclidean space this transformation can be written as
byl =0y,
where C~! = y2y* with Euclidean gamma matrices. Note that it is somewhat more convenient to define instead
O = ix2yt

by including a global phase factor such that C ' = C' = CT = —C7. It is straightforward to show that

CPC = ()"
which for the free theory again yields a symmetry of the action under

e

m

®)

)

(10)

(18)

(19)

(20)

(21)

https://homepages.uni-regensburg.de/~lec17310/teaching/wise2122/lqft.html
https://go.ur.de/lehner

such that

§ = (CPHIy = (F)teyt
= -@")iYT0 = -(v*C
—yTC.

The free action therefore transforms as

1

S:ZJ’(‘”) (Z’Yuaujbmfgz w0)d’(f‘v
= 8%=-Y y)C (Z’yu(‘?,, +m - %Z
== @) <Z(—’YM)T8u +m— %
T 0

Since 9 and 1/_) are Grassmannian variables, they anticommute. In addition for commuting variables

> f@g+p) = g(z)f(z -)

such that the first derivative term gets an additional minus sign. Finally v/ XTw” = wXwv. In total, we find

:ZJ’(“’) (Z’YuauﬁLm*_Za 0)1[1(1):

The free Wilson fermion action is therefore invariant under charge conjugation.

In order to preserve a symmetry in the interacting case, we need the covariant shifts C'* to transform as
> f(@)C*g(z) = Y 9(2)"CT f(a)”
T T
Concretely the transformed gauge fields
U, —»Ug

in C* need to obey

S @S @ala +ai) = 3 0(e)"Ula i) f@ — ai)” = Y sl +ai) Ui@)f(@)” = 3 @i @)l + i)

This is satisfied if we demand that the gauge fields transform under charge conjugation symmetry as
C _
U,—-U;, =U;.

Finally, we need to check if the gauge-field part of the action also preserves this transformation. We note that under Uu — U; = (UE)T we have

such that

TrU, (z) = TrU,,(z).

Finally, we note that Uu,,(z)lr = U,,,L(m) such that due to the real part P, and therefore also the full Wilson action is invariant under charge conjugation symmetry.

~5-Hermiticity
Next, we prove the 5-Hermiticity (see chapter 10) of the Wilson Dirac operator. The Dirac operator is given by
S, 1355
u W

We first note that

(G = (U.s)) = (8)1Uf = S, Ul = Gy
since for any f and g

Z F(2)'(S) g(x) = Z(()1 f(2))! = Z(g(z)*f(w +ap)t = Z f(z + apr)ig(z)
= Z:f z)lg(z —afp) =Y f(2)' S, g(x)

and therefore (S1) = S,,.

Equipped with these identities, we find that

—_ o~
DN
B W N
= =

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

—_~ o~
w W w
(A SNt
_ = =

(36)

37)

(38)

(39)

(40)

%D(U) s = s (Z V(D) +m— % Z(i&)*) ¥ (41)

= (7 Z 7#(Du)T +m— % Z(BMBH)T) (42)

- (Z WD, tm- 5 3@) (43)
= D(IMJ) .) (44)
This is equivalent to
(D)) = %D(U) (45)
and
(D)) = D(U)s - (46)

Space-time symmetries

Let us consider an n-dimensional lattice A = {ﬁ € Z"} and operations g : A — A that can be expressed as a sequence of axis exchange operations A,W and axis
reflection operations R, with

n, ifpFunp#v,

(Aun), =<1, ifp=v, , (47)
n, ifp=up,
71, ifp#u,
(Rym), = { —7, ifp=p, "’ (48)
where it is sufficient to consider A, with 1 < v.
Rotations, e.g., can be written as a combination of both. Take the rotation along the z axis of a three-dimensional vector
T Yy
y| = | -2 (49)
z z
which can be written as a Ry o Ag;.
In n dimensions we therefore have
nl2" (50)

unique non-translation space-time symmetries on a lattice. If we consider the symmetries of the Hamiltonian, n = 3 is relevant and we find 48 unique operations. The
corresponding group is called the full cubic group Oy, and the study of its irreducible representations yields good quantum numbers of the Hamiltonian. We will return to this
later.

For the action n = 4 is relevant and we have 384 unique operations. Since all of them can be written as combinations of axis-exchange and reflection operations it is
sufficient to study the behavior of the action under this restricted set of operations. The corresponding group is called hypercubic group.

Under exchange of axis, we re-label the Lorentz index of the gluon fields Uu accordingly and apply Aw» to the coordinates z. The symmetry of the gluon Wilson action under
axis exchange symmetry is trivial to see. Finally, we need to consider transformations of the fermion fields. We find axis exchange symmetry of the entire action if we
transform v and ¥ such that

1;’7/7¢ = 1/_")’;1’11’ (51)

where p' = pifu# pAv# pandp = pif p=wvandp’ = vif p = p. It can be shown that using a change of basis in spinor space for ¢ and 1 such transformations can
always be found.

The above symmetries also apply to a lattice with finite number of spatial sites IV, in each direction. For the reflection symmetry it is convenient to consider lattice sites to
run from *Nu/2 +1to Nu/2~ In this convention, the action also exhibits a reflection symmetry Ru‘ It is, however, more convenient to study instead the set of reflections of
all orthogonal directions to u that we write as P,. As an example in four dimensions Py = R; Ry R3 which can be inverted to Ry = P P, P5. The action can be shown to be
invariant under all P, if

Y(@) = Vup(Puz)
P(a) = P(Puz) Yy s
Uu(z) = Uu(Puz),
Uy(z) = Uy(Pyz — ap)!

for v # p. The corresponding calculation is straightforward.

Study of the full cubic group O, - implications for the eigenstates of the Hamiltonian

In the following, we will study the finite group Oy, in more detail in an attempt to understand the resulting good quantum numbers. We will introduce group-theoretic
concepts as needed.

As a reminder: A group is the tuple (G, o) withset Gandaob: G x G — G such that

e (Va,b,ce G)((aob)oc=ao(boc))
e (de € G)(Va € G)(eoa = aoe=a); eis unique
e Vac@)Fa'eG)acal=aloa=e¢)

A group is called finite if |G| € N.

For finite groups these studies can be performed numerically in a straightforward manner. To do so, we first need to construct a set of all group elements that are generated
by axis interchange and reflection. We do so by considering the action on a complete basis of A for n = 3 and demonstrate that the set is closed under the generating
operations.

Our first task is to associate for each g; € G'anindex i € [0, ..., |G| — 1] and to create a multiplication table M € [0, ..., |G| — 1]I%%I%I with elements

Mij=1 < gjogi=g.

To simplify the discussion, we first study the group O that is made up of all rotations before studying the full cubic group Op,.

import numpy as np
basis = [[1,0,0],[0,1,0],[0,0,1]]

def interchange(x,a,b):
xp=[xi for xi in x]
xpla]=x[b]
xp[b]=x[a]
return xp

def reflection(x,a):
xp=[xi for xi in x]
xpla]=-x[a]
return Xp

def rotatez90(x):
return [-x[1],x[0],x[2]]

def rotateX90(x):
return [x[0],-x[2],x[1]]

def find_closure(actions):

elements = [basis]

sequence = { str(basis) : [] }
n=20

while n != len(elements):

n = len(elements)
for a in actions:
for e in elements:
ep = a(e)
if ep not in elements:
elements.append(ep)
sequence[str(ep)] = sequence[str(e)] + [a]

return elements, sequence

First only study group of rotations, i.e., cubic group O

elements = find_closure([
#lambda e: [interchange(b,0,1) for b in e],
#lambda e: [interchange(b,0,2) for b in e],
#lambda e: [interchange(b,1,2) for b in e],
#lambda e: [reflection(b,0) for b in e],
#lambda e: [reflection(b,1) for b in e],
#lambda e: [reflection(b,2) for b in e],
lambda e: [rotateZ90(b) for b in e],
lambda e: [rotateX90(b) for b in e]

1)

print(len(elements[0]))

24

def apply(el, e0, idx):
for acc in el[l][str(el[0][idx])]:
e0 = acc(e0)
return e0

def multiplication_table(el, ba):
n=len(el[0])
M=[[-1 for i in range(n)] for j in range(n)]
for i in range(n):
ei = apply(el, ba, i)
for j in range(n):
eji = apply(el, ei, j)
M[i][]j] = el[0].index(eji)
return M

mt = multiplication_table(elements, basis)

print(np.array(mt))

N oW

17 15 23 9 18

owN U Ao
o
=
[
©

0
1
2
3
4 16 14 22
5
6
7
8

[9 8 11 10 13 12 15 14

9
6
7
4
19 13 21 11 16 1 20 15 17 5 23
2
3
[10 9 8 11 14 13 12 15 0
1
4

N}
®uU s WN
IS

[12 20 6 18 0 23 10 19

[13 21 719 1201116 5231517 922 318 2 6 10 14 8 4 0 12]
[14 22 416 221 8 17 6 20 12 18 10 23 0 19 3 7 1115 9 5 1 13]
[15 23 517 322 918 721 1319 1120 116 0 4 8 12 10 6 2 14]
[16 14 22 4 17 221 8 18 6 20 12 19 10 23 015 3 7 1113 9 5 1]
[17 1523 518 322 919 7 2113 16 1120 112 0 4 8 14 10 6 2]
[18 12 20 6 19 0 23 10 16 4 22 14 17 821 213 1 5 91511 7 3]
[19 13 21 7 16 120 11 17 523 1518 922 314 2 6 10 12 8 4 0]
[20 6 18 12 23 10 19 0 22 14 16 421 217 8 5 913 1 7 315 11]
[21 7 19 13 20 11 16 1 23 1517 522 318 9 6 1014 2 4 0 12 8]
[22 4 16 14 21 8 17 2 20 12 18 623 019 10 7 1115 3 5 113 9]
[23 517 1522 918 3211319 720 116 11 4 812 0 6 2 14 10]]
def find identity(el, ba):

return el[0].index(ba)
ident = find_identity(elements, basis)
assert ident == 0 # for convenience always have first element be the identity

print(ident)

def inverse list(mt, e):
return [x.index(e) for x in mt]

inv = inverse list(mt, ident)
print(inv)

0
(o, 3, 2, 1, 12, 18, 6, 20, 8, 9, 10, 11, 4, 22, 14, 16, 15, 17, 5, 23, 7, 21, 13, 19]

test inverses
print([mt[i][inv[i]] for i in range(len(inv))])
print([mt[inv[i]][i] for i in range(len(inv))])

to, o, o, o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, 0O, O]
(o, o, o, o, o, o, o, o, o, o, o, o, o, 0o, 0, 0o, o, 0, 0, 0, 0, 0, O, O]

It is convenient to identify the index 0 with the identity element e.

Next, we consider T, : G — GL(V) that maps group elements to invertible matrices acting on a finite-dimensional vector space V. We call I', a representation of the
group if it preserves its structure, i.e.,

(Va,b € G)(I'(a)L'(b) =T',(aob)).
In other words, it is a group homomorphism between G and the general linear group over vector space V.

If there is a lower-dimensional subspace V' of V for which (Vg € G,v € V’)(Fr(g)v € V') we call the representation I, reducible and the projection of I'; to V' a sub-
representation. In other words I, has a block-matrix form in the appropriate basis. If no such sub-representation exists, we call I, irreducible.

If G describes a symmetry of a Hamiltonian H, the Hamiltonian has a corresponding block structure and the spectrum of H can be classified following the irreducible
representations. This will be one of the main uses of representation theory in the remainder of this lecture.

So the next question is, given our group G, how many irreducible representations are there? For a finite group there will always be a finite number and there is a
straightforward method to find out how many there are.

To this end, we first define a conjugacy class C as follows: For all a,b € G we say a and b are conjugate (a ~ b) if there is a group element g € G such that ga_zf1 =b.
This defines an equivalence relation, i.e., if a ~ band b ~ c then a ~ c. Therefore it splits the group G in separate conjugacy classes, where a member of each class is
conjguate to all others but not conjugate to members of a different class.

It is straightforward to construct the conjugacy classes of a finite group, as we will do below, and one can show that the number of conjugacy classes is exactly the number
of irreducible representations (irreps) of the group!

find conjugation classes / invariant subspaces
def find_conjugation_classes(mt, inv, ident):
n=len(inv)
tostudy=1list(range(n))
classes = []
while len(tostudy) > 0:
X = tostudy[0]
conjugate_to = []
for i in range(n):
conjugate_to.append(mt[mt[i][x]][inv[i]])
conjugate_to = set(conjugate_to)
for y in conjugate_to:
tostudy.remove(y)
classes.append(conjugate_to)
return classes

classes = find_conjugation_classes(mt, inv, ident)
print(classes)

({0}, {1, 3, 4, 12, 19, 23}, {8, 2, 10}, {5, 7, 13, 15, 16, 18, 20, 22}, {6, 9, 11, 14, 17, 21}]

So there will be five irreps for O. Next, we define a few obvious representations and test them.

find a matrix representation of individual elements
def matrix vector(l):

transform a lattice vector

return np.matrix(elements[0][1]).T

def matrix trivial(l):
return np.matrix([[1]])

def matrix determinant(l):
return np.matrix([[np.linalg.det(matrix_vector(l))]], dtype=np.int32)

def matrix regular(l):
M = np.zeros(shape=(len(mt),len(mt)), dtype=np.int32)
for i in range(len(mt)):
M[i,mt[l][i]] = 1
return np.matrix(M)

test if matrix is a group representation
def test_representation(matrix):
print(matrix._ name_)
for i in range(len(mt)):
for j in range(len(mt)):
eps = np.linalg.norm(matrix(j) * matrix(i) - matrix(mt[i][]]))
assert eps < le-13

test_representation(matrix_ vector)
test_representation(matrix regular)
test_representation(matrix trivial)

matrix vector
matrix regular
matrix trivial

Next, we need a test if a representation is irreducible. To this end, we first define the character of a representation r

Xr(g) =Tr Fr(g) .

It is straightforward to see that the character of two elements a, b € G is identical if they belong to the same conjugacy class. We call such functions class functions.

Let C be the set of all conjugacy classes of group G, then the matrix
(Xr)c
for ¢ € C and irreps 7 is the so-called character table of the group. One writes c in the columns and 7 in the rows.

Next, we define the inner product of two class functions x : G — Rand ¢ : G — R as

> x(9)¢(9) -

1
(x,) = WgEG

Finally, one can show that (x;, x,) = 1if and only if is irreducible.

We therefore now know how many irreducible representations there are and how to check if a representation is irreducible. We next check the representations that we

already constructed above and then figure out a way to construct the remaining irreps.

Before doing so, we note that from Schur's orthogonality theorem it follows that two rows in the character table are orthonormal with respect to the above inner product. We
also note that Xr(e) is the dimensionality of the irreducible representation. By convention one writes the conjugacy class containing e in the first column of the character

table and the trivial representation that maps everything to 1 to the first row.

def fmt(row):

return ", ".join(["%3.0f" % i for i in row])

def character_table_row(irrep):
return [np.trace(irrep(list(c)[0])) for c in classes]

def inner_ product(a, b):
return sum([ai*bi*len(ci) for ai, bi, ci in zip(a, b, classes)]) / len(mt)

characters_trivial = character_ table row(matrix_trivial)
characters_vector = character_ table_row(matrix_vector)

print(inner_ product(characters_trivial, characters_vector))
print(inner_ product(characters_trivial, characters_trivial)) #
print(inner_product(characters_vector, characters_vector)) # == 1 -> irreducible

1 -> irreducible

print("|Cc|",fmt([len(c) for c in classes]))
print("-" * 30)

print("Al ", fmt(characters_trivial))
print("T1 ", fmt(characters_vector))

Al i, 1, 1, 1,
T1 3, 1, -1, o0, -1

characters_regular = character_table_row(matrix regular)
print(inner_ product(characters_regular, characters_regular)) # not irreducible

24.0
The names A1 for the trivial representation and T1 for the representation transforming as a vector are convention but the rows in the character table are the unique

fingerprint that defines them.

In order to find all irreps, we can study tensor products of existing representations.

product representation
def product_matrix(A, B):

def _mat(i):

return np.kron(A(i),B(i))
_mat._name__ = A._ name__ + "_X " + B._ name_
return _mat

matrix_vector_vector = product_matrix(matrix_vector, matrix vector)
test_representation(matrix_vector_vector)

characters_vector vector = character_table row(matrix vector_vector)
print(inner_product(characters_vector_vector, characters_vector_vector)) # not irreducible

#tA=[[1,2],[3,4]]
#tB=[[1.4,2.2],[1.2,3.9]]
#print(np.kron(np.matrix(tA),np.matrix(tB))-np.matrix([[tA[i1][jl1]*tB[i2][j2] for jl in range(2) for j2 in range(2)] for il in range(2) for i2

matrix vector X matrix_vector
4.0

print(inner_product(characters_vector_vector, characters_vector)) # contains both T1 and Al
print(inner_product(characters_vector_vector, characters_trivial))

In order to find irreducible representations again, we need to study projections of the product space down to invariant subspaces. One can show that given a representation
T, : G — GL(V) and a character x; of anirrep s,

P(x.) = dT‘T(lv) >l (56)
ge

projects to the corresponding invariant subspace V' of the irreducible representation. Therefore

P(xs)T,P(xs) (57)

is either zero or the irreducible representation s.

def projection(matrix, character_row):
ret = 0.0 * matrix(ident)
for chi, ¢ in zip(character_row, classes):
for ci in c:
ret += matrix(ci)*chi
P = np.matrix(ret * character_row[0] / len(mt))
assert np.linalg.norm(P*P - P) < le-14
return P

print(projection(matrix_vector, characters_vector))
print(projection(matrix_vector, characters_trivial))

print(projection(matrix_trivial, characters_vector))
print(projection(matrix trivial, characters_trivial))

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.1]
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.1]

[r0.11
(1.1

print(projection(matrix vector_ vector, characters_vector))
print(projection(matrix_vector_ vector, characters_trivial))

[[0. 0. 0 0. 0. 0. 0. 0. 0.]
[0. 0.5 0. =-0.5 0. 0. 0. 0. 0.]

[0. 0. 0.5 0. 0. 0. =-0.5 0. 0.]

[0. -0.5 0 0.5 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 0.5 0. =0.5 0.]

[0. 0. =-0.5 0. 0. 0. 0.5 0. 0.]

[0. 0. 0. 0. 0. =-0.5 0. 0.5 0.]

[0. 0. 0. 0. 0. 0. 0. 0. 0.]]

[[0.33333333 0. 0. 0. 0.33333333 0.
0. 0. 0.33333333]

[o. 0. 0. 0. 0. 0.
0. 0. 0. 1

[o. 0. 0. 0. 0. 0.
0. 0. 0.]

[o. 0. 0. 0. 0. 0.
0. 0. 0.]

[0.33333333 0. 0. 0. 0.33333333 0.
0. 0. 0.33333333]

[o. 0. 0. 0. 0. 0.
0. 0. 0.]

[o. 0. 0. 0. 0. 0.
0. 0. 0.]

[o. 0. 0. 0. 0. 0.
0. 0. 0.]

[0.33333333 0. 0. 0. 0.33333333 0.
0. 0. 0.33333333]]

It is straightforward to show that properties such as symmetrization/antisymmetrization of basis vectors in the product space create invariant subspaces. These subspaces
may or may not correspond to irreducible representations, however, they already reduce the dimensionality of the relevant space and therefore are powerful tools to identify
the remaining irreps.

def antisymmetric_projector(n):

ei = [np.zeros(shape=(n,)) for i in range(n)]
for i in range(n):
eifijri] =1

00 01 10 11
(|o1> - [10>)(<01] - <10/) / 2
#vivij->viviji-vijvi
P = sum([
np.matrix(np.outer(np.kron(ei[i],ei[Jj]) - np.kron(ei[j],ei[i]),
np.kron(ei[i],ei[]j]) - np.kron(ei[]j],ei[i])))/2
for i in range(n) for j in range(i)])

assert np.linalg.norm(P*P - P) < le-14
return P

symmetric_projector(n):

ei = [np.zeros(shape=(n,)) for i in range(n)]
for i in range(n):
eifijri] =1

00 01 10 11
(|01> + [10>)(<01] + <10[) / 2 + [00><00] + [11><11]
#vivij->viviji+vijivi
P = sum([
np.matrix(np.outer(np.kron(ei[i],ei[j]) + np.kron(ei[j],ei[i]),
np.kron(ei[i],ei[]j]) + np.kron(ei[j],ei[i])))/4.
for i in range(n) for j in range(n)])

assert np.linalg.norm(P*P - P) < le-14
return P

diagonal_projector(n):

ei = [np.zeros(shape=(n,)) for i in range(n)]
for i in range(n):
ei[i][i] =1

[00><00] + [11><11]
#v._iv j->v iv j\delta {ij}
P = sum([
np.matrix(np.outer(np.kron(ei[i],ei[i])
np.kron(ei[i],ei[i])))
for i in range(n)])

assert np.linalg.norm(P*P - P) < le-14
return P

invert_projector(projector):
def _proj(n):
P = projector(n)
P = np.matrix(np.eye(n*n)) - P
assert np.linalg.norm(P*P - P) < le-14
return P
return _proj

traceless_projector(n):

ei = [np.zeros(shape=(n,)) for i in range(n)]
for i in range(n):
eifi][i] =1

([ii>-\sum 1 [11> / ndim)(<ii[-\sum 1 <11 / ndim) + sum {il!=j} [ij><ij]
#vivij->viviji-v1vl]1\delta {ij} / ndim
P = sum([
np.matrix(np.outer(np.kron(ei[i],ei[j]),np.kron(ei[i],ei[]])))
for i in range(n) for j in range(n) if i != j])

sll = sum([np.kron(ei[l],ei[l]) for 1 in range(n)]) / n
P += sum([
np.matrix(np.outer(np.kron(ei[i],ei[i]) - sll,np.kron(ei[i],ei[i]) - sll))

for i in range(n)])

assert np.linalg.norm(P*P - P) < le-14
return P

product representation

def

projected product_matrix(A, B, projectors):

nl = len(A(0))
n2 = len(B(0))
assert nl == n2

P = projectors[0](nl)
for p in projectors[l:]:
P =P * p(nl)

def _mat(i):

return P*np.kron(A(i),B(1i))*P
_mat._name__ = A._ name__ + "_projected " + B._ name_
return _mat

matrix a vector_vector = projected product matrix(matrix vector, matrix_vector,

[antisymmetric_projector])

test_representation(matrix_a_vector_vector)
characters_a_vector_vector = character_table row(matrix_a vector_vector)
print(inner_product(characters_a vector_ vector, characters_a vector_vector)) # is irreducible

print("|C|",fmt([len(c) for c in classes]))
print("-" * 30)

print("Al ", fmt(characters_trivial))
print("T1 ", fmt(characters_vector))
print("Avv", fmt (characters_a_vector_vector)) # but unfortunately already known, it is the Tl representation!

matrix_vector_projected matrix_vector
1.0
le] 1, 6, 3, 8, 6

Al i, 1, 1, 1, 1
T1 3, 1, -1, 0, -1
AVV 3, 1, -1, 0, -1

matrix s_vector_ vector = projected product matrix(matrix vector, matrix_vector,
[symmetric_projector])

test_representation(matrix_s_vector_vector)

characters_s_vector_vector = character_ table row(matrix_s_vector_vector)

print(inner_product(characters_s_vector_vector, characters_s_vector_vector)) # reducible

matrix_vector_projected matrix_vector
3.0

only look at off-diagonal part
matrix s_offdiag vector_vector = projected product_matrix(matrix_vector, matrix_vector,
[invert_projector(diagonal projector),symmetric_projector])
test_representation(matrix s_offdiag_vector_vector)
characters_s_offdiag vector_vector = character_ table_ row(matrix_s_offdiag vector_vector)
print(inner_ product(characters_s_offdiag vector_vector, characters_s_offdiag vector_ vector)) # irreducible

print("|C|",fmt([len(c) for c in classes]))

print("-" * 30)

print("Al ",fmt(characters_trivial))

print("T1 ",fmt(characters_vector))

print("T2 ",fmt(characters_s_offdiag_vector vector)) # new irrep!

matrix vector_ projected_matrix_vector
1.0
el 1, 6 3, 8 6

Al 1, 1, 1, 1, 1
T1 3, 1, -1, o0, -1
T2 3, -1, -1, o0, 1

now look at diagonal part

matrix diag_vector_vector = projected_product_matrix(matrix_vector, matrix_ vector,
[diagonal_projector])

test_representation(matrix_diag_vector_vector)

characters_diag_vector_vector = character_table_row(matrix diag_vector_vector)

print(inner_product(characters_diag_vector_vector, characters_diag vector_vector)) # reducible

matrix vector_ projected matrix_vector
2.0

only the traceless diagonal part

matrix diag_traceless_vector_vector = projected_product matrix(matrix vector, matrix vector,
[diagonal_projector,traceless_projector])

test_representation(matrix_diag_ traceless_vector_vector)

characters_diag_traceless_vector vector = character_ table row(matrix_diag traceless_vector_vector)

print(inner product(characters_diag_traceless_vector vector, characters_diag_traceless_vector vector)) # irreducible

print("|C|",fmt([len(c) for c in classes]))

print("-" * 30)

print("Al ",fmt(characters_trivial))

print("T1 ", fmt(characters_vector))

print("T2 ",fmt(characters_s_offdiag_vector_vector))

print("E ",fmt(characters_diag_ traceless_vector_vector)) # new irrep!

matrix_vector_projected matrix_vector

1.0000000000000004

|c| 1, 6, 3, 8, 6
Al i, 1, 1, 1,
T1 3, 1, -1, o0, -1
T2 3, -1, -1, o,
E 2, 0o, 2, -1, 0

what was the trace diagonal part? sounds like trivial representaton

matrix diag_trace_vector vector = projected_product matrix(matrix vector, matrix vector,
[diagonal_projector,invert_projector(traceless_projector)])

test_representation(matrix diag_trace_vector_ vector)

characters_diag_trace_vector_vector = character table row(matrix diag_trace_vector_ vector)

print(inner_ product(characters_diag trace_vector_vector, characters_diag_trace_vector vector)) # irreducible

print("|C|",fmt([len(c) for c in classes]))

print("-" * 30)

print("Al ",fmt(characters_trivial))

print("T1 ", fmt(characters_vector))

print("T2 ",fmt(characters_s_offdiag_vector_vector))

print("E ",fmt(characters_diag_ traceless_vector_vector))
print("?? ",fmt(characters_diag_trace_ vector_vector)) # Al again

matrix vector_ projected_matrix_vector
1.0
el 1, 6 3, 8 6

Al i, 1, 1, 1, 1
T1 3, 1, -1, o, -1
T2 3, -1, -1, o, 1

we still need one more, take direct product of two irreps and subtract all known irreps
should not matter unless no new irrep is in product (T2 \otimes T2 does, e.g., not work)
def orthogonal matrix(A, character_rows):
P = A(ident) * 0.0
for cr in character_ rows:
P += np.matrix(projection(A, cr))

P = np.matrix(np.eye(len(P))) - P
assert np.linalg.norm(P*P - P) < le-14

def mat(i):

return P*A(1)*P
mat. name = A._name__ + " _projected"
return _mat

matrix last_irrep = orthogonal matrix(
#product matrix(matrix diag traceless vector vector,matrix diag traceless_vector vector),
#product _matrix(matrix s offdiag vector vector, matrix vector),
product_matrix(matrix_vector,product matrix(matrix_vector,matrix vector)),

characters_trivial,

characters_vector,

characters_s_offdiag vector_vector,
characters_diag_traceless_vector_vector

1)

test_representation(matrix last irrep)
characters_last_irrep = character_ table row(matrix_ last_irrep)
print(inner_ product(characters_last_irrep, characters_last_ irrep)) # irreducible!

print("|C|",fmt([len(c) for c in classes]))

print("-" * 30)

print("Al ",fmt(characters_trivial))

print("T1 ", fmt(characters_vector))

print("T2 ",fmt(characters_s_offdiag_vector_vector))

print("E ",fmt(characters_diag traceless_vector_vector))

print("A2 ",fmt(characters_last_irrep)) # looks like an irrep! we are done

matrix vector_ X matrix vector X matrix vector_ projected
1.0000000000000004
|c| 1, 6, 3, 8, 3

Al i, 1, 1, 1,
T1 3, 1, -1, o0, -1
T2 3, -1, -1, o,

E 2, o0, 2, -1, ©
A2 i, -1, 1, 1, -1

Now we have the complete character table of O! This allows us to project the irreps out of any representation of G. This will be useful, when we construct operators to study
the spectrum of H.

We have shown above, e.g., that V; = Tl’%’d’ transforms as a vector under O, i.e., they transform in the T1 representation.

We also have already seen in the last chapter that a bilinear V; creates a meson-type state (made out of one quark and one anti-quark). If we now want to systematically

study the spectrum of two suchs mesons, the above discussion would tell us that the operators

1
VT = (Vi + V)1~ 8g) (58)

transform in T2. Note that (¢, j) = (z,y), (2, 2), (y, z) are all independent components of the three-dimensional T2 representation (check first column of the character
table). Similarly we can create operators that transform in all other irreps and therefore study the complete spectrum of two-meson states.

Finally, we now include the reflections and complete this chapter by studying the full cubic group Op,.

elements = find_closure([
lambda e: [interchange(b,0,1) for b in e],
lambda e: [interchange(b,0,2) for b in e],
lambda e: [interchange(b,1,2) for b in e],
lambda e: [reflection(b,0) for b in e],
lambda e: [reflection(b,1) for b in e],
lambda e: [reflection(b,2) for b in e]

1)

mt = multiplication_table(elements, basis)

ident = find_identity(elements, basis)

assert ident == 0 # for convenience always have first element be the identity
inv = inverse_list(mt, ident)

print(len(elements[0]))
classes = find conjugation_classes(mt, inv, ident)
print(classes)

48
({0}, {32, 1, 2, 4, 40, 19}, {33, 3, 35, 5, 39, 41, 21, 23}, {24, 12, 6}, {7, 8, 13, 16, 26, 28}, {9, 11, 45, 15, 47, 17, 27, 29}, {10, 43, 44,
46, 14, 25}, {18, 36, 30}, {34, 37, 38, 20, 22, 31}, {42}]

characters_trivial = character_ table row(matrix_trivial)
characters_determinant = character_table_row(matrix determinant)
characters_vector = character_table_row(matrix_vector)

print(inner_product(characters_trivial, characters_trivial)) # == 1 -> irreducible
print(inner_product(characters_determinant, characters_determinant)) # == -> irreducible
print(inner_product(characters_vector, characters_vector)) # == 1 -> irreducible

print("|C|",fmt([len(c) for c in classes]))

print("-" * 60)

print("Al+",fmt (characters_trivial))

print("Al-",fmt(characters_determinant))

print("T1-",fmt(characters_vector)) # plus/minus for relative sign of first and last character of 1d

— e
— o o o

C 1, 6, 8, 3, 6, 8, 6, 3, 6, 1

Al+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
al- 1, -1, 1, -1, 1, -1, 1, 1, -1, -1
- 3 1, o 1, 1, o0, -1, -1, -1, -3

matrix a vector_ vector = projected product matrix(matrix vector, matrix_vector,
[antisymmetric_projector])

test_representation(matrix_a_vector_vector)

characters_a_vector_vector = character_table row(matrix_a vector_vector)

print(inner_product(characters_a_ vector_vector, characters_a_vector_vector)) # is irreducible

print("|C|",fmt([len(c) for c in classes]))
print("-" * 60)
print("Al+",fmt(characters_trivial))
print("Al-",fmt(characters_determinant))
print("T1-",fmt(characters_vector))
print("T1+",fmt(characters_a_vector_vector))

matrix vector_projected matrix_vector
1.0
] 1, 6 8 3 6 8 6 3, 6 1

al+ 1, 1, 1, 1, 1, , 1, 1, 1, 1
al- 1, -1, 1, -1, 1, -1, 1, 1, -1, -1
- 3, 1, o, 1, 1, o, -1, -1, -1, -3
T+ 3, -1, o, -1, 1, o, -1, -1, 1, 3

matrix s_offdiag vector_vector = projected product matrix(matrix_vector, matrix_vector,
[symmetric_projector,invert_projector(diagonal_ projector)])

test_representation(matrix s_offdiag_vector_vector)

characters_s_offdiag vector vector = character table row(matrix_s_offdiag vector_ vector)

print(inner_ product(characters_s_offdiag vector vector, characters_s_offdiag vector_ vector)) # is irreducible

print("|C|",fmt([len(c) for c in classes]))
print("-" * 60)

print("Al+",fmt(characters_trivial))
print("Al-",fmt(characters_determinant))
print("T1-",fmt(characters_vector))
print("T1+",fmt(characters_a_vector_vector))
print("T2+",fmt(characters_s_offdiag_vector_vector))

matrix vector_ projected_matrix_vector

1.0
|c| 1, 6, 8, 3, 6, 8, 6, 3, 6, 1
al+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
al- 1, -1, 1, -1, 1, -1, 1, 1, -1, -1
- 3 1, o 1, 1, o0, -1, -1, -1, -3
T+ 3, -1, o, -1, 1, o0, -1, -1, 1, 3
T2+ 3, 1, o, -1, -1, o, 1, -1, -1, 3

can find a partner irrep by multiplying any irrep with a 1d irrep

matrix det_s_offdiag_vector vector = product matrix(matrix_s_offdiag vector vector, matrix determinant)
test_representation(matrix det_s_offdiag_vector_vector)

characters_det_s_offdiag_vector_vector = character_ table row(matrix det_s_offdiag_vector_vector)

print(inner product(characters_det_s_offdiag vector_vector, characters_det_s_offdiag vector vector)) # is irreducible

print("|C|",fmt([len(c) for c in classes]))

print("-" * 60)

print("Al+",fmt(characters_trivial))
print("Al-",fmt(characters_determinant))
print("T1-",fmt(characters_vector))
print("T1+",fmt(characters_a_vector_vector))
print("T2+",fmt(characters_s_offdiag_vector_vector))
print("T2-",fmt(characters_det_s_offdiag vector_vector))

matrix_vector_projected matrix_ vector_X matrix_determinant
1.0
|c| 1, 6, 8, 3, 6, 8, 6, 3, 6, 1

al+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
al- 1, -1, 1, -1, 1, -1, 1, 1, -1, -1
?™- 3, 1, o, 1, 1, o, -1, -1, -1, -3
T+ 3, -1, o0, -1, 1, o, -1, -1, 1, 3
T2+ 3, 1, o, -1, -1, o, 1, -1, -1, 3
T2- 3, -1, o0, 1, -1, o, 1, -1, 1, -3

matrix diag_traceless_vector_vector = projected_product matrix(matrix vector, matrix vector,
[traceless_projector,diagonal_projector])

test_representation(matrix diag_traceless_vector_vector)

characters_diag_traceless_vector vector = character_ table_row(matrix diag traceless_vector_vector)

print(inner_product(characters_diag_traceless_vector_vector, characters_diag_traceless_vector_vector)) # is irreducible

matrix det_diag traceless_vector_ vector = product_matrix(matrix_diag_traceless_vector_vector, matrix_determinant)
test_representation(matrix det_diag traceless_vector_ vector)

characters_det_diag_traceless_vector_vector = character table row(matrix_det_diag_ traceless_vector_vector)

print(inner product(characters_det_diag traceless_vector vector, characters_det diag_traceless_vector_vector)) # is irreducible

print("|c|",fmt([len(c) for c in classes]))

print("-" * 60)

print("Al+",fmt(characters_trivial))
print("Al-",fmt(characters_determinant))
print("T1-",fmt(characters_vector))
print("T1+",fmt(characters_a_vector_vector))

print("T2+",fmt (characters_s_offdiag_vector_vector))
print("T2-",fmt(characters_det_s_offdiag vector_vector))
print("E+ ", fmt(characters_diag traceless_vector_vector))
print("E- ",fmt(characters_det_diag_traceless_vector_vector))

matrix vector projected_matrix_vector

1.0000000000000004

matrix vector projected_matrix_vector_X matrix determinant
1.0000000000000004

le] 1, 6 8 3, 6 8 6, 3, 6, 1

Al+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Al- 1, -1, 1, -1, 1, -1, 1, 1, -1, -1
- 3, 1, o, 1, 1, o0, -1, -1, -1, -3
T+ 3, -1, o, -1, 1, o0, -1, -1, 1, 3
T2+ 3, 1, o, -1, -1, o, 1, -1, -1, 3
T2- 3, -1, o, 1, -1, o, 1, -1, 1, -3
E+ 2, o0 -1, 2, o0 -1, o0, 2, 0, 2
E- 2, o0 -1, -2, o0 1, o0, 2, 0, =2

matrix last_irrep_minus = orthogonal matrix(
product_matrix(product matrix(matrix vector, matrix vector), matrix_vector),

characters_trivial,

characters_determinant,

characters_vector,
characters_a_vector_vector,
characters_s_offdiag_vector_vector,
characters_diag_traceless_vector_vector,
characters_det_s_offdiag_vector_vector,
characters_diag_traceless_vector_vector,
characters_det_diag_traceless_vector_ vector

1)

test_representation(matrix last_irrep minus)
characters_last_irrep minus = character_table_row(matrix last_ irrep minus)
print(inner product(characters_last_irrep minus, characters_last irrep minus)) # irreducible!

matrix last_irrep_plus = product matrix(matrix_last_irrep minus, matrix determinant)
test_representation(matrix last_irrep plus)

characters_last_irrep plus = character_table row(matrix last_irrep_plus)
print(inner_product(characters_last_irrep_plus, characters_last_irrep plus)) # is irreducible

print("|C|",fmt([len(c) for c in classes]))
print("-" * 60)

print("Al+",fmt(characters_trivial))
print("Al-",fmt(characters_determinant))
print("T1-",fmt(characters_vector))
print("T1+",fmt(characters_a_vector_vector))

print("T2+",fmt (characters_s_offdiag_vector_vector))
print("T2-",fmt(characters_det_s_offdiag vector_vector))
print("E+ ",fmt(characters_diag traceless_vector_vector))
print("E- ",fmt(characters_det_diag_traceless_vector_vector))
print("A2-",fmt(characters_last_irrep minus))
print("A2+",fmt(characters_last_irrep plus))

And we have the complete character table with all irreps of the full cubic group!

matrix vector X _matrix_vector_X matrix vector projected

1.0000000000000007

matrix vector X matrix vector_ X matrix vector_projected X matrix_determinant
1.0000000000000007

|c| 1, 6, 8, 3, 6, 8, 6, 3, 6, 1

al+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
al- 1, -1, 1, -1, 1, -1, 1, 1, -1, -1
- 3, 1, o, 1, 1, o, -1, -1, -1, -3
T+ 3, -1, o, -1, 1, o, -1, -1, 1, 3
T2+ 3, 1, o, -1, -1, o, 1, -1, -1, 3
T2- 3, -1, o, 1, -1, o, 1, -1, 1, -3
E+ 2, o, -1, 2, o0, -1, o0, 2, 0, 2
E- 2, o, -1, -2, o0, 1, o0, 2, 0, -2
a2- 1, 1, 1, -1, -1, -1, -1, 1, 1, -1
a2+ 1, -1, 1, 1, -1, 1, -1, 1, -1, 1

We end this chapter by demonstrating the orthonormality of the irreps
characters = |
characters_trivial,
characters_determinant,
characters_vector,
characters_a_vector_vector,
characters_s_offdiag_vector_vector,
characters_det_s_offdiag vector_vector,
characters_diag_traceless_vector_vector,
characters_det_diag_traceless_vector_vector,
characters_last_irrep_minus,
characters_last_irrep_plus

for i in range(len(characters)):
for j in range(len(characters)):
eps = abs(inner_product(characters[i],characters[j]) - (1 if i == j else 0))

In

assert eps < le-13

We can now use this character table to project out any irrep of any given product representation!

