
Lattice QCD I - Christoph Lehner

Chapter 10: fermions on a lattice
Adding fermions to our so-far purely bosonic theories requires several modifications that we will now discuss.

Fermionic path integral

The quantization of bosonic fields  and their conjugate momenta fields  required the imposition of commutation relations

extending trivially the derivation of the path integral for the one-dimensional Hamiltonian systems.

The Fermi exclusion principle, however, is incompatible with the above quantization rules. In particular, we need  corresponding to the limitation that fermions occupy

each possible state with occupation number 0 or 1. This can be achieved modifying the above relations to anticommutator relations

where .

Let us first consider the case of a single fermionic degree of freedom  which, one could write in matrix form as

which would indeed satisfy . We can complete this variable by a canonical momentum

for which the above anticommutator relations hold.

Because of  and  we can always consider vectors and dual vectors

which satisfy

based on any  and  for which  and  do not vanish. In our example, this could be

In our derivation of the bosonic path integral, we were next using completeness relations

for which eigenvectors  of  were needed. The fermionic operators , however, have no non-zero eigenvalues and no basis of eigenvectors in the usual sense. We

therefore will need to devise an alternative approch.

We first note that in our example

together with  forms a basis of the space in which  and  act. To complete the discussion along the lines of the bosonic path integral, we follow the nice exposition of

chapter 9.5 of Steven Weinberg's book The Quantum Theory of Fields I.

Let us consider the full list of operators  and  endowed with anticommutation rules of Eq.  and an additional algebra of Grassmann variables  and  that satisfy

The state

then satisfies

with state  for which  and  for which . We can then also define a state

q̂ a p̂a

[q̂ a, p̂b] = iδab ,

[q̂ a, q̂ b] = 0 ,

[p̂a, p̂b] = 0

(1)

(2)

(3)

q̂ 2
a = 0

{q̂ a, p̂b} = iδab ,

{q̂ a, q̂ b} = 0 ,

{p̂a, p̂b} = 0 ,

(4)

(5)

(6)

{A,B} = AB + BA

q̂

q̂ = (
0 i

0 0
) (7)

q̂
2 = 0

p̂ = (
0 0

1 0
) (8)

q̂
2 = 0 p̂

2 = 0

|0⟩ = q̂ |Ω⟩ ,

⟨0| = ⟨Ω|p̂

(9)

(10)

q̂ |0⟩ = ⟨0|p̂ = 0 (11)

|Ω⟩ ⟨Ω| |0⟩ ⟨0|

|0⟩ = (
1

0
) ,

⟨0| = ( 1 0 ) .

(12)

(13)

1 = ∫ dq|q⟩⟨q| (14)

|q⟩ q̂ q̂

p̂|0⟩ = (
0

1
) (15)

|0⟩ q̂ p̂

q̂ a p̂a (4) qa pq

{qa, qb} = {qa, pb} = {qa, q̂ b} = {qa, p̂b} = {pa, pb} = {pa, q̂ b} = {pa, p̂b} = 0 . (16)

|q⟩ = exp(−i∑
a

p̂aqa)|0⟩ (17)

q̂ a|q⟩ = qa|q⟩ (18)

|0⟩ q̂ a|0⟩ = 0 ⟨0| ⟨0|p̂a = 0
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that satisfies

Since the order of factors is now important, we define the canonical and reverse canonical product explicitly as

Homework: Show that equations  and  hold.

At this point we have again a concept similar to eigenvectors and eigenvalues for the bosonic degrees of freedom. We lack, however, a completeness relation for the

corresponding states.

One first can show that

Homework: Show this equation.

Before completing the discussion of completeness relations, we shall see that this product can play the role of a delta function similar to the bosonic case.

We can similarly show that

Next, we compute the inner product between two such states

with

since  commute with each other and where  is the number of operators  and , respectively. Similarly, we find

Extending the  example given at the beginning of this section, a basis of the space within which the  and  act is given by

with

⟨q| = ⟨0|(∏
a

q̂ a) exp(−i∑
a

qap̂a) (19)

⟨q|q̂ a = ⟨q|qa . (20)

∏
a

q̂ a = q̂ 1q̂ 2 ⋯ q̂ n ,

~
∏

a
q̂ a = q̂ nq̂ n−1 ⋯ q̂ 1 .

(21)

(22)

(18) (20)

⟨q ′|q⟩ = ∏
a

(qa − q ′
a) (23)

p̂a|p⟩ = pa|p⟩ ,

⟨p|p̂a = ⟨p|pa ,

|p⟩ = exp(−i∑
a

q̂ apa)(∏
a

p̂a) |0⟩ ,

⟨p| = ⟨0| exp(−i∑
a

paq̂ a) ,

⟨p′|p⟩ = ∏
a

(p′
a − pa) .

(24)

(25)

(26)

(27)

(28)

⟨q|p⟩ = ⟨q| exp(−i∑
a

q̂ apa)(∏
a

p̂a) |0⟩

= ⟨q| exp(−i∑
a

qapa)(∏
a

p̂a) |0⟩

= exp(−i∑
a

qapa)⟨q|(∏
a

p̂a) |0⟩

= exp(−i∑
a

qapa)⟨0|(∏
a

q̂ a) exp(−i∑
a

qap̂a)(∏
a

p̂a) |0⟩

= exp(−i∑
a

qapa)⟨0|(∏
a

q̂ a)(∏
a

exp(−iqap̂a)p̂a) |0⟩

= exp(−i∑
a

qapa)⟨0|(∏
a

q̂ a)(∏
a

(p̂a − iqap̂
2
a)) |0⟩

= exp(−i∑
a

qapa)⟨0|(∏
b

q̂ b)(∏
a

p̂a) |0⟩

= χn exp(−i∑
a

qapa) = χn exp(i∑
a

paqa)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

χn = in(−1)n(n−1)/2 (37)

q̂ apa n q̂ a p̂a

⟨p|q⟩ = exp(−i∑
a

paqa) . (38)

n = 1 q̂ a p̂a

|a, b, …⟩ = p̂ap̂b ⋯ |0⟩ ,

⟨a, b, … | = ⟨0| ⋯ (−iq̂ b)(−iq̂ a)

(39)

(40)



If we now consider again the state

we note that we can expand any state  in this basis by considering the coefficients of  in  which we denote by . We therefore can write

In order to introduce a sum over states it will therefore be very useful to introduce an operation that projects out the coefficients of  from such expressions. This can

be done using the Berezin integration over Grassmann variables.

Any function  of a Grassmann variable  can be written as

where  is a Grassmann variable as well if  is a commuting object. This must hold since the algebra has now higher powers of . The order of  and  is therefore

important. The Berezin integration is then defined as the operation

Consider now the case of two Grassmann variables  and

Then the iterated Berezin integrals

project out the coefficient of . Note, however, that the order of integration was reversed. One can consistently define the infinitesimals  to be Grassmann variables

themself, which anticommute with all other Grassmann variables and themself.

With this projection at hand, we can therefore write any state as

for a given function  of all . After a lengthy but straightforward calculation, one finds

such that for any state

or our desired completeness relation

In the same way one can also show

With these relations we can now finally complete the derivation of the fermionic path integral. The key ingredient is again to express the transfer matrix in a path integral way.

Let us consider without loss of generality a Hamiltonian , where all  stand to the right of all .

We then find

We can write this as an operator equation by inserting further completeness relations

q̂ a|b, c, …⟩ = 0 ,

p̂a|b, c, …⟩ = |a, b, c, …⟩ ,

q̂ a|a, b, c, …⟩ = i|b, c, …⟩ ,

p̂a|a, b, c, …⟩ = 0 ,

⟨c, d, … |a, b, …⟩ = { 0 if {c, d, …} ≠ {a, b, …}
1 if c = a, d = b, …

.

(41)

(42)

(43)

(44)

(45)

|q⟩ = exp(−i∑
a

p̂aqa)|0⟩

= |0⟩ + i∑
a

qa|a⟩ − ∑
a,b

qaqb|a, b⟩ + …

(46)

(47)
1

2

|f⟩ qaqb ⋯ |q⟩ |q⟩ab…

|f⟩ = f0|q⟩0 +∑
a

fa|q⟩a +∑
a≠b

fab|q⟩ab + … (48)

qaqb ⋯

g(ξ) ξ

g(ξ) = g0 + ξg1 , (49)

g1 g(ξ) ξ ξ g1

∫ dξg(ξ) = g1 . (50)

ξ1, ξ2

g(ξ) = g0 + ξ1g1 + ξ2g2 + ξ1ξ2g3 , (51)

∫ dξ2 ∫ dξ1g(ξ) = ∫ dξ2(g1 + ξ2g3) = g3 (52)

ξ1ξ2 dξi

|f⟩ = ∫
~
∏

a
dqaf(q)|q⟩ (53)

f(q) qa

⟨q ′|f⟩ = (−1)nf(q ′) (54)

|f⟩ = (−1)n ∫ |q⟩(
~
∏

b
dqb) ⟨q|f⟩ (55)

1 = ∫ |q⟩(
~
∏

b
(−dqb)) ⟨q| . (56)

1 = ∫ |p⟩(
~
∏

b
dpb) ⟨p| . (57)

H(p̂, q̂ ) q̂ a p̂a

⟨q ′|e−iδtH(p̂,q̂ )|q⟩ = ∫ ⟨q ′|p⟩(
~
∏

b
dpb) ⟨p|e−iδtH(p̂,q̂ )|q⟩

= ∫ ⟨q ′|p⟩(
~
∏

b
dpb) ⟨p|q⟩e−iδtH(p,q)

= χn ∫ (
~
∏

b
dpb) exp(i∑

a

pa(q ′
a − qa) − iδtH(p, q)) .

(58)

(59)

(60)



We again note the Legendre transformation that creates now a Berezin integral over the action. The transition to Euclidean time  goes through in the same way as in

the bosonic case.

Euclidean quark action for QCD

We remind ourselves of the real-time action

with Minkowski gamma matrices in our chiral representation of chapter 5

The conjugate momentum to the field  is therefore given by

We now introduce a Euclidean space formulation by considering the four vector in Euclidean space  that relates to the Minkowski vector  by

We therefore have

and

and find the Euclidean action

with

gamma[1] =
 [[ 0.+0.j  0.+0.j  0.+0.j  0.+1.j] 
 [ 0.+0.j  0.+0.j  0.+1.j  0.+0.j] 
 [ 0.+0.j -0.-1.j  0.+0.j  0.+0.j] 
 [-0.-1.j  0.+0.j  0.+0.j  0.+0.j]] 
gamma[2] =
 [[ 0.+0.j  0.+0.j  0.+0.j -1.+0.j] 
 [ 0.+0.j  0.+0.j  1.+0.j  0.+0.j] 
 [ 0.+0.j  1.+0.j  0.+0.j  0.+0.j] 
 [-1.+0.j  0.+0.j  0.+0.j  0.+0.j]] 
gamma[3] =
 [[ 0.+0.j  0.+0.j  0.+1.j  0.+0.j] 
 [ 0.+0.j  0.+0.j  0.+0.j -0.-1.j] 
 [-0.-1.j  0.+0.j  0.+0.j  0.+0.j] 
 [ 0.+0.j  0.+1.j  0.+0.j  0.+0.j]] 
gamma[4] =
 [[0.+0.j 0.+0.j 1.+0.j 0.+0.j] 
 [0.+0.j 0.+0.j 0.+0.j 1.+0.j] 
 [1.+0.j 0.+0.j 0.+0.j 0.+0.j] 
 [0.+0.j 1.+0.j 0.+0.j 0.+0.j]] 

Fermionic path integral is a determinant

For a fermionic action of the kind

e−iδtH(p̂,q̂ ) = χn ∫ |q ′⟩(
~
∏

a
(−dq ′

a)) ⟨q ′|e−iδtH(p̂,q̂ )|q⟩(
~
∏

b
(−dqb)) ⟨q|

= χn ∫ |q ′⟩(
~
∏

a
dq ′

a)(
~
∏

b
dpb) exp(i∑

a

pa(q ′
a − qa) − iδtH(p, q))(

~
∏

a
dqa) ⟨q| .

(61)

(62)

δτ = iδt

S = ∫ d4xψ̄(iγμ∂μ − m)ψ (63)

γ0 = (
0 1

1 0
) , γ i = (

0 σi

−σi 0
) . (64)

ψ

π = ψ̄iγ0 . (65)

~x x

(~x1, ~x2, ~x3, ~x4) = (−x1, −x2, −x3, ix0) (66)

∂0 = = = i
~
∂ 4 , ∂i = −

~
∂ i , (67)

∂

∂x0

∂~x4

∂x0

∂

∂~x4

dx0 = −id~x4 , dx1dx2dx3 = |(−1)3|d~x1d~x2d~x3 = d~x1d~x2d~x3 (68)

SE = −iS

= − ∫ d~x1d~x2d~x3d~x4ψ̄(−γ0
~
∂ 4 − iγ i ~

∂ i − m)ψ

= ∫ d~x1d~x2d~x3d~x4ψ̄(γ0 ~
∂ 4 + iγ i ~

∂ i + m)ψ

= ∫ d~x1d~x2d~x3d~x4ψ̄(~γ4 ~
∂ 4 + ~γi

~
∂ i + m)ψ

(69)

(70)

(71)

(72)

~γ4 = γ0 , ~γi = iγ i . (73)

In [19]: import gpt as g 

In [14]: print("gamma[1] =\n",g.gamma[0].tensor().array) 
print("gamma[2] =\n",g.gamma[1].tensor().array) 
print("gamma[3] =\n",g.gamma[2].tensor().array) 
print("gamma[4] =\n",g.gamma[3].tensor().array) 

SE = ∑
x,y,i,j

ψ̄(x)iDi,x;j,y(U)ψ(y)j (74)



we find that the path integral formulation previously derived requires us to integrate over the fields  and the corresponding conjugate momenta  (see above) such that the

fermionic part of the path integral yields

This follows up to a sign from the definition of the Berezin integral. We define the above integral such that the order of  and  is chosen such that this equation holds

without additional sign.

Naive lattice fermion

A naive lattice discretization of a fermion action would therefore correspond to the Euclidean action

with covariant derivative from chapter 6

We will see in the next lecture that this action actually corresponds to more than one Fermion at the same time, which requires special attention.

Fermion doublers

The study of the non-interacting Hamiltonian of a fermionic system on a lattice again proceeds similar to chapter 4. The classical solutions of the non-interacting theory

provide structure to the energy eigenstates of the system. Consider in Minkowski momentum space

for which the equations of motion yield

Note that the lattice momentum for such a naive fermion  behaves quite differently from the lattice momentum for a boson , see chapter 4.

We see that a naive fermion on a lattice has additional small momentum regions for .

One can show that the Euclidean gamma matrices satisfy . Then the equations of motion yield

ψ ψ̄

∫ dψ̄dψe−SE = det(D(U)) . (75)

dψ dψ̄

SE = ∑
x

ψ̄(x)(γμDμ + m)ψ(x) (76)

Dμψ(x) = (C+
μ − C−

μ )ψ(x) = (Uμ(x)ψ(x + aμ̂) − U
†
μ(x − aμ̂)ψ(x − aμ̂)) . (77)

1

2a

1

2a

ψ(x) = eixμpμψ0 (78)

0 = γμ(ψ(x + μ̂) − ψ(x − μ̂)) + mψ(x)

= ( γμ(eipμ − e−ipμ) + m)ψ(x)

= (iγμ sin(pμ) + m)ψ(x) .

(79)

(80)

(81)

1

2
1

2

sin(pμ) 2 sin(pμ/2)

In [18]: import matplotlib.pyplot as plt 
import numpy as np 
 
p = np.arange(-np.pi, np.pi, 0.1) 
phat_boson = 2.0*np.sin(p/2.0) 
phat_fermion = np.sin(p) 
 
plt.plot(p,phat_boson) 
plt.show() 
 
plt.plot(p,phat_fermion) 
plt.show() 

p ≈ ±π

{γμ, γν} = 2δμν



The problem of fermion doublers arises both for the massive and massless case, however, in the massless case the above equations have simple real-valued solutions 

but also for any of the . In four dimensions there are therefore

solutions instead of one. In the construction of the Hilbert space analog chapter 4, this would correspond to 15 fermion doublers being created in addition to the desired

solution for .

Wilson fermions

The most straightforward solution to avoid the fermion doubler problem is to add a higher-dimensional operator that removes the spurious solutions. The Wilson fermion

solution is given by modifying the naive fermion action to

We define the corresponding Dirac operator

with

The equations of motion of this theory yield

For small momenta  the additional term does not contribute but it removes the spurious fermion doubler solutions at .

Fermion correlation functions

In a Berezin integral, it is straightforward to show that

for a vector  since the coefficient with exactly one factor  each is identical in  and . Based on this observation, we consider additional source terms

Consider the fermion action with source terms

and general correlation functions

where  is the pure gauge action. Using the additional source terms  and , we can write this as

where the derivative with respect to Grassmann variables are defined identical to the Berezin integrals

0 = (iγμ sin(pμ) − m) (iγμ sin(pμ) + m)ψ(x)

= −(∑
μ

sin(pμ)2 + m2)ψ(x) .

(82)

(83)

p = 0

pμ = π

24 = 16

p = 0

Sf = ∑
x

ψ̄(x)(∑
μ

γμDμ + m − ∑
μ

D2
μ)ψ(x) . (84)

1

2

D(U) = ∑
μ

γμDμ + m − ∑
μ

←
D μ

→
D μ (85)

1

2

←
D μ

→
D μ = C+

μ + C−
μ − 2 . (86)

0 = ∑
μ

sin(pμ)2 + (m + 4 −∑
μ

cos(pμ))

2

. (87)

p pμ = π

∫ dψf(ψ) = ∫ dψf(ψ + α) (88)

α ψi f(ψ) f(ψ + α)

∫ dψ̄dψe−ψ̄Dψ−η̄ψ−ψ̄η = ∫ dψ̄dψe−ψ̄D(ψ−D−1η)−η̄(ψ−D−1η)−ψ̄η

= ∫ dψ̄dψe−ψ̄Dψ+ψ̄η−η̄ψ+η̄D−1η−ψ̄η

= ∫ dψ̄dψe−ψ̄Dψ−η̄ψ+η̄D−1η

= ∫ dψ̄dψe−(ψ̄−η̄D−1)Dψ−η̄ψ+η̄D−1η

= ∫ dψ̄dψe−ψ̄Dψ+η̄D−1η

= det(D)eη̄D
−1η .

(89)

(90)

(91)

(92)

(93)

(94)

Sf(U) = ∑
x

ψ̄(x)iDi,x;j,y(U)ψ(x)j (95)

⟨O(U ,ψ(x)iψ̄(y)j)⟩ = ∫ d[U ]dψ̄dψO(U ,ψ(x)iψ̄(y)j)e
−Sf(U)−Sg(U) ,

Z = ∫ d[U ]dψ̄dψe−Sf(U)−Sg(U) = ∫ d[U ] det(D(U))e−Sg(U) ,

(96)

(97)

1

Z

Sg η̄ η

⟨O(U ,ψ(x)iψ̄(y)j)⟩ = ∫ d[U ]dψ̄dψ(O(U ,ψ(x)i∂η(y)j)e
−Sf(U)−Sg(U)−η̄ψ−ψ̄η)

η=η̄=0

= ∫ d[U ]dψ̄dψ(O(U , −∂η(y)jψ(x)i)e
−Sf(U)−Sg(U)−η̄ψ−ψ̄η)

η=η̄=0

= ∫ d[U ]dψ̄dψ(O(U , ∂η(y)j∂η̄(x)i)e
−Sf(U)−Sg(U)−η̄ψ−ψ̄η)

η=η̄=0

= ∫ d[U ] det(D(U))e−Sg(U)(O(U , −∂η̄(x)i∂η(y)j)e
η̄D−1(U)η)

η=η̄=0
,

(98)

(99)

(100)

(101)

1

Z

1

Z

1

Z

1

Z



We first note that only correlation functions with matching powers of  and  can lead to a non-vanishing result. All others vanish due to the  and 

symmetry. The simplest non-vanishing correlation function is the two-point correlator (or propagator)

The calculation goes through in an analogous manner for more fermionic fields, however, one needs to pay attention to permutations of fields. In general, we find Wick's

theorem

where the sum is over all permutations  of  with  denoting the sign of the permutations (1 if even numbers of swaps are needed to

recover , -1 else). For concreteness, consider the next non-trivial example

We note that such correlation functions can be mapped to expectation values of time-ordered products of operators  and  acting on the Hilbert space by using the

path-integral representation of . This is similar to all studied cases so far. In the Schrödinger picture, we therefore have, e.g.,

We can then again consider inserting complete sets of states and studying the -dependence of the correlation function to learn about the fermionic spectrum and matrix

elements of the theory.

Anti-periodic boundary conditions in time

When implementing the trace in the Hilbert space in the above formula, one surprisingly has to chose anti-periodic boundary conditions in time for the fermionic fields. To

see this and also get more comfortable with the mapping from the Hilbert space to our extended algebra, we review the case of a single fermionic degree of freedom in

detail.

First, consider the states

where we identify

for which we have showed above that

It is, however, crucial to remember that we also imposed anticommutation relations between  and  such that the  and  states anticommute with  and . It is difficult

to keep track of this and therefore we often wait until the end before we express .

Let us remind ourselves of the completeness relation in this simple example. We find

as we desired.

Finally, consider the trace of a matrix. We find

So we find indeed that antiperiodic boundary conditions have to be used to implement the trace over a fermionic Hilbertspace operator.

Quenched theory

∂ηaf(ηa) ≡ ∫ dηaf(ηa) . (102)

ψ ψ̄ ψ → −ψ ψ̄ → −ψ̄

⟨ψ(x)iψ̄(y)j⟩ = ⟨(−∂η̄(x)i∂η(y)je
η̄D−1(U)η)

η=η̄=0
⟩

= ⟨(∂η̄(x)i(η̄D
−1(U))j,ye

η̄D−1(U)η)
η=η̄=0

⟩

= ⟨D−1(U)i,x;j,y⟩ .

(103)

(104)

(105)

⟨ψ(x1)i1ψ̄(y1)j1 ⋯ψ(xn)inψ̄(yn)jn⟩ = ∑
P

(−1)P ⟨D−1(U)i1,x1;jP1 ,yP1
⋯D−1(U)in,xn;jPn ,yPn

⟩ , (106)

(P1,P2, … ,Pn) (1, 2, … ,n) (−1)P

(1, 2, … ,n)

⟨ψ(x1)i1ψ̄(y1)j1ψ(x2)i2ψ̄(y2)j2⟩ = ⟨D−1(U)i1,x1;j1,y1D
−1(U)i2,x2;j2,y2⟩ − ⟨D−1(U)i1,x1;j2,y2D

−1(U)i2,x2;j1,y1⟩ . (107)

Ψ̂ ^̄Ψ

e−δτH

⟨ψ̄(t)Γtψ(t)ψ̄(t = 0)Γ0ψ(t = 0)⟩ = Tr [e−(T−t)H ^̄ΨΓtΨ̂e−tH ^̄ΨΓ0Ψ̂] . (108)
1

Z

t

|q⟩ = (1 − ip̂q) |0⟩ = |0⟩ + iq|1⟩

⟨q ′| = ⟨0|q̂ (1 − iq ′p̂)

= ⟨0|(q̂ + iq ′q̂ p̂)

= ⟨0|(q̂ − q ′)

= ⟨1|i − ⟨0|q ′ ,

(109)

(110)

(111)

(112)

(113)

|1⟩ = p̂|0⟩ ,

⟨1| = ⟨0|(−iq̂ )

(114)

(115)

⟨0|0⟩ = ⟨1|1⟩ = 1 ,

⟨0|1⟩ = ⟨1|0⟩ = 0 .

(116)

(117)

q̂ q ′ |1⟩ ⟨1| q q ′

⟨0|(−iq̂ ) = ⟨1|

|q⟩⟨q| = (|0⟩ + iq|1⟩)(⟨1|i − ⟨0|q)

= i|0⟩⟨1| − q|0⟩⟨0| − q|1⟩⟨1|

∫ (−dq)|q⟩⟨q| = |0⟩⟨0| + |1⟩⟨1|

(118)

(119)

(120)

∫ dq⟨−q|A|q⟩ = ∫ dq⟨0|(q̂ + q)A(|0⟩ + iq|1⟩)

= ∫ dq⟨0|qA|0⟩ + ∫ dq⟨0|q̂ Aiq|1⟩

= ∫ dqq⟨0|A|0⟩ + ∫ dqq⟨0|(−iq̂ )A|1⟩

= ⟨0|A|0⟩ + ⟨1|A|1⟩ = TrA .

(121)

(122)

(123)

(124)



We will soon study an algorithm to efficiently generate gauge configurations for theories with both fermions and gauge degrees of freedom. Before doing this, however, we

can also study the quenched approximation in which we neglect the fermion determinant in the path integral and instead measure fermionic correlation functions in gauge

configurations generated using only the gluonic action.

Pion correlator

In the next chapter, we study the symmetries of the action in more details and will identify good quantum numbers of our Hamiltonian. To conclude this chapter, however, we

will now study for the first time the lightest particle made out of a quark and an antiquark that can be created using the operator

with  where  and  two different quenched fermion degrees of freedom. Note that from the definition of the conjugate momentum we require  such

that

since .

Applying the Wick theorem, we find

Next, one uses that the Dirac operator is -Hermitian, i.e.,

which combined with  and  yields

and therefore

Finally, we can use translational symmetry to write

with spatial volume . If we therefore found the vector

for a given gauge-field configuration, we could create the correlator  in a straightforward way. We conclude this chapter by demonstrating code that finds this vector for

a given gauge field configuration.

GPT :  203973.351320 s : Reading 8c32_5.7/su3.200 
GPT :  203973.353464 s : Switching view to [1,1,1,1]/Read 
GPT :  203973.369661 s : Read 0.00219727 GB at 0.13545 GB/s (0.165431 GB/s for distribution, 0.748903 GB/s for reading + checksum, 5.95349 GB/s 
for checksum, 1 views per node) 
GPT :  203973.373617 s : Read 0.00219727 GB at 0.772312 GB/s (2.66976 GB/s for distribution, 1.08936 GB/s for reading + checksum, 5.82922 GB/s f
or checksum, 1 views per node) 
GPT :  203973.376494 s : Read 0.00219727 GB at 1.12103 GB/s (3.78792 GB/s for distribution, 1.59806 GB/s for reading + checksum, 6.46283 GB/s fo
r checksum, 1 views per node) 
GPT :  203973.379951 s : Read 0.00219727 GB at 0.797025 GB/s (1.93939 GB/s for distribution, 1.35729 GB/s for reading + checksum, 6.8065 GB/s fo
r checksum, 1 views per node) 
GPT :  203973.380776 s : Completed reading 8c32_5.7/su3.200 in 0.029685 s 

Ôπ(t) = i∑
→x

^̄u(→x, t)γ5d̂ (→x, t) (125)

γ5 = γ1γ2γ3γ4 u d ^̄u = û
†
γ4

Ôπ(t)† = ∑
→x

(iû(→x, t)†γ4γ5d̂ (→x, t))† = −∑
→x

id̂
†
(→x, t)γ5γ4û(→x, t) = ∑

→x

i ^̄d (→x, t)γ5û(→x, t) (126)

γ
†
μ = γμ

C(t) = ⟨Ôπ(t)Ô
†

π(0)⟩

= ∑
→x,→y

⟨Tr[D−1(U)
→x,t;→y ,0γ5D

−1(U)
→y ,0;→x,tγ5]⟩ .

(127)

(128)

γ5

(γ5D(U))† = γ5D(U) (129)

γ
†
5 = γ5 γ2

5 = 1

D(U)† = γ5D(U)γ5 (130)

C(t) = ∑
→x,→y

⟨Tr[D−1(U)
→x,t;→y ,0(D−1(U)

→x,t;→y ,0)†]⟩ . (131)

C(t) = V ∑
→x

⟨Tr[D−1(U)
→x,t;→0,0

(D−1(U)
→x,t;→0,0

)†]⟩ . (132)

V

α
→x,t = D−1(U)

→x,t;→0,0 (133)

C(t)

In [26]: U = g.load("8c32_5.7/su3.200") 
grid = U[0].grid 

In [158… Uapt = g.copy(U) 
# anti-periodic fermion in time can be achieved modifying last link in time 
Uapt[3][:,:,:,grid.gdimensions[3]-1] *= -1 
 
def DiracWilson(U, src, m): 
    dst = g((4.0 + m) * src) 
    for mu in range(4): 
        fmu = g(U[mu] * g.cshift(src, mu, 1)) 
        bmu = g(g.cshift(g.adj(U[mu]) * src, mu, -1)) 
        dst += 0.5*(g.gamma[mu] * fmu - fmu) 
        dst -= 0.5*(g.gamma[mu] * bmu + bmu) 
    return dst 
 
rng = g.random("13") 
a, b = rng.cnormal([g.vspincolor(grid),g.vspincolor(grid)]) 
 
# test gamma5 hermiticity 
print(g.inner_product(b, g.gamma[5] * DiracWilson(Uapt, a, -0.5))) 
print(g.inner_product(a, g.gamma[5] * DiracWilson(Uapt, b, -0.5)).conjugate()) 
 
# norm real
print(g.inner_product(a, g.gamma[5] * DiracWilson(Uapt, a, -0.5))) 



GPT :  207178.063015 s : Initializing gpt.random(13,vectorized_ranlux24_389_64) took 0.000413179 s 
(678.8217289003439+1316.0853819848078j) 
(678.8217289003376+1316.0853819848253j) 
(2760.203862794375+1.8189894035458565e-12j) 

lattice(ot_matrix_spin_color(4,3),double)

GPT :  207288.383994 s : fgmres: NOT converged in 400 iterations;  computed squared residual 1.251610e-12 / 1.200000e-15;  true squared residual 
1.251610e-12 / 1.200000e-15 

This is a very inefficient way to invert this matrix but it is easy to implement. We will learn better methods soon.

Error of inversion: 1.25160956143534e-12 

Let us now study the effective mass of this particle.

This is the effective mass of a pion propagating on a single quenched gauge configuration. We note that the particle is quite heavy. Next, we will study better methods for

the inversion, which will allow us to study lighter masses as well.

Test D: 1.7159776039272344e-25 
GPT :  213012.700159 s : cg: converged in 40 iterations 
GPT :  213012.930778 s : cg: converged in 40 iterations 
GPT :  213013.152907 s : cg: converged in 40 iterations 
GPT :  213013.362946 s : cg: converged in 40 iterations 
GPT :  213013.594801 s : cg: converged in 40 iterations 
GPT :  213013.855515 s : cg: converged in 40 iterations 
GPT :  213014.080708 s : cg: converged in 40 iterations 
GPT :  213014.305992 s : cg: converged in 40 iterations 
GPT :  213014.499045 s : cg: converged in 38 iterations 
GPT :  213014.728914 s : cg: converged in 39 iterations 
GPT :  213014.973023 s : cg: converged in 39 iterations 
GPT :  213015.204403 s : cg: converged in 39 iterations 
Test D^{-1}: 1.3723199796550752e-11 

In [159… g.default.set_verbose("fgmres_convergence", False) 
inv = g.algorithms.inverter.fgmres(eps = 1e-8, maxiter = 400) 

In [160… def G5DiracWilson(dst, src): 
    dst @= g.gamma[5] * DiracWilson(Uapt, src, -0.5) 
    return dst 
 
invG5D = inv(G5DiracWilson) 

In [161… src = g.mspincolor(grid) 
g.create.point(src, [0, 0, 0, 0]) 

Out[161…

In [162… dst = g(invG5D * g.gamma[5] * src) 

In [166… print("Error of inversion:", g.norm2(DiracWilson(Uapt, dst, -0.5) - src)) 

In [164… Ct = g.slice(g.trace(g.adj(dst)*dst),3) 

In [165… plt.ylim(0,2) 
plt.plot(range(13),[np.log(Ct[t] / Ct[t+1]).real for t in range(13)], marker="o", ls="") 
plt.show() 

In [181… w = g.qcd.fermion.wilson_clover(U, mass=-0.5, csw_r=0.0, csw_t=0.0, nu=1.0, xi_0=1.0, 
                                isAnisotropic=False, 
                                boundary_phases=[1,1,1,-1]) 
 
print("Test D:",g.norm2(w(b) - DiracWilson(Uapt, b, -0.5))) 
 
inv = g.algorithms.inverter 
pc = g.qcd.fermion.preconditioner 
g.default.set_verbose("cg_convergence", False) 
cg = inv.cg({"eps": 1e-6, "maxiter": 1000}) 
invD = w.propagator(inv.preconditioned(pc.eo1_ne(), cg)) 
 
dst2 = g(invD * src) 
 
print("Test D^{-1}:",g.norm2(dst-dst2) / g.norm2(dst2)) 

In [184… def effective_mass_pion_single_config(m):
    w = g.qcd.fermion.wilson_clover(U, mass=m, csw_r=0.0, csw_t=0.0, nu=1.0, xi_0=1.0, 
                                isAnisotropic=False, 



GPT :  213203.588247 s : cg: converged in 40 iterations 
GPT :  213203.806645 s : cg: converged in 40 iterations 
GPT :  213204.011701 s : cg: converged in 40 iterations 
GPT :  213204.211629 s : cg: converged in 40 iterations 
GPT :  213204.415629 s : cg: converged in 40 iterations 
GPT :  213204.635100 s : cg: converged in 40 iterations 
GPT :  213204.840919 s : cg: converged in 40 iterations 
GPT :  213205.039177 s : cg: converged in 40 iterations 
GPT :  213205.233666 s : cg: converged in 38 iterations 
GPT :  213205.428045 s : cg: converged in 39 iterations 
GPT :  213205.623858 s : cg: converged in 39 iterations 
GPT :  213205.833268 s : cg: converged in 39 iterations 
GPT :  213206.770324 s : cg: converged in 48 iterations 
GPT :  213207.058377 s : cg: converged in 48 iterations 
GPT :  213207.309152 s : cg: converged in 48 iterations 
GPT :  213207.542193 s : cg: converged in 48 iterations 
GPT :  213207.819426 s : cg: converged in 48 iterations 
GPT :  213208.113768 s : cg: converged in 48 iterations 
GPT :  213208.385462 s : cg: converged in 48 iterations 
GPT :  213208.657899 s : cg: converged in 49 iterations 
GPT :  213208.907246 s : cg: converged in 46 iterations 
GPT :  213209.160413 s : cg: converged in 48 iterations 
GPT :  213209.413827 s : cg: converged in 47 iterations 
GPT :  213209.669169 s : cg: converged in 48 iterations 
GPT :  213210.652197 s : cg: converged in 61 iterations 
GPT :  213210.991799 s : cg: converged in 61 iterations 
GPT :  213211.347376 s : cg: converged in 62 iterations 
GPT :  213211.676221 s : cg: converged in 62 iterations 
GPT :  213212.008118 s : cg: converged in 62 iterations 
GPT :  213212.328634 s : cg: converged in 61 iterations 
GPT :  213212.644664 s : cg: converged in 62 iterations 
GPT :  213212.981035 s : cg: converged in 62 iterations 
GPT :  213213.366373 s : cg: converged in 59 iterations 
GPT :  213213.702463 s : cg: converged in 61 iterations 
GPT :  213214.035591 s : cg: converged in 60 iterations 
GPT :  213214.363354 s : cg: converged in 62 iterations 
GPT :  213215.353759 s : cg: converged in 85 iterations 
GPT :  213215.830689 s : cg: converged in 85 iterations 
GPT :  213216.308263 s : cg: converged in 86 iterations 
GPT :  213216.808890 s : cg: converged in 86 iterations 
GPT :  213217.374935 s : cg: converged in 85 iterations 
GPT :  213217.925377 s : cg: converged in 84 iterations 
GPT :  213218.441550 s : cg: converged in 85 iterations 
GPT :  213218.980990 s : cg: converged in 85 iterations 
GPT :  213219.409078 s : cg: converged in 81 iterations 
GPT :  213219.918039 s : cg: converged in 84 iterations 
GPT :  213220.468912 s : cg: converged in 83 iterations 
GPT :  213221.040040 s : cg: converged in 85 iterations 
GPT :  213222.792975 s : cg: converged in 135 iterations 
GPT :  213223.667487 s : cg: converged in 136 iterations 
GPT :  213224.576976 s : cg: converged in 137 iterations 
GPT :  213225.565169 s : cg: converged in 138 iterations 
GPT :  213226.570092 s : cg: converged in 137 iterations 
GPT :  213227.423486 s : cg: converged in 135 iterations 
GPT :  213228.310716 s : cg: converged in 139 iterations 
GPT :  213229.255515 s : cg: converged in 140 iterations 
GPT :  213230.114226 s : cg: converged in 129 iterations 
GPT :  213230.983376 s : cg: converged in 137 iterations 
GPT :  213231.839474 s : cg: converged in 133 iterations 
GPT :  213232.730879 s : cg: converged in 139 iterations 
GPT :  213235.227432 s : cg: converged in 331 iterations 
GPT :  213237.343689 s : cg: converged in 332 iterations 
GPT :  213239.387726 s : cg: converged in 338 iterations 
GPT :  213241.258662 s : cg: converged in 328 iterations 
GPT :  213243.151086 s : cg: converged in 319 iterations 
GPT :  213244.864590 s : cg: converged in 324 iterations 
GPT :  213246.766639 s : cg: converged in 349 iterations 
GPT :  213248.462825 s : cg: converged in 342 iterations 
GPT :  213250.160066 s : cg: converged in 319 iterations 
GPT :  213251.871504 s : cg: converged in 336 iterations 
GPT :  213253.860384 s : cg: converged in 333 iterations 
GPT :  213255.942031 s : cg: converged in 328 iterations 

                                boundary_phases=[1,1,1,-1]) 
    invD = w.propagator(inv.preconditioned(pc.eo1_ne(), cg)) 
    dst = g(invD * src) 
    Ct = g.slice(g.trace(g.adj(dst)*dst),3) 
    return [np.log(Ct[t] / Ct[t+1]).real for t in range(13)] 
 
emp = {} 
for m in [-0.5, -0.6, -0.7, -0.8, -0.9, -1.0]: 
    emp[m] = effective_mass_pion_single_config(m) 

In [193… quark_masses = [] 
pion_masses = [] 
pion_masses_err = [] 
 
for m in emp: 
    quark_masses.append(m) 
    pion_masses.append(0.5*(emp[m][7] + emp[m][8])) 
    pion_masses_err.append(0.5*(emp[m][7] - emp[m][8])) 
     
fig, ax = plt.subplots() 
 
plt.ylim(0,1.5) 
plt.xlim(-1.5,-0.4) 
plt.xlabel("m") 
plt.ylabel("m_pi") 
ax.errorbar(quark_masses, pion_masses, pion_masses_err, marker='+', ls='', c='red', label="m_pi(m)") 
plt.show() 



We note that for quenched QCD we may have approximately massless Wilson fermions at around . The mass  at which the quark effectively becomes massless

is also called the critical mass. The fact that we can use the pion as a proxy is due to the pion being a Goldstone boson of chiral symmetry in this limit. We will return to the

topic of symmetries and in particular also chiral symmetry in later chapters.

m ≈ −1.2 mc

In [ ]:   


