Universität Regensburg, Institut für Theoretische Physik Sommer 2021 Prof. Dr. Christoph Lehner (Dozent), Fabian Haneder (Gruppe 1), Adrian Seith (Gruppe 2), Sebastian Spiegel (Gruppe 3), Raphael Lehner (Gruppe 4)

Übungen zu Theoretische Physik Ib - Elektrodynamik und Optik Blatt 7 (abzugeben am 4. Juni)

Aufgabe 1 Gegenkraft (8 Punkte)

Zeigen Sie die Grassmann Identität

$$a(x) \times (b(x') \times \nabla_x) = (a(x) \cdot \nabla_x)b(x') - (a(x) \cdot b(x'))\nabla_x \tag{1}$$

für $a: \mathbb{R}^3 \to \mathbb{R}^3$, $b: \mathbb{R}^3 \to \mathbb{R}^3$, $c: \mathbb{R}^3 \to \mathbb{R}^3$ und darauf basierend, dass für die Kraft zwischen zwei Strömen j_1 und j_2 gilt

$$\vec{F}_{12} = -\vec{F}_{21} \tag{2}$$

mit der Notation der Vorlesung.

Aufgabe 2 Unendlich langer Draht (6 Punkte)

Berechnen Sie für

$$j(x, y, z) = I\delta(x)\delta(y) \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
 (3)

mit $I \in \mathbb{R}$ das resultierende Magnetfeld durch direkte Integration der Stromdichte.

Aufgabe 3 Unendlich lange Spule (8 Punkte)

Berechnen Sie für eine unendlich lange Spule mit

$$j(x,y,z) = I \frac{N}{Rl} \delta(\underbrace{\sqrt{x^2 + y^2}}_{\equiv \rho} - R) \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$
 (4)

und $I \in \mathbb{R}$, $R, l \in \mathbb{R}^+$, $N \in \mathbb{N}$ das resultierende Magnetfeld. Dies entspricht einer eng gewickelten Spule mit N Windungen pro Länge l und Windungsradius R. Gehen Sie dabei wie folgt vor:

a) Zeigen Sie, dass für das Vektorpotential $\vec{A}(x, y, z)$ gilt $\vec{A}(x, y, z) = \vec{A}(x, y, 0)$ und $\vec{A}_2(x, y, 0) = 0$. Zeigen Sie dann, dass es ein $\tilde{B}(\rho)$ gibt, so dass

$$\vec{B}(x,y,z) = \tilde{B}(\rho) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} . \tag{5}$$

b) Berechnen Sie dann $\tilde{B}(\rho)$ mit dem Ampèreschen Durchflutungsgesetz.