Exercise: Quantum Computing

Problem set 12 (to be discussed in week of July 22st, 2019)

Problem 1 Higher-order Trotter formula

Show that

$$
\begin{equation*}
e^{t(A+B)}=\left(e^{t A / N / 2} e^{t B / N} e^{t A / N / 2}\right)^{N}+O\left(t^{2} / N^{2}\right) \tag{1}
\end{equation*}
$$

for $t \in \mathbb{R}, N \in \mathbb{Z}^{+}$, and complex matrices A and B.

Problem 2 Analytic solution of two-site Ising model

Consider the one-dimensional transverse-field Ising model with two sites and open boundary conditions, i.e.,

$$
\begin{equation*}
H=-\frac{1}{2} Z_{1} Z_{2}+\frac{g}{2}\left(X_{1}+X_{2}\right) \tag{2}
\end{equation*}
$$

acting on a Hilbert space of two qubits.
a) Compute the eigenvectors and eigenvalues of H
b) Use these results to construct the transfer matrix
c) Without re-doing the entire calculation, what is the transfer matrix for the case of periodic boundary conditions discussed in the lecture?
d) Compute the state

$$
\begin{equation*}
|\psi(t)\rangle=e^{i t H}|00\rangle \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle Z(t)\rangle \equiv \frac{1}{2}\langle\psi(t)|\left(Z_{1}+Z_{2}\right)|\psi(t)\rangle \tag{4}
\end{equation*}
$$

