Exercise: Quantum Computing

Problem set 7 (to be discussed in week of June 17, 2019)

Since June 20 is a holiday, the following problem set will only be discussed on Friday, June 21st and is optional. Attendance will not be taken.

Problem 1 Stochastic energy fluctuations and decoherence times (optional)

In the lecture, we have discussed the Ramsey decoherence experiment for which the probability to measure a zero bit is given by

$$
\begin{equation*}
P_{0}^{\mathrm{R}}(t)=\frac{1}{2}+\frac{1}{2} \cos \left(\int_{0}^{t} d \tau \Delta E(\tau)\right) \tag{1}
\end{equation*}
$$

and the Hahn echo decoherence experiment for which this probability is

$$
\begin{equation*}
P_{0}^{\mathrm{H}}(t)=\frac{1}{2}+\frac{1}{2} \cos \left(\int_{0}^{t / 2} d \tau \Delta E(\tau)-\int_{t / 2}^{t} d \tau \Delta E(\tau)\right) . \tag{2}
\end{equation*}
$$

In both cases, $\Delta E(\tau)$ shall denote the precise energy splitting between the $|0\rangle$ and $|1\rangle$ eigenstates of the system for time τ. Fluctuations in this quantity introduce decoherence in the qubit. In this problem, we derive the quoted real probability distribution that defined the decoherence times T_{2} and T_{2}^{*} from a simple model.
Consider the ansatz for the time-dependent energy splitting

$$
\begin{equation*}
\Delta E(\tau) \equiv \Delta \bar{E}+\eta(\tau) \tag{3}
\end{equation*}
$$

with real positive $\Delta \bar{E}$ and a noise source η that we set to be constant for small time intervals Δt. Concretely, we define

$$
\begin{equation*}
\eta(i \Delta t+\Delta \tau) \equiv \eta_{i} \tag{4}
\end{equation*}
$$

with integer i and $0 \leq \Delta \tau<\Delta t$. So for $0 \leq \tau<\Delta t$ we have $\eta(\tau)=\eta_{0}$, for $\Delta t \leq \tau<2 \Delta t$ we have $\eta(\tau)=\eta_{1}$, and so forth.
To complete the model, we demand that η_{i} and η_{j} are statistically independent for $i \neq j$ and that we have the expectation values

$$
\begin{equation*}
\left\langle\eta_{i}^{2 n+1}\right\rangle_{\eta_{i}}=0, \quad\left\langle\eta_{i}^{2}\right\rangle_{\eta_{i}}=\frac{2 \Delta t}{T}, \quad\left\langle\eta_{i}^{2 n+2}\right\rangle_{\eta_{i}}=O(\Delta t)^{2} \tag{5}
\end{equation*}
$$

for all i with $n \in\{0,1, \ldots\}$ and positive real T. In practice, η_{i} could, e.g., be drawn from a Gaussian distribution with center 0 and variance $2 \Delta t / T$, however, the actual distribution is not important as long as Eq. (5) is satisfied.
Using the following steps, show that in this model $T_{2}=T_{2}^{*}=T$.
a) Show that $\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)$ for real a and b. You may use the relation of the trigonometric functions to the complex exponential function to do this.
b) Show that

$$
\begin{equation*}
\phi_{i}^{\mathrm{R}} \equiv \int_{0}^{i \Delta t} d \tau \Delta E(\tau)=i \Delta t \Delta \bar{E}+\sum_{j=0}^{i-1} \eta_{j} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{i}^{\mathrm{H}} \equiv \int_{0}^{i \Delta t} d \tau \Delta E(\tau)-\int_{i \Delta t}^{2 i \Delta t} d \tau \Delta E(\tau)=\sum_{j=0}^{i-1} \eta_{j}-\sum_{j=i}^{2 i-1} \eta_{j} \tag{7}
\end{equation*}
$$

c) Show that

$$
\begin{equation*}
\left\langle\cos \left(\phi+\eta_{i}\right)\right\rangle_{\eta_{i}}=\cos (\phi)\left(1-\frac{\Delta t}{T}+O(\Delta t)^{2}\right) \tag{8}
\end{equation*}
$$

where ϕ is a number that does not depend on η_{i}. Hint: consider the Taylor expansion of $\sin (a)$ for a real a.
d) Show that

$$
\begin{equation*}
\left\langle P_{0}^{\mathrm{R}}(t)\right\rangle_{\eta_{0}, \eta_{1}, \ldots}=\frac{1}{2}+\frac{1}{2} \cos (t \Delta \bar{E})\left(1-\frac{\Delta t}{T}+O(\Delta t)^{2}\right)^{t / \Delta t} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle P_{0}^{\mathrm{H}}(2 t)\right\rangle_{\eta_{0}, \eta_{1}, \ldots}=\frac{1}{2}+\frac{1}{2}\left(1-\frac{\Delta t}{T}+O(\Delta t)^{2}\right)^{2 t / \Delta t} \tag{10}
\end{equation*}
$$

for all t that can be written as $t=i \Delta t$ for integer $i \geq 0$.
e) Show that

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0}\left(1-\frac{\Delta t}{T}+O(\Delta t)^{2}\right)^{t / \Delta t}=e^{-\Delta t / T} \tag{11}
\end{equation*}
$$

It may be helpful to consider the logarithm of both sides.
f) Show that by taking the limit of $\Delta t \rightarrow 0$, we find

$$
\begin{equation*}
\left\langle P_{0}^{\mathrm{R}}(t)\right\rangle_{\eta_{0}, \eta_{1}, \ldots}=\frac{1}{2}+\frac{1}{2} \cos (t \Delta \bar{E}) e^{-t / T} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle P_{0}^{\mathrm{H}}(t)\right\rangle_{\eta_{0}, \eta_{1}, \ldots}=\frac{1}{2}+\frac{1}{2} e^{-t / T} \tag{13}
\end{equation*}
$$

for any real $t \geq 0$ and therefore $T_{2}=T_{2}^{*}=T$.

