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Abstract
This thesis aims to study I-adic pro-étale sheaves, where I is an ideal of a ring R. We give a
definition and show that it is equivalent to the notion of I-adic sheaves on the étale site if I
is finitely generated. Moreover, we extend the existing theory by discovering basic properties
of adic pro-étale sheaves. Our main results include that for a noetherian scheme X and a
noetherian ring R, I-adic pro-étale sheaves form a weak Serre subcategory of the sheaves of
R-modules on Xproet. To avoid a technical construction of a pro-étale site, we axiomatically
describe a list of properties that a pro-étale enlargement should have. The resulting theory
about I-adic sheaves is then applicable to any setting fulfilling these properties.
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Introduction

An important aspect in the study of étale cohomology is the examination of I-adic
sheaves. They were introduced by A. Grothendiecke in the 1960s in order to obtain a
cohomology theory which works over any base field. This evolved theory was finally
used by A. Grothendiecke and P. Deligne to prove the Weil Conjectures. It is needless
to say that I-adic sheaves are an important concept in algebraic geometry and number
theory and that it is worth considering these types of objects. The definition for an
I-adic sheaf, which originally appears in [8, Exposé VI], is the following.

Definition. Assume R is a ring, I ⊂ R an ideal and X a scheme. An inverse system
(Fn)n∈N of sheaves of R-modules on the étale site Xet is called I-adic system (or by
abuse of notation I-adic sheaf ) if each Fn is constructible,

• In+1Fn = 0, and

• the morphism Fn+1→ Fn gives rise to an isomorphism Fn+1/I
n+1Fn+1 ∼= Fn.

The étale cohomology groups of an I-adic system are then defined to be

H i(Xet,(Fn)n∈N) := limnH
i(Xet,Fn).

Unfortunately, the étale cohomology groups can in general not be computed as
H i(Xet, limnFn). That was one of the reasons for B. Bhatt and P. Scholze to intro-
duce a new site Xproet, the so called pro-étale site (see [2]). Their site comes with
many advantageous properties, including an improved behavior of inverse limits. The
question of how the above definition should be realized in the pro-étale world finally
leads to the notion of adic pro-étale sheaves.

The idea of adic pro-étale sheaves comes from The Stacks Project [15, Tag 09BS].
Here, one can find the following definition.

Definition (adic pro-étale sheaves). A sheaf of R-modules F on Xproet is called con-
structible R-sheaf or I-adic (pro-étale) sheaf if F/InF is a constructible sheaf ofR/InR-
modules for every n ∈ N and

F ∼= limnF/InF .

Although this seems to be a promising definition, the literature does not encompass
basic properties of adic pro-étale sheaves. This thesis aims to fill this gap. We want
to provide fundamental statements concerning these objects and thereby extending the
existing theory. Below, we present some results from this thesis, which are not yet
covered in the literature. Assume I is finitely generated.

v
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• The category of I-adic systems on Xet is in equivalence with the category of I-adic
sheaves on Xproet.

• Adic pro-étale sheaves are stable under extension by zero along a quasi-compact
open subscheme.

If moreover X and R are noetherian, then

• The category of I-adic pro-étale sheaves is an abelian subcategory of the category
ModR(Xproet) of sheaves of R-modules on Xproet.
And even better:

• The category of I-adic pro-étale sheaves forms a weak Serre subcategory of the
category ModR(Xproet).

• The category of I-adic sheaves on Xproet is noetherian.

Note that similar properties are true for I-adic étale sheaves, which highlights the
relevance of these essential statements. Consequently, this thesis can be seen as jus-
tification for the definition of adic pro-étale sheaves and moreover as a foundation for
further extensions of this theory.

To avoid a technical construction of a pro-étale site, we axiomatically describe a list
of properties that a pro-étale enlargement should have. The advantage of an axiomatic
viewpoint is that it is applicable to any setting fulfilling the desired properties. More-
over, it can be seen as guideline for the construction of a pro-étale site.

Structure. In Chapter 1 we recall basic facts, the reader should be familiar with.
Mainly, the theory of sites and sheaves is recalled and an overview over important
concepts, like morphisms of sites, sheafification or restrictions, is given. Moreover,
Chapter 1 also covers some statements about Serre subcategories and complete modules.
Chapter 2 shortly introduces the étale site and gives some relevant properties. This first
two chapters are surely standard and the ideas can be found in almost every textbook on
étale cohomology. We mainly used [15] and [16] to gather all the relevant information.

The literature usually covers the theory of I-adic étale sheaves for the special case
R = Z` and I = (`) where ` is a prime number which is invertible in the considered
schemes. As we want to use more arbitrary rings, we generalize many statements from
[5] and [6] to the case where R is noetherian, and I is any ideal of R. With a few
exceptions, everything can be adapted in a straightforward manner to the more general
setting. The technical proofs are discussed in Chapter 3.

Finally, Chapter 4 treats the main contents of this thesis. We formulate and explain
the axioms and derive the statements about I-adic sheaves in Section 4.3 and 4.4. In the
latter many properties from Chapter 3 are transported to the pro-étale case. Moreover,
we compare our definition of I-adic sheaves with the derived category of constructible
complexes Dcons(Xproet,R) introduced by Bhatt and Scholze in their paper [2]. At the
end, we sketch the two concrete versions of the pro-étale topology from [2] and [12].

Master’s Thesis Lukas Krinner
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Note that many parts of Chapter 4 are not covered in the existing literature and are
results from our own research.

Conventions. We assume all rings to be commutative with one. To ensure read-
ability, even for non-experts, we try to give many details and construct a framework for
our theory. Nevertheless, it is of advantage to have some basic background knowledge
in sheaf theory. At some points we use the notion of derived categories, which will
be not introduced in this thesis. An excellent introduction in the theory of derived
categories can be found in [17]. However, most of the statements can be understood
without knowing this evolved technique.

Lukas Krinner Master’s Thesis





1 Background

1.1 Sites and Sheaves
In this section we will give a small introduction in the theory of sites. We will prove
statements which are particularly relevant to this thesis. For additional information
we will give references. To get an overview over this field one can refer to the book
Introduction to étale Cohomology of G. Tamme [16] or The Stacks Project [15, Tag
00UZ]. Most of the contents of this section come from these two sources.
Let us first give some basic definitions.

1.1.1 Definitions and Basic Properties
We basically follow [16, Chapter I].

Definition 1.1.1. Let C be a category. A topology on C consists of the following data.
For every object U ∈ C a set Cov(U), the set of coverings, whose elements are families
(Ui→ U)i∈I which fulfill the following three criteria.

T1 (base change) If (Ui→ U)i∈I is a covering and V → U a morphism in C then the
base change Ui×U V exists for all i and (Ui×U V → V )i∈I ∈ Cov(V ).

T2 (composition) Let (Ui → U)i∈I ∈ Cov(U) and for every i let (Vi,j → Ui)j∈Ji ∈
Cov(Ui) then the family (Vi,j → Ui→ U)i,j is an element of Cov(U)

T3 (identity) The family (id : U → U) is a covering, i.e. an element of Cov(U).

A site is a pair (C,Cov) where C is a category in which finite limits exist and a topology
Cov on C. If it is clear which topology is used, we often write C for (C,Cov).

Remark 1.1.2. Our definition of a site (C,Cov) requires the existence of finite limits
in C, which is not always assumed in the literature. However, we chose to include
finite limits in our definition because they offer some advantages. For instance, finite
limits ensure the exactness of the pullback along morphisms of sites and guarantee the
existence of a terminal object in C, since the terminal object is the limit of the empty
diagram ∆ : ∅→ C.

Definition 1.1.3. Let (C,Cov) be a site and let A be the category Set, Ab or ModR
for a ring R. In general one demands that A is a complete and cocomplete category1.

1I.e. all small limits and colimits exist.

1
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A presheaf on C is a functor

F : Copp→A.

A morphism of presheaves is a natural transformation and the resulting category of
presheaves is also denoted as PSh((C,Cov),A).
A presheaf is called a sheaf if for every U ∈ C and every covering (Ui→U)i∈I ∈Cov(U)
the sequence

F (U)
∏
i∈I F (Ui)

∏
i,j∈I F (Ui×U Uj)

is exact. We denote Sh((C,Cov),A) as the full subcategory of sheaves. If it is clear wich
category is used for A, we also write Sh(C,Cov) resp. PSh(C,Cov) for the respective
categories. If A= Ab then we also denote Sh((C,Cov),A) := Ab(C,Cov) and call sheaves
F ∈Ab(C,Cov) abelian sheaves.

At this point, we introduce some examples that will be more or less important for
us. Later, we will see that the choice of a site has many effects on the corresponding
category of sheaves. However, sheaves on the classical Zariski site lack some homological
properties, which is why we will introduce the étale and the pro-étale site.

Example 1.1.4.

• Let X be a topological space and consider the category Ouv(X) of the open
subsets of X. That is, objects are the open subsets in X and morphism are
inclusions. A family (Ui ↪→ U)i∈I is a covering if

⋃
i∈I Ui = U . This construction

gives the Zariski site, which is denoted by XZar.

• Let X be a scheme and consider the category of étale morphisms over X, i.e. the
objects are étale morphisms U →X. Define coverings to be families (Ui

fi−→U)i∈I
where all fi are étale and U =

⋃
i fi(Ui). This defines the étale site Xet, which will

be investigated in Chapter 2.

• Let C be any category. The finest topology such that the assertion

U 7→HomC(−,U)

forms a sheaf is called canonical topology on C. A justification and a concrete
description can be found in [15, Tag 00Z9]. Any topology which is coarser then
the canonical topology is called subcanonical. Note that in any subcanonical
topology, the presheaves HomC(−,U) are already sheaves.

• The chaotic topology on an arbitrary category C consists of coverings of the form
(V

∼=−→ U). Although this construction turns every category into a site, this is
of no practical use as the sheaves on the chaotic site are in equivalence with
the presheaves on C. Thus, considering sheaves do not provide any additional
information.

Master’s Thesis Lukas Krinner
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Lemma 1.1.5. If A is a complete and cocomplete category2 then PSh((C,Cov),A)
is complete and cocomplete. Further the limits and colimits in PSh(C,Cov) can be
computed using the formulas

(limiFi)(U) = limiFi(U) and (colimiFi)(U) = colimiFi(U)

Proof. [15, Tag 00VB]

Theorem 1.1.6 (sheafification). The inclusion functor ι : Sh(C)→ PSh(C) admits a
left adjoint a : PSh(C)→ Sh(C). Additionally a ◦ ι∼= id, ι commutes with all limits, the
functor a commutes with all colimits and is exact3.

Proof. [16, Theorem 3.1.1, 3.2.1]

Remark 1.1.7. Let F : I → Sh(C) be a diagram, such that the limit limiFi exists in
Sh(C). Then Theorem 1.1.6 implies that ι(limiFi) = limiιFi. In particular for every
U ∈ C we have limiFi(U) = (limiFi)(U). That is, taking sections commutes with limits.
A similar argument can be applied to colimits as follows. The colimit colimjFj of a
diagram F : J → Sh(C) is the sheafification of the presheaf U 7−→ colimjFj(U), because
a(colimjFj) = colimjaFj and the sheafification of a sheaf is canonically isomorphic to
itself.

Corollary 1.1.8. If A has small limits and colimits then Sh(C,A) has all small limits
and colimits. If further A is an abelian category with enough injectives, then Sh(C,A)
is an abelian category with enough injectives. For U ∈ C there is a left exact functor

Γ(U,−) : Sh(C)−→A
F 7−→ F (U).

Proof. The claim about the injectives is [15, Tag 01DL] for A = Ab. The remaining
claims directly follow from Remark 1.1.7.

Direct and Inverse Image

In this subsections all sheaves are considered to be abelian sheaves or sheaves of sets.

Definition 1.1.9 (morphism of sites). Let (C,Cov) and (C′,Cov′) be two sites. A
morphism of sites

f : (C,Cov)−→ (C′,Cov′)

consists of a functor f−1 : C′→C such that
2I.e. small limits and colimits exist in A.
3In particular it commutes with finite limits.

Lukas Krinner Master’s Thesis
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1. For all elements U ′ ∈ C′ and every covering (U ′
i → U ′)i∈I we have

(f−1(U ′
i)→ f−1(U ′))i∈I ∈ Cov(f−1(U ′)).

2. The functor f−1 is left exact. That means that for any U ′ ∈ C′, any covering
(U ′

i → U ′) ∈ Cov(U ′) and any morphism V → U ′ the canonical morphisms

f−1(U ′
i ×U V )→ f−1(U ′

i)×f−1(U ′) f
−1(V )

are isomorphisms and f−1 sends the terminal object of C′ to a terminal object of
C.

The composition of two morphisms of sites f : C → C′ and g : C′→C′′ is carried out by
the composition (g ◦f)−1 := f−1 ◦g−1.

Example 1.1.10. Let X and Y be two topological spaces and f :X→ Y a continuous
map. Then we get an induced morphism of sites f :XZar→ YZar which is defined by

Ouv(Y )−→Ouv(X)
U 7−→ f−1(U).

It is a simple exercise to justify the properties.

Definition 1.1.11. Let f : (C,Cov) −→ (C′,Cov′) be a morphism of sites. The direct
image is defined to be

f• : PSh(C)−→ PSh(C′)

F 7−→
(
U ′ 7→ F (f−1(U ′))

)
.

Proposition 1.1.12. The functor f• admits a left adjoint f• : PSh(C′)→PSh(C). This
functor f• is called the inverse image of f . Both, f• and f• are exact.

Proof. We provide a construction, deferring a detailed proof to the literature. Let U ∈ C
be an object. We are considering a category IU , where the objects are pairs (U ′,φ)
consisting of an object U ′ ∈ C and a morphism φ : U → f−1(U ′) in C. A morphism of
pairs (U ′,φ)→ (Ũ ,ψ) is by definition a morphism τ : U ′→ Ũ such that

f−1(U ′) f−1(Ũ)

U

f−1(τ)

commutes. Given a sheaf F on C′ and a U ∈ C one can define

f•F(U) := colim((U ′,φ)∈Iopp
U )F(U ′).

This is already the correct presheaf as it is shown in [16, p.41 ff.].

Master’s Thesis Lukas Krinner
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Definition 1.1.13 (direct image and inverse image). We define the inverse image
respectively the direct image of sheaves as

f∗ := a◦f• ◦ ι : Sh(C′)→ Sh(C),
f∗ := a◦f• ◦ ι : Sh(C)→ Sh(C′) respectively.

Here, ι denotes the forgetful functor from the category of sheaves into the category of
presheaves.

Proposition 1.1.14. In the notion of Definition 1.1.13, we have the following proper-
ties.

1. f• and f• are exact.

2. The functor f∗ is left adjoint to f∗.

3. f∗ is left exact and f∗ is exact.

Proof. The first property is covered by Proposition 1.1.12 and the second is an immedi-
ate consequence. For the third part, the only nontrivial thing is to show that f∗ exact.
The right exactness is trivial as f∗ is a left adjoint. For the left exactness note that f∗

is the composition of left exact functors.

Lemma 1.1.15. Let f : C → C′ and g : C′′ → C be two morphisms of sites. Then we
have

(f ◦g)∗ = f∗ ◦g∗ and (f ◦g)∗ = g∗ ◦f∗.

The corresponding statement holds for presheaves.

Proof. It is clear from the definition that f• ◦ g• = (f ◦ g)•. This directly implies the
first claim. The second follows from the adjointness.

1.1.2 Sheaves of Modules

In this subsection we will briefly introduce the notion of sheaves of modules. We orient
to [15, Tag 03A4] and include only those definitions, which are of interest for us. Let
C be a site and O a presheaf of rings on C, i.e. an abelian presheaf such that for every
U ∈ C the group O(U) admits a ring structure which is compatible with restrictions.

Definition 1.1.16. A presheaf of O-modules is an abelian presheaf F on C together
with a map of presheaves

m :O×F →F ,

Lukas Krinner Master’s Thesis
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which defines aO(U)-module structure on F(U) for any U ∈C. Morphisms of presheaves
of O-modules are morphisms of presheaves which are compatible with the above mul-
tiplication map, that means f : F → G is a morphism of O-presheaves if the diagram

O×F O×G

F G

(id,f)

m m

f

commutes.
Assume O is a sheaf of rings. An abelian sheaf F is called sheaf of O-modules if F
interpreted as presheaf is a presheaf of O-modules. Although it is not necessary to
demand that O is a sheaf in this definition, we will not see or use an example where
this is not the case. We denote the category of sheaves of O-modules on C by ModO(C).

Definition 1.1.17. A sheaf F ∈ Sh(C,A) is called constant with values in E ∈ A if it
is the sheafification of a presheaf of the form

U 7−→ E.

We also write EC for the constant sheaf on C with values in E. If it is clear which site
we consider, one simply writes E.

Lemma 1.1.18. The functor

• : Ab→ Sh(C,Ab)

is exact. Further ι ◦ • is exact. That means • transforms exact sequences of abelian
groups to exact sequences of presheaves.

Proof. The exactness of • is clear since the sheafification is exact. Since the inclusion
functor ι is left exact, it suffices to show that a surjection B→C gives an epimorphism
ιB→ ιC in the category of presheaves. Pick a set theoretical section s :C→B of B→C
to get a section of presheaves of sets s : ιC→ ιB.

Lemma 1.1.19. Let C and D be sites, M an abelian group or an Λ-module for a ring
Λ and ε : C →D a morphism of sites. We obtain the formula

MC
∼= ε∗(MD)

Proof. We write M for the presheaf with constant values in M . As preliminary step
we notice that the construction in the proof of Proposition 1.1.12 implies

ε•M(U) = limU ′∈Iopp
U
M(U ′) =M

Master’s Thesis Lukas Krinner
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and hence ε•M =M . For any H ∈ Sh(C) we have
HomSh(C)(ε∗MD,H)∼= HomSh(D)(MD, ε∗H)

∼= HomPSh(D)(M,ε∗H)
= HomPSh(D)(M,ε•H)
∼= HomPSh(C)(ε•M,H)
∼= HomPSh(C)(M,H)
∼= HomSh(C)(MC ,H).

We used that MC = a(M) and the adjunctions
a : PSh(C) � Sh(C) : ι, ε∗ : Sh(D) � Sh(C) : ε∗ and ε• : PSh(D) � PSh(C) : ε•.

This proves the claim.

Example 1.1.20. If Λ is a ring then the sheaf Λ is a sheaf of rings.
Remark 1.1.21. Let ε : C → D be a morphism of sites and let F be a sheaf of
ΛD-modules. Then ε∗F is canonically an ε∗ΛD = ΛC-module. In particular, the pullback
ε∗ is a well-defined functor

ModΛ(D)→ModΛ(C).
Moreover, it is an exercise to show that ε∗ fulfills all the adjointness properties from
the foregoing sections.
For the following let Λ be a ring.
Definition 1.1.22. A sheaf of Λ-modules F is defined to be a sheaf of Λ-modules,
where Λ is the constant sheaf associated to Λ.
Definition 1.1.23. A sheaf of O-modules F is of finite type if there is an n∈N together
with an epimorphism

On � F .
Remark 1.1.24. The justification for this definition is the following. Any Λ-module
F has a Λ-module structure on F(U) for any U ∈ C. This is defined by the canonical
map

ΛPSh→ Λ,
where ΛPSh denotes the constant presheaf. Conversely, if F has a sectionwise Λ-module
structure which is compatible with restriction, then we get a Λ-module structure on F
by applying sheafification to the multiplication ΛPSh×F → F . Nevertheless, one must
be careful with some concepts related to these objects. For example it is not true that
a finite type sheaf of Λ-modules is of finite type as presheaf of Λ-modules. Concretely,
let X =

⊔
N{∗} an infinite union of one point topological spaces and consider the Zariski

site induced by X. Then the global sections of the constant sheaf are Λ(X) =
∏

NΛ,
which is definitely no finite type Λ-module. Despite this, the other implication is true
as sheafification commutes with finite direct sums and preserves epimorphisms.

Lukas Krinner Master’s Thesis
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1.1.3 Restrictions and Locally Constant Sheaves
Let C be a site and U ∈ C any object. We can define a category C/U , where the objects
are morphisms V → U in C and the morphisms are commutative triangles

V V ′

U

We also write V/U for an element V →U ∈ C/U . We can equip C/U with the structure
of a site by declaring a family (Vi→ V )i of morphisms over U to be a covering iff it is
a covering of V in C. It is clear that this defines a site. As we required the existence
of finite limits in sites, C has a terminal object X, for which we get an equivalence of
categories C ∼= C/X.
For any U ∈ C one can consider the functor

j−1
U : C −→ C/U

V 7−→ (V ×X U → U).

It is an exercise to check that j−1
U defines a morphism of sites jU : C/U →C.

Definition 1.1.25. Lef F be a sheaf on C and let U ∈ C. Define the restriction of F
to U by

F|U := j∗
UF .

Note that the functor j∗
U : Sh(C)→ Sh(C/U) is exact and has a right adjoint jU∗.

Lemma 1.1.26. Lef F be a sheaf on C and let U ∈ C. Then the restriction of F to U
is given by

F|U (V/U) = F(V )

for all V/U ∈ C/U .

Proof. Let jU : C/U → C be the morphism of sites which defines the restriction. To
show the formula, we have to prove that the rule

ξ : Sh(C)−→ Sh(C/U)
F 7−→ (V/U 7→ F(V ))

is the left adjoint of jU ∗. First, it is clear that ξ(F) is a sheaf and that ξ defines a functor.
Let f : F → jU ∗G be a morphism of sheaves, where G ∈ Sh(C) and F ∈ Sh(C/U). Then
we get a morphism ξ(F)→G defined on sections by

ξ(F)(V/U) = F(V ) f(V )−−−→ jU ∗G(V )∼= G(V/U).

Master’s Thesis Lukas Krinner



1.1 Sites and Sheaves Page 9

Conversely, any morphism of sheaves g : ξ(F)→ G defines a morphism F → jU ∗G as
follows

F(V )→F(V ×X U) = ξ(F)(V ×X U/U) g(V×XU)−−−−−−→G(V ×X U/U) = jU ∗G(V ).

It is left to the reader to show that these two constructions are functorial in F and G
and that they are mutually inverse.

Lemma 1.1.27. Let ε : C → D be a morphism of sites and U ∈ D. Then ε induces a
morphism of sites ε′ : C/ε−1(U)→D/U making the square

C/ε−1(U) D/U

C D

ε′

ε

commute. Moreover, for a sheaf F on D we have the formula (ε∗F)|ε−1(U) = ε′∗(F|U ).
If it is clear from the context, we will write ε instead of ε′.

Proof. The morphism of sites ε′ is given by the functor

ε′−1 :D/U −→ C/ε−1(U)
V/U 7−→ ε−1(V )/ε−1(U).

It is clear that this defines a morphism of sites and makes the above square commute.
The statement (ε∗F)|ε−1(U) = ε′∗(F|U ) follows from Lemma 1.1.15.

We will introduce the notion of locally constant sheaves for arbitrary sites and state
some basic results, which also can be found in [15, Tag 093P]. Fix a site (C,Cov) and
a ring Λ.
Definition 1.1.28. A sheaf F is locally constant if for every object U ∈ C there is a
covering (ϕi : Ui→ U)i∈I such that F |Ui is a constant sheaf on C/Ui.
We say a sheaf F of abelian groups or sets is finite locally constant if it is locally constant
and the values of the constant sheaves F |Ui are finite abelian groups or sets.
Lemma 1.1.29. Assume Λ is a noetherian ring. The category of locally constant
abelian sheaves is a weak Serre subcategory4 of the category of abelian sheaves. Simi-
larly, the locally constant sheaves of finite type Λ-modules form a weak Serre subcate-
gory of the sheaves of finte type.

Proof. [15, Tag 093U]

Lemma 1.1.30. Let C be a site. Finite limits and colimits of locally constant sheaves
on C are again locally constant.

Proof. This is a direct consequence of the foregoing lemma.
4See Section 1.2

Lukas Krinner Master’s Thesis
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1.1.4 Tensor Product and Internal Homomorphism

Let Λ be a ring. Two important constructions concerning sheaves of Λ-modules are
the tensor product and its right adjoint, the internal homomorphism. The goal of this
technical subsection is Proposition 1.1.36. We want the tensor product to commute
with pullbacks along arbitrary morphisms of sites ε : C →D to ensure that for I ⊂ Λ an
ideal and F a sheaf of Λ-modules on D the equality

ε∗(IF)∼= Iε∗F

holds.
For the following fix a site C and a sheaf of rings O on C. We will later apply the theory
to O = Λ for a ring Λ.

Definition 1.1.31 (Tensor). Let F and G be two sheaves of O-modules. Define the
presheaf F ⊗O,PSh G by the rule

U 7−→ F(U)⊗O(U) G(U).

Further set F ⊗O G := a(F ⊗O,PSh G).

Lemma 1.1.32. Tensoring commutes with sheafification, that is

a(F ⊗O,PSh G) = aF ⊗aO aG.

for a presheaf of rings O and presheaves of O-modules F ,G.

Proof. [15, Tag 0GMW]

Remark 1.1.33. Let Λ be a ring and denote by Λ the constant sheaf associated to Λ.
Let F and G be two sheaves of Λ-modules. Then we often write

F ⊗Λ G := F ⊗Λ G.

This is by Lemma 1.1.32 the same as the sheafification of the presheaf

U 7−→ F(U)⊗Λ G(U).

Definition 1.1.34 (Internal Hom). Let F be a presheaf and G a sheaf of O-modules.
The assertion

U 7−→HomO(F|U ,G|U )

defines a sheaf of O-modules, see [15, Tag 04TT]. This sheaf is called the internal
homomorphism and is denoted by HomO(F ,G).

Master’s Thesis Lukas Krinner
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Proposition 1.1.35. Let F be a sheaf of O-modules. Then the functor F ⊗O− is the
left adjoint of the functor HomO(F ,−). In particular, for any sheaves of O-modules G
and H there is a canonical isomorphism

HomO(F ⊗O G,H)∼= HomO(G,HomO(F ,H))

functorial in F , G and H.

Proof. [15, Tag 04TT]

Proposition 1.1.36. Let ε : (C,Cov)−→ (C′,Cov′) be a morphism of sites. Further let
F and G be two sheaves of O modules on C′. Then

ε∗(F ⊗O G) = ε∗F ⊗ε∗O ε
∗G

Proof. [15, Tag 03EL]

Definition 1.1.37. Let O be a sheaf of rings and I ⊂ O a sheaf of ideals. For a sheaf
of O-modules F set

IF := im(I ⊗OF →F).

This is the same as the sheafification of the presheaf defined by

U 7−→ I(U)F(U).

We will usually apply this to a ring Λ with an ideal I ⊂ Λ and write IF := IF .

Corollary 1.1.38. Let ε : C →D be a morphism of sites. Let I ⊂ Λ be an ideal and F
a sheaf of Λ-modules on D. We then have the equality

ε∗(IF)∼= Iε∗F .

Proof. Since ε∗ is exact, it commutes with the image functor. Hence,

ε∗(IF) = im(ε∗(I⊗ΛF)→ ε∗F).

But by Lemma 1.1.19 and Proposition 1.1.36 this is the same as

im(I⊗Λ ε
∗F → ε∗F).

Lemma 1.1.39. If F and G are two locally constant sheaves of Λ-modules on C then

F ⊗Λ G

is a locally constant sheaf of Λ-modules.

Proof. [15, Tag 093V]

Lukas Krinner Master’s Thesis
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1.2 Interlude on Serre Subcategories
The material of this section can be found in [15, Tag 02MN].

Definition 1.2.1. Let A be an abelian category and C ⊂A a full subcategory. We say
C is a Serre subcategory of A if for every exact sequence

A B C

with A,C ∈ C we already have B ∈ C.
Similarly, C is a weak Serre subcategory if for any exact sequence

A1→A2→B→ C1→ C2

with A1,A2,C1,C2 ∈ C we already have B ∈ C.

Serre subcategories have useful properties, which we will use later in this thesis. In
the following we state two of them.

Lemma 1.2.2. Let A be an abelian category and C ⊂ A a Serre subcategory. Then
any quotient and any subobject of an element in C is again in C.

Proof. [15, Tag 02MP]

The main advantage of Serre subcategories is that we can define quotients of cate-
gories.

Proposition 1.2.3. Let A be an abelian category with a Serre subcategory C. Then
there exists an abelian category A/C together with an essential surjective exact functor

F :A−→A/C

which has kernel C, i.e. the category of elements in A, which are mapped to the zero
object via F is exactly C. Moreover, F and A/C are characterized by the following
universal property. Any exact functor G : A → B in a category B with C ⊂ ker(G)
factorizes as G=H ◦F for a unique exact functor H :A/C → B.

Proof. [15, Tag 02MS]

Remark 1.2.4. The foregoing proposition shows that a morphism f :A→B becomes
an isomorphism after applying F if and only if the kernel and cokernel of f are elements
in C.

Lemma 1.2.5. Let A be an abelian category. A subcategory S ⊂A is a Serre subcat-
egory of A if and only if the following conditions are fulfilled

• The zero element lies in S.

Master’s Thesis Lukas Krinner
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• S is a strictly full subcategory of A.

• S is closed under kernels and cokernels.

• For any short exact sequence

0→ F →G→H → 0

with F,H ∈ S, we already have G ∈ S.

Proof. This can be easily shown using the definitions. The proof is left to the reader.

1.3 Completion of Modules
In this section we will recall some facts about the completion of modules. Note that we
will leave out many statements and only concentrate on the parts that are interesting
for this thesis. For more detailed material one can consult the respective section in the
Stacks Project [15, Tag 00M9].
Let R be a ring and I ⊂R an ideal.

Definition 1.3.1. The completion of R with respect to I is the algebra

R∧ := limnR/I
nR.

For an R-module M define the completion of M as

M∧ := limnM/InM

This definition directly gives a canonical mapM→M∧ and for a morphism ofR-modules
M →N there is an induced map M∧→N∧ such that

M N

M∧ N∧

commutes.

Lemma 1.3.2 (basic properties).

1. If M →N is surjective then the induced map M∧→N∧ is surjective.

2. If M/IM →N/IN is surjective then M∧→N∧ is surjective.

3. The completion commutes with finite direct sums.

Proof. See [15, Tag 0315] for 1 and 2. The third can be proven using a straightforward
calculation and the fact that a finite direct sum is the same as a finite product in the
category of R-modules.

Lukas Krinner Master’s Thesis
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Definition 1.3.3. An R-module M is called (I-adically) complete if the canonical map

M →M∧

is an isomorphism. The ring R is called complete if R is complete as R-module.

Remark 1.3.4. The completion of modules over arbitrary rings is in general not com-
plete, for instance see [15, Tag 05JA]. However, this is true if I is a finitely generated
ideal, so we will usually restrict to this case.

Lemma 1.3.5. Assume I is finitely generated as an ideal and let M be an R-module.
Then

• M∧ is I-adically complete.

• The map M →M∧ induces an isomorphism M∧/InM∧ ∼=M/InM . In particular
InM∧ = (InM)∧ = ker(M∧→M/InM).

Proof. The first assertion directly follows from the second taking limits,

M∧ = limnM/InM ∼= limnM
∧/InM∧ = (M∧)∧

.

It remains to prove the first part. Since I is finitely generated, In is finitely generated.
Let In = (f1, . . . ,fn) with fi ∈ I. Now consider the surjective map

(f1, . . . ,fn) :
n⊕
i=1

M → InM

induced by multiplying the i’th component by fi. Property 1 in Lemma 1.3.2 gives a
surjection τ :

⊕n
i=1M

∧→ (InM)∧ = ker(M∧→M/InM). But the image of τ in M∧ is
exactly InM∧, which proves

ker(M∧→M/InM) = InM∧.

This proves the claim since the canonical projections M∧→M/InM are surjective.

Lemma 1.3.6. A direct summand of a complete R-module is complete.

Proof. Let M = M1 ⊕M2 be a complete R-module. We use Lemma 1.3.2 and the
construction of the completion to get a commutative diagram with surjections and
injections as indicated

M1 M =M1⊕M2 M1

M∧
1 M∧ M∧

1 ,

τ ∼= τ

where τ is the canonical map. The right square implies that τ is surjective and the left
square implies that τ is injective. Therefore, τ is an isomorphism.

Master’s Thesis Lukas Krinner
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Our main result of this section is the following.

Proposition 1.3.7 (Recovering inverse systems). Assume I is finitely generated and
let (Mn)n∈N be an inverse system of R-modules, i.e. a chain

M0← . . .←Mn← . . .

such that In+1Mn = 0. Then M := limnMn is I-adically complete. If further the induced
maps Mn+1/I

n+1Mn+1→Mn are isomorphisms then we can recover the inverse system
from M via isomorphisms

M/In+1M ∼=Mn.

If additionally all Mn are finite R-modules, then M is a finite R∧-module.

[15, Tag 09B8]. The canonical projection M →Mn factors as M →M/In+1M →Mn.
Taking the limit over n yields to

M M∧ M.

id

But this implies that M∧ fits in a splitting short exact sequence

0→N →M∧→M → 0

which implies that M is a direct summand of the I-adically complete R-module M∧

(see Lemma 1.3.5). Then M is complete by Lemma 1.3.6.
Now additionally assume Mn+1/I

n+1Mn+1∼=Mn. Let Nn be the kernel of the surjective
projections τn :M →Mn. Consider the commutative triangle

M Mn+1

Mn.

τn+1

τn

We easily detect that Nn = ker(τn) = ker(τn+1) + In+1M = Nn+1 + In+1M . Hence we
get well-defined surjections

Nn+1/I
n+2M �Nn/I

n+1M.

Keeping this result in mind, we consider the short exact sequence

0→Nn/I
n+1M →M/In+1M →Mn→ 0.

Applying the inverse limit is left exact. Hence, we obtain a left exact sequence

0→ limnNn/I
n+1M →M∧→M.

Lukas Krinner Master’s Thesis
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Since M is complete, the right arrow is an isomorphism and 0 = limnNn/I
n+1M must

hold. But the result from above indicates the surjectivity of the transition maps
Nn+1/I

n+2M � Nn/I
n+1M . We deduce that 0 = Nn/I

n+1M , which finally implies
M/In+1M ∼=Mn.
Now assume that all Mn are finite R-modules. In particular, the quotient M/IM is a
finite R/I-module and hence there is a surjection

(R/I)n =Rn/IRn −→M/I

By Lemma 1.3.2 we get a surjection

(Rn)∧ = (R∧)n→M∧,

which completes the proof.

Proposition 1.3.8. If M is a finite Λ-module and Λ a noetherian ring then

M∧ ∼=M ⊗Λ Λ∧

In particular, every finite module over a complete noetherian ring is complete.

Proof. [15, Tag 00MA]

Lemma 1.3.9. Let I = (f1, . . . ,fl)⊂R be a finitely generated ideal andM anR-module.
Then

M∧ = limnM/(fn1 , . . . ,fnl )M

Proof. This is an easy computation using the inclusions Irn ⊂ (fn1 , . . . ,fnl )⊂ In.

Lemma 1.3.10. Let I = (a1, . . . ,an) ⊂ R be a finitely generated ideal and M an
R-module. If the canonical maps

M → limnM/aniM

are surjective for all i, then the map M →M∧ into the I-adic completion of M is
surjective.

Proof. ([15, Tag 090S]) By Lemma 1.3.9 we have M∧ = limnM/(fn1 , . . . ,fnl )M . Hence,
an element x∈M∧ can be represented by a sequence (xn)n∈N with xn ∈M/(fn1 , . . . ,fnl )M
and xn+1−xn ∈ (fn1 , . . . ,fnl )M . We write

xn+1−xn :=
l∑

i=1
an,if

n
i

with an,i ∈M . For i ∈ {1, . . . , l} choose preimages yi ∈M for the elements n∑
j=1

aj,if
j
i


n∈N

∈ limnM/(fni )M.

Then a preimage of x is given by y :=
∑l
i=1 yi.

Master’s Thesis Lukas Krinner
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Lemma 1.3.11. Let I = (a1, . . . ,ar) ⊂ R be a finitely generated ideal and M an
R-module. If M is (ai)-adically complete for all i, then M is I-adically complete.

Proof. We use induction on r. For r = 1 the claim is trivial.
Assume r > 1. The canonial morphism M → M∧ is surjective by Lemma 1.3.10.
Let x ∈M with x ∈

⋂
n∈N I

nM = ker(M →M∧). As Irn ⊂ (an1 , . . . ,anr ), we see that
x ∈

⋂
n∈N(an1 , . . . ,anr ). This exactly means that for any n ∈N there are y1,n, . . . ,yr,n ∈M

such that

x= an1y1,n+ . . .+anr yr,n.

Define the ideal I ′ := (a2, . . . ,ar). The canonical map π :M → limnM/I ′M is an iso-
morphism by the induction hypothesis. But for every m ∈ N we can represent π(x) by
the sequence

([an1y1,n])n∈N = am1 ([an1y1,n+m])n∈N.

This shows that x ∈
⋂
n∈N(an1 ) = {0}. Therefore, M →M∧ is injective which completes

the proof.

Lukas Krinner Master’s Thesis





2 The Étale Site

In this chapter we want to introduce the étale site and provide some initial properties.
Most of the statements are standard and can be found in nearly any textbook on étale
cohomology. However, we mainly used [6] as reference for this chapter.

2.1 Definitions and Basic Statements
From now on, fix a scheme X.

Definition 2.1.1. The étale site consists of the category of étale schemes over X
together with the coverings given by

Covet(U) :=
{

(fi : Ui→ U)i∈I | all fi are étale and U =
⋃
i∈I
f(Ui)

}
.

Isomorphisms are well-known to be étale morphisms, and the property of being étale is
preserved under composition and base change. It is trivial to verify the definitions of a
site. We denote this site by Xet and call sheaves on Xet étale sheaves.

Remark 2.1.2. Let f : X → Y be a morphism of schemes. Then we get a canonical
morphism of sites f :Xet→ Yet defined by the functor

f−1 : Yet −→Xet

(V/Y ) 7−→ (f−1(V ) := V ×Y X/X).

Note that for any étale morphism g : U → X the sites Uet and Xet/U coincide and
that the morphism of sites Uet→Xet is exactly the morphism of sites defined by the
restriction from Section 1.1.3. If ι : Z ↪→ X is a locally closed subscheme, define the
restriction of a sheaf F as F |Z := ι∗etF .

Remark 2.1.3. The assertion X 7→Xet defines a functor

(−)et : Sch−→ Sites

from the category of schemes into the category of sites. Of course, one has to be careful
as it is a functor between 2-categories. For two composable morphisms of schemes,
f and g, the associated morphism of sites (f ◦ g)et might differ from the composition
fet ◦get. However, there is always a canonical natural isomorphism between fet ◦get and
(f ◦g)et. We will ignore such types of problems as they do not cause any issues in this
thesis.

19
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Examples 2.1.4.

• Let A be a non-trivial abelian group. We will see that the constant étale sheaf
associated to A is non-trivial.

• Let X be a scheme. For any étale morphism U →X and any N ∈ N define

µX,N (U) := {f ∈ OU (U)× | fN = 1}.

This is a sheaf, called the N ’th roots of unity.

Stalks of Étale Sheaves
One of the main advantages in the study of sheaves on the Zariski site are stalks. Many
statements can be reduced to a stalkwise calculation, which is often easier. This concept
generalizes, in a certain sense, to sheaves on the étale site. We will shortly explain the
construction of étale stalks, and provide an overview over the most important properties.
For a more detailed insight see [6, Section 5.3] or [16, §5].

Definition 2.1.5. Let x ∈X be any point and let G be a presheaf with values in Set
or Ab on Xet. A geometric point centered in x is a morphism s : Spec(Ω)→X which
factorizes through Spec(κ(x))→ X and where Ω is a separably closed field. We also
write s := Spec(Ω) or s→X. For such a geometric point s we define the stalk of G at
s as

Gs := Γ(Spec(Ω),s•G)

Definition 2.1.6. Let s : Spec(Ω)→ X be a geometric point. An étale neighborhood
of s is a commutative diagram

U

Spec(Ω) X

u

s

where U → X is an étale map. A morphism of étale neighborhoods (U,u)→ (V,v) is
a morphism ϕ : U → V over X such that ϕ◦u = v. Note that the category Is of étale
neighborhoods of s is a cofiltered category.

Proposition 2.1.7. If G is an étale presheaf and s a geometric point, then the stalk
can be computed as

Gs ∼= colim(U,u)∈Is
G(U).

Moreover, sheafification preserves stalks. That is aGs ∼=Gs.

Proof. [15, Tag 03PT]

Master’s Thesis Lukas Krinner
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Example 2.1.8. Let A be an abelian group and A the sheaf associated to the constant
presheaf with values in A. Then for any geometric point s we have As ∼=A. This follows
directly from Proposition 2.1.7. In particular, A is an example of a non-trivial sheaf on
the étale site.
Proposition 2.1.9. Let s : Spec(Ω)→X be a geometric point in X and F ∈ Sh(Xet)
with values in A= Set or Ab. Then

1. The functor given by F 7→ Fs is exact.

2. For any morphism of geometric points1 s→ s′ we have a canonical isomorphism

Fs ∼= Fs′

3. A morphism of schemes f : Y →X induces an isomorphism

(f∗F )t ∼= Ff(t)

for any geometric point t of Y . Here f(t) := f ◦ t.
Proof. The details can be found in [6, Section 5.3].

Definition 2.1.10. For every x ∈X fix a separable closure κ(x) of κ(x). Then define
x := Spec(κ(x)). We denote the corresponding geometric point by x.
Theorem 2.1.11. Let F and G be sheaves on Xet and ϕ : F → G a morphism of
sheaves. Then ϕ is an isomorphism, an epimorphism, an monomorphism or the zero
morphism if and only if for every x ∈X the morphism on stalks ϕx : Fx→Gx is so.
Further the canonical map

F (X)→
∏
x∈X

Fx

is injective and a sequence of abelian sheaves

F →G→H

is exact if and only if for every x ∈X the sequence

Fx→Gx→Hx

is exact.

Proof. [6, Prop. 5.3.3]

Proposition 2.1.12. Let f : Y → X be an immersion of schemes and F ∈ Sh(Yet).
Then the canonical morphism

f∗f∗F → F

is an isomorphism.

Proof. This follows from a stalkwise calculation. For instance, a proof can be found in
[6, Cor. 5.3.8].

1A morphism of geometric points is a morphism of schemes over X

Lukas Krinner Master’s Thesis
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2.2 Locally Constant Sheaves on the Étale Site

An important concept which allows to detect locally constant sheaves on the étale
site is the specialization. Let X be a scheme and s : Spec(Ω)→ X a geometric point
with image x ∈ X. Then define ÕX,s to be the strict henselization of the local ring
OX,x. Further set X̃s := Spec(ÕX,s). Note that the map s : Spec(Ω)→X factorizes as
Spec(Ω)→ X̃s→X where X̃s→X is the canonical map.
Assume s,s′ are two geometric points in X. A specialization morphism is an X-
morphism X̃s′ → X̃s. If such a morphism exists we say s is a specialization of s′.

Lemma 2.2.1. A geometric point s is the specialization of a geometric point s′ if and
only if x ∈ {x′} where x (resp. x′) is the image of s (resp. s′) in X.

Proof. [6, Prop. 5.3.5]

Lemma 2.2.2. Let F be a sheaf on Xet and s,s′ two geometric points. A specialization
morphism X̃s′ → X̃s induces a canonical morphism of sheaves

Fs→ Fs′ .

We will call this morphism the specialization map associated to X̃s′ → X̃s.

Proof. Assume s : Spec(Ω)→X and s′ : Spec(Ω′)→X are two geometric points. Let
(U,u) be an étale neighborhood of s. Then u : Spec(Ω)→ U induces a map X̃s→ U .
Composing this map with the given specialization morphism yields to a morphism

vU : Spec(Ω′)→ X̃s′ → X̃s→ U.

One easily sees that this defines a geometric neighborhood of s′. To check that this
construction is functorial in the geometric neighborhood of s is left to the reader. Hence
the identity F (U)→ F (U) induces a map

Fs ∼= colim(U,u)∈Is
F (U)−→ colim(V,v)∈Is′F (V )∼= Fs′ .

Proposition 2.2.3. Let X be a noetherian scheme and R a noetherian ring. A sheaf
F with finite stalks (resp. finitely generated stalks) is locally constant if and only if for
any specialization morphism f : X̃s′ → X̃s the specialization map Fs→ Fs′ associated
to f is an isomorphism.

Proof. [6, Prop. 5.8.9]

Master’s Thesis Lukas Krinner
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2.3 Constructible Sheaves on the Étale Site
Definition 2.3.1. Let X be a topological space. A partition of X is a disjoint de-
composition of X in locally closed subsets2. That is X =

⊔
i∈IXi with Xi ⊂X locally

closed. A constructible subset of X is a subset E ⊂X such that E is the finite union of
subsets of the form U ∩ (X \V ), where U and V are retrocompact open subsets of X.
Recall that a subset is called retrocompact if its intersection with any compact subset
of X is compact. A partition X =

⊔
i∈IXi is called stratification if the Xi are locally

closed and constructible3.

Definition 2.3.2. Let X be a scheme and Λ a ring.

1. Let F be a sheaf of abelian groups on Xet. We say F is constructible if for every
affine open U ⊂X there is a finite partition U =

⊔n
i=1Ui in constructible locally

closed subsets of U such that F |Ui is finite locally constant.

2. Let F be a sheaf of Λ-modules on Xet. We say F is constructible if for every affine
open U ⊂X there is a finite partition U =

⊔n
i=1Ui in constructible locally closed

subsets of U such that F |Ui is locally constant and of finite type.

Remark 2.3.3. Let Λ be a finite ring and consider a constructible sheaf of Λ-modules
F . Obviously, F is a constructible abelian sheaf. This is in general not correct if
the considered ring is not finite. One reason why the definition remains valid is that
for X quasi-separated and quasi-compact the constructible abelian sheaves (resp. the
constructible sheaves of Λ-modules) form the smallest subcategory of Sh(Xet,Ab) (resp.
of Mod(Λ)) which is closed under limits and contains sheaves of the form jU !Z/nZ
(resp. jU !Λ). Here jU ! denotes the extension by zero4 and U is any quasi-compact and
quasi-separated étale scheme over X.

Proposition 2.3.4. If f :X→Y is a morphism of noetherian schemes then the pullback
of a constructible sheaf along f is again constructible.

Proof. [6, Proposition 5.8.2]

Proposition 2.3.5. Let X be a scheme and Λ a noetherian ring. For two constructible
sheaves of Λ-modules F and G the tensor product F ⊗Λ G is constructible.

Proof. Let U ⊂ X be an affine open. Pick partitions U =
⊔n
i=1Ui and U =

⊔m
j=1Vj

which arise from the constructibility of F and G. Then U =
⊔
i,jUi∩Vj is a partition

into constructible locally closed subsets such that

(F ⊗Λ G)|Ui∩Vj = F|Ui∩Vj ⊗Λ G|Ui∩Vj

is locally constant.
2I.e. subsets which are of the form C

i
↪→ U

j
↪→ X such that i is a closed and j an open immersion.

3This may be non-standard notation.
4See Section 4.2.

Lukas Krinner Master’s Thesis



Page 24 2 The Étale Site

Lemma 2.3.6. The category of abelian constructible sheaves is a weak Serre subcate-
gory of the category of abelian sheaves on Xet. The same is true for the constructible
sheaves of Λ-modules inside the category ModΛ(Xet). In particular, the category of
constructible sheaves is closed under finite limits and colimits.

Proof. [15, Tag 03RZ]

Proposition 2.3.7. Let R be a noetherian ring and X a noetherian scheme. Then a
sheaf of R-modules F on Xet is constructible if and only if F is noetherian. That is,
any ascending chain

F0 ⊂ F1 ⊂ . . .⊂ F

of subsheaves of F gets eventually constant. In particular, this implies that any subsheaf
and any quotient of a constructible sheaf of R-modules is again constructible.

Proof. [6, Prop. 5.8.6]

Corollary 2.3.8. If R is a noetherian ring and X a noetherian scheme then the con-
structible sheaves of R-modules form a Serre subcategory of the category of sheaves of
R-modules on Xet.

Proof. This is covered by the ”in particular”-part of Proposition 2.3.7 combined with
Lemma 2.3.6.
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3 I-adic Formalism

In this chapter we want to define I-adic sheaves on the étale site. To do so, it is useful to
introduce the formalism that comes with the Artin-Rees category. Later, we will need
this technical chapter in order to derive many interesting properties of pro-étale sheaves
by reducing to the étale case. We use the ideas from [6, Chapter 10] and [5, §12]. In
the literature the ring R := Z` of `-adic numbers is used. However, we demand R to
be an arbitrary noetherian ring as the proofs that are relevant for this thesis can be
adapted in a straightforward manner.

3.1 The Artin Rees Category

In the following let A be an abelian category. For two categories B and C let Func(B,C)
be the category of functors B→ C. Furthermore, let N be the category whose elements
are natural numbers, with a unique morphism m→ n whenever m≤ n.

Definition 3.1.1. The category Func(Nopp,A) is called the category of inverse systems
in A. A functor F ∈Func(Nopp,A) is given by a family (Fn)n∈N of objects in A together
with transition morphisms Fn+1→Fn for all n ∈ N:

F0←F1← . . .←Fn . . .

Define F [m] as the inverse systems with

F [m]n := Fm+n

and obvious transition maps. This defines a functor [m] : Func(Nopp,A)→Func(Nopp,A).
Further we have canonical maps F [m]→F for any m≥ 0.

Lemma 3.1.2. The category Func(Nopp,A) is abelian and the functor [m] is exact.

Proof. This is easy to check. For instance, we give a description of kernels and cokernels.
Let (Fn)n∈N and (Gn)n∈N be two projective systems and

f : (Fn)n∈N→ (Gn)n∈N

a morphism. Then ker(f) (resp. coker(f)) is given by the system (ker(fn))n∈N (resp.
by (coker(fn))n∈N), where fn denotes the morphism f(n) : Fn → Gn. The transition
maps are the canonical ones.

25
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Definition 3.1.3. Let F ∈ Func(Nopp,A) be a projective system. We say F fulfills the
Mittag-Leffler condition (ML) if for any integer n there is an r ≥ n such that for all
t≥ r the equality

im(Ft→Fn) = im(Fr→Fn)

is given. The projective system fulfills the Artin-Rees-Mittag-Leffler condition (ARML)
if there is an r ∈ N such that for all t≥ r we have

im(F [r]→F) = im(F [t]→F).

Definition 3.1.4. Define Func(Nopp,A)0 as the full subcategory of Func(Nopp,A) with
objects given by the objects F which have the property that the canonical map

F [n]→F

is the zero mapping for n� 0. Such an F is called null system.

Proposition 3.1.5. The subcategory Func(Nopp,A)0 ⊂ Func(Nopp,A) is a Serre sub-
category.

Proof. Let

F ι−→G π−→H

be an exact sequence of projective systems with F and H null systems. This implies the
existence of an integer m such that F [m]→F and H[m]→H are the zero mappings.
We claim that G[2m]→G is zero and hence G[r]→G is zero for r ≥ 2m. Consider the
commutative diagram with exact rows

F [2m] G[2m] H[2m]

F [m] G[m] H[m]

F G H.

ι[2m]

0

π[2m]

g′ 0
ι[m]

0

π[m]

g 0
ι π

We see that π[m]◦g′ = 0 and hence g′ factors through ker(π[m]) = im(ι[m]). But g◦ι= 0
and hence im(ι[m]) ↪→ ker(g) which implies that g ◦g′ = 0. This proves the claim.

Definition 3.1.6. Define the AR-category of projective systems in A as the quotient
category

AR(A) := Func(Nopp,A)/Func(Nopp,A)0

from Proposition 1.2.3. This is an abelian category in which null systems are zero
elements.
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Later, we will need to work explicitly with the AR-category. Therefore, it is useful
to give an alternative definition of the AR-category to gain easier access to morphisms
between its objects.

Lemma 3.1.7. We can describe AR(A) as the category with

Objects: Inverse systems F ∈ Func(Nopp,A)
Morphisms: HomAR(F ,G) := colimnHom(F [n],G)

Hence, a morphism f : F → G in AR(A) is represented by a morphism f̃ : F [r]→G in
Func(Nopp,A) and f is an isomorphism in the AR-category if and only if ker(f̃) and
coker(f̃) are null systems.

Proof. This is surely a well-known fact, and we will omit the details. For instance, one
can consult [6, p.530].

Lemma 3.1.8. Let A be an abelian category which has all small limits. The assertion
(Fn)n∈N 7→ limnFn defines a functor

AR(A)→A.

Proof. This follows from the fact that limnFn = limnFn+r for any inverse system F and
any r ≥ 0. This means that the inverse limit sends F and F [r] to the same object. In
particular, applying the inverse limit to a morphism F [r]→ G or to the composition
F [r+ r′]→ F [r]→G yields the same result.

3.2 Adic Systems of Modules
In the following, let R be a noetherian ring and I ⊂R an ideal.

Definition 3.2.1. An inverse system (Mn)n∈N of R-modules is called an I-adic system
if each Mn is finitely generated and the following properties are fulfilled.

• In+1Mn = 0

• The maps Mn+1→Mn induce isomorphisms Mn+1/I
n+1Mn+1 ∼=Mn.

Now consider the AR-category of finitely generated R-modules. An object in this
category is called AR I-adic if it is isomorphic in the AR-category to an I-adic system
of R-modules.

Example 3.2.2. The reason for introducing the Artin-Rees category is that I-adic sys-
tems do not form an abelian subcategory of the inverse systems of R-modules. Indeed,
the kernel of the map

φ : (Z/pnZ) ·p−→ (Z/pnZ)

Lukas Krinner Master’s Thesis
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is given by (pn−1Z/pnZ) with zero as transition maps. These are obviously not surjective
which implies that ker(φ) is not I-adic. This is a problem, as many constructions and
statements rely on the usage of abelian categories. The solution, if R is noetherian, is
the passage to the AR-category. We will see that (ker(fn))n∈N is at least AR I-adic
and moreover that the category of AR I-adic systems is indeed an abelian subcategory
of Func(Nopp,ModR).

Lemma 3.2.3. Let M = (Mn)n∈N be an I-adic system of R-modules and N = (Nn)n∈N
an inverse system of sheaves with In+1Nn = 0 for any n ∈ N, then

Hom(M,N)∼= HomAR(M,N).

In particular, the category of I-adic modules is in equivalence with the category of AR
I-adic modules.

Proof. By Lemma 3.1.7 we see

HomAR(M,N)∼= colimrHom(M [r],N).

Hence, an element in HomAR(M,N) comes from an element f ∈Hom(M [r],N) for some
r ∈N. The morphism f consists of morphisms fn :Mn+r→Nn. Moreover, for r ≥ 1 we
have Mn+r−1 ∼=Mn+r/I

n+rMn+r and In+rNn = 0 by assumption. But this implies that
f uniquely factorizes as f : M [r]→M [r− 1]→ N . Proceeding inductively one gets a
factorization f :M [r]→M

g→N for a unique morphism g ∈Hom(M,N). Consequently,
g represents the same element as f in HomAR(M,N) and g is the only element with
this property.

Proposition 3.2.4. Assume R is complete. The functor

φ : {AR I-adic systems of R-modules} −→ {finite R-modules}
(Fn)n∈N 7−→ limnFn

is an equivalence of categories with quasi-inverse

ψ(M) := (M/InM)n∈N 7−→M

Proof. Let (Fn)n∈N be an AR I-adic system of R-modules. Without loss of generality
assume (Fn)n∈N is an I-adic system. Let F := limnFn, which is a finite R-module by
Proposition 1.3.7. The same proposition shows that F/In+1F ∼= Fn. Hence, ψ ◦φ∼= id.
Conversely, assume M is a finite R-module. Then φ◦ψ(M) is by definition the I-adic
completion M∧ of M . Since R is noetherian and I-adically complete, Proposition 1.3.8
implies

M∧ ∼=M ⊗RR∧ ∼=M ⊗RR∼=M

which completes the proof.
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3.2 Adic Systems of Modules Page 29

The later results heavily rely on the following well-known and essential lemma.

Lemma 3.2.5 (Artin-Rees Lemma). Let R be a noetherian ring and M a finitely
generated R-module. Further let N ⊂M be a submodule. Then there exists an integer
r ∈ N such that for all n≥ r the equality

InM ∩N = In−r(IrM ∩N)

holds.

Proof. [4, Lemma 5.1]

Proposition 3.2.6. Assume R is noetherian. Let

f : (Mn)n∈N→ (Nn)n∈N

be a morphism of AR I-adic modules. Then the kernel and the cokernel of this map in
the AR-category are again AR I-adic. In particular, the subcategory

{AR I-adic systems of R-modules} ⊂AR(ModR)

is an abelian subcategory.

Proof. ([6, Proposition 10.1.4 (iii)]) As the completion R∧ is noetherian and the formula
R∧/InR∧ ∼= R/InR holds for any n ∈ N, we can assume that R is I-adically complete
(replace R by R∧). Moreover, we can assume that (Mn)n∈N and (Nn)n∈N are I-adic
systems.
By Lemma 3.2.3 it follows that f is represented by an element

(fn)n∈N ∈Hom((Mn)n∈N,(Nn)n∈N).

This means that f is given by a family of morphisms fn :Mn→Nn, which are compatible
with the transition maps Mn+1→Mn, respectively Nn+1→Nn. Moreover, the kernel
and cokernel of f in the AR-category are given by (ker(fn))n∈N and (coker(fn))n∈N.
We apply Proposition 3.2.4 to get finitely generated R-modules M , N and a map
g :M →N such that

M/In+1M ∼=Mn and N/In+1N ∼=Nn.

Further fn : M/In+1M → N/In+1N is induced by g. Finally, this preliminary work
gives access to the main part of the proof.
We will begin with the easier part and demonstrate that the cokernel of (fn)n∈N is
I-adic1. We have an exact sequence

M
g−→N → coker(g)→ 0,

1It is not only isomorphic to an I-adic system.
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which induces for any n≥ 0 an exact sequences

M/In+1M
g−→N/In+1N −→ coker(g)/In+1coker(g)−→ 0.

Consequently, coker(fn) = coker(g)/In+1coker(g). Since coker(g) is a finitely generated
module, this means that (coker(fn))n∈N is an I-adic system of R-modules.
We continue by showing that the system of kernels (ker(fn))n is AR-isomorphic to an
I-adic system. Consider the morphism

ker(f)/In+1 ker(f)→M/In+1M
fn−→N/In+1N.

One easily sees that this composite is zero and hence the universal property of the
kernel induces a map ker(f)/In+1 ker(f) ψn→ ker(fn). We have to show that (ker(ψn))n
and (coker(ψn))n form null systems. To establish this for (coker(ψn))n, we must find
an integer r such that for all n ∈N the image of an element x+In+1+rM ∈ ker(fn+r)⊂
M/Ir+n+1M in M/In+1M comes from an element in ker(f)/In+1 ker(f). Choose r
such that the Artin-Rees lemma is fulfilled for N and the submodule im(f)⊂N . That
is, choose r with

InN ∩ im(f) = In−r(IrN ∩ im(f))

for all n≥ r. Let x+ In+1+rM ∈ ker(fn+r) for a fixed x ∈M . We deduce that

f(x) ∈ In+1+rN ∩ im(f) = In+1(IrN ∩ im(f)).

This gives immediately an element x′ ∈M and a λ ∈ In+1 such that f(x) = λf(x′).
Hence x−λx′ is an element of ker(f) and represents the same equivalence class as xmod-
ulo In+1M . Hence x+In+1M ∈M/In+1M comes from an element in ker(f)/In+1 ker(f).
Similarly, we will show that (ker(ψn))n is a null system. With the Artin-Rees lemma
we can find an r ∈ N with

ker(f)∩ InM = In−r(ker(f)∩ IrM)

for all n ≥ r. Let x+ In+1+r ker(f) ∈ ker(ψn+r) ⊂ ker(f)/In+1+r ker(f) for a fixed
x ∈ ker(f). Hence, [x] is zero in M/In+1+rM and therefore

x ∈ ker(f)∩ In+1+rM = In+1(ker(f)∩ IrM).

This gives an x′ ∈ ker(f) and a λ ∈ In+1 with x = λx′. Hence the image of x in
ker(f)/In+1 ker(f) is zero. But this exactly means that the system (kerψn)n∈N is a
null system. We showed that (kerψn)n∈N and (cokerψn)n∈N are null sytems and hence,
ψ is an isomorphism.
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3.3 Adic Systems of Sheaves
We can introduce the formalism of Section 3.2 for sheaves of R-modules. However, in
this context it is not possible to pass to the limit like in Proposition 3.2.4. Again fix for
this subsection a noetherian ring R, where I ⊂R is an ideal. We introduce analogously
to Definition 3.2.1:

Definition 3.3.1. An inverse system (Fn)n∈N of sheaves of R-modules is called I-
adic system (or by abuse of notation I-adic sheaf ) if each Fn is constructible and the
following properties are fulfilled.

• In+1Fn = 0

• The transition maps Fn+1→Fn induce isomorphisms Fn+1/I
n+1Fn+1 ∼= Fn.

Now consider the AR-category AR(ModR(Xet)). An object in this category is called
AR I-adic sheaf if it is isomorphic in the AR-category to an I-adic system.

Remark 3.3.2. Although it seems confusing, the literature often uses the term I-adic
sheaf for I-adic systems. As this is standard, we adopt this notation. The reader shoud
be alerted that an I-adic sheaf on the étale site is an inverse system of sheaves and
not an sheaf in the usual sense. In the pro-étale world the formalism improves and the
I-adic sheaves are actual sheaves of R-modules.

Examples 3.3.3. Let X be a scheme.

• Let M be a finitely generated R-module and Fn :=M/In+1M the constant sheaf
associated to M/In+1M on Xet. Then the system (Fn)n∈N is an I-adic sheaf.

• Let l be a prime number and X := Zl. Then (µX,ln ,un)n∈N is an l-adic sheaf,
where the transition maps un are defined by s 7→ sl.

• If F is a constructible sheaf on Xet then (F/In+1F)n∈N is an I-adic sheaf of
R-modules. It is not true that any I-adic sheaf is of this form.

Lemma 3.3.4. Let F be an I-adic sheaf and G an inverse system in ModR(Xet) with
In+1G = 0, then

Hom(F ,G)∼= HomAR(F ,G).

In particular, the category of I-adic sheaves is in equivalence with the full subcategory
of AR I-adic sheaves.

Proof. This can be proven analogously to Lemma 3.2.3.

Definition 3.3.5. An inverse system of étale sheaves F = (Fn)n∈N is called locally
constant or lisse if all Fn are locally constant. Further define the restriction F|X′ (for
suitable X ′) as the system (Fn|X′)n∈N.
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Lemma 3.3.6. Let Λ be a noetherian ring and I ⊂Λ an ideal. Then we get a noetherian
ring R :=

⊕
i∈N I

n/In+1 (by definition we assume I0 = Λ) whose addition is the obvious
one. The multiplication is given by the rule

In× Im 7−→ Im+n

(x,y) 7−→ xy,

which uniquely extends to a multiplication on R.

Proof. It is easy to check that R is a ring. To check that R is noetherian choose
generators f1, . . . ,fn of the ideal I. It is clear that f1, . . . ,fn ∈ I/I2 ⊂ R generate R as
Λ-algebra. Hence, we obtain a surjective algebra homomorphism

Λ[X1, . . . ,Xn]→R,

which proves that R is noetherian.

The only proposition for which the proof from [6] or [5] can not be adjusted is the
following.

Proposition 3.3.7. Let X be a noetherian scheme, Λ a noetherian ring and I ⊂ Λ an
ideal. Further, let F = (Fn)n∈N be an I-adic sheaf on Xet. Then there exists a finite
partition X =

⊔n
i=1Xi such that F |Xi is locally constant.

Proof. We will use the idea of [15, Tag 09BU] adapted to the étale version. Consider
the noetherian ring R :=

⊕
i∈N I

n/In+1 from Lemma 3.3.6. By assumption Fn is a
constructible sheaf of Λ/In+1-modules for all n ∈ N. As constructibility is preserved
under taking images and tensors, the sheaf

InFn = im(In⊗ΛFn→ Fn)

is a constructible sheaf of Λ/In+1-modules. It is easy to see that InFn is also a sheaf
of Λ/IΛ-modules and, of course, constructible as a sheaf of Λ/IΛ-modules2. Define

G :=
⊕
i∈N

InFn

and equip G with the canonical R-module structure. As X is noetherian, we can make
use of Corollary 2.3.8 and see that the constructible sheaves form a Serre subcategory
of all sheaves of R-modules on Xet. In particular, the surjection

R⊗Λ/I F0 �G

implies that G is a constructible sheaf of R-modules. Choose a finite partition X =
⊔
iXi

such that G|Xi is locally constant. Without loss of generality we assume X =Xi and we
2By definition I0 := R.
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want to show that Fn is locally constant for all n. By assumption G is locally constant
with finitely generated stalks3, so by Corollary 3.3.8 all specialization morphisms

Gx′ →Gx

are isomorphisms. As taking stalks commutes with the direct sum, it follows immedi-
ately that all specialization morphisms (InFn)x′ → (InFn)x have to be isomorphisms.
Proposition 2.2.3 implies that InFn is locally constant for all n. Especially, F0 is locally
constant and we can proceed by induction. For the induction step, consider the short
exact sequnce

0→ InFn→ Fn→ Fn−1→ 0

and apply Lemma 1.1.29 to show that Fn is locally constant, which completes the
proof.

Corollary 3.3.8. Let X be a noetherian scheme, Λ a noetherian ring and I ⊂ Λ an
ideal. Let F = (F )n∈N an I-adic sheaf. Then there exists an open dense subset U ⊂X
such that F|U is lisse.

Proof. Since X is noetherian, there are finitely many irreducible components X1, . . . ,Xn

of X. Define Ui := X \
⋃
j 6=iXj , which is an open irreducible subset of X. Further Ui

contains the generic point of Xi which implies that the union
⋃
iUi is a dense open

subset of X. Hence, we can assume that X is irreducible with generic point η. By
Corollary 4.4.15 there is a finite partition X =

⊔
iXi such that F|Xi is lisse. Choose i

with η ∈Xi and find a factorization of the inclusion Xi ⊂X

Xi U Xι j

with ι a closed and j an open immersion. Since Xi contains the generic point η of X,
which is also a generic point of U , we conclude that ι= id. In particular, Xi is an open
dense subset of X such that F|Xi is locally constant.

Definition 3.3.9. Let F = (Fn)n∈N an inverse system of sheaves of R-modules. For a
geometric point s : Spec(Ω)→X define the stalk at s as

Fs := limnFn,s

and the system of stalks at s as the inverse system of R-modules given by (Fn,s)n∈N.
The assertion F 7→ (Fn,s)n∈N is exact and maps null systems to null systems. By the

universal property of the AR-category (Proposition 1.2.3) it induces an exact functor
from AR(ModR(Xet)) into the category AR(ModR).

Lemma 3.3.10. If F is an AR I-adic sheaf then the system of stalks (Fn,s)n∈N is AR
I-adic.

3As R-modules.
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Proof. There is an AR-isomorphism F ∼= F ′ for an I-adic sheaf F ′. We assume F is
I-adic and show that (Fn,s)n∈N is I-adic.
Obviously, Fn,s is a finitely generated R-module for any n ∈ N. Moreover, there are
isomorphisms

Fn+1/I
nFn+1

∼=−→Fn.

For any geometric point s this translates into an isomorphism

Fn+1,s/I
nFn+1,s

∼=−→Fn,s,

which proves the claim.

For the rest of this chapter assume, if not otherwise stated, that X is noetherian.
We are now able to introduce an easier criterion to detect an AR I-adic sheaf, although
it looks more complicated at a first look.

Proposition 3.3.11. Let F = (Fn)n∈N be an inverse system of constructible sheaves
on a noetherian scheme X. Further assume In+1Fn = 0 for all n ∈ N. Then being an
AR I-adic sheaf is equivalent to fulfilling ARML (Definition 3.1.3) and the following
condition, which we call ARML2: Let r ∈ N such that for all t≥ r we have

im(F [t]→F) = im(F [r]→F),

which exists because of the condition ARML. Then we demand the existence of an
integer s ∈N such that for t≥ s the transition maps Fn+t→Fn+s induce isomorphisms

Fn+t/I
n+1Fn+t ∼= Fn+s/I

n+1Fn+s,

for all n ∈ N. Here Fn := im(Fn+r→Fn).
Moreover, (Fn+s)n∈N is then an I-adic sheaf which is AR-isomorphic to F .

Proof. We will concentrate on the implication that ARML and ARML2 imply that F is
AR I-adic. The other direction can be found for R= Zl and I = (l) in [6, Prop. 10.1.1].
The minor adaptions for the proof are left to the reader.
Assume ARML and ARML2 are fulfilled and choose r and s as in the assumptions.
Define F := (Fn)n∈N and note that this system is AR-isomorphic to F via the canonical
map F ↪→F . Its inverse is given by F [r]→F (see also Lemma 3.1.7). Further we can
give an AR-isomorphism

F ∼=AR (Fn+s/I
n+1Fn+s)n∈N.

Precisely, as In+1Fn = 0 by assumption and Fn ⊂ Fn, there is a canonical morphism
(Fn+s/I

n+1Fn+s)n∈N → F . Its inverse in the AR category is given by the canonical
projection F [s]→ (Fn+s/I

n+1Fn+s)n∈N. We achieved that

F ∼=AR (Fn+s/I
n+1Fn+s)n∈N
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and it remains to show that the right side defines an I-adic sheaf. As the sheaves Fn
are constructible for all n ∈ N, so are Gn := Fn+s/I

n+1Fn+s. Using the choice of s, we
can further compute

Gn+1/I
n+1Gn+1 ∼= Fn+1+s/I

n+1Fn+1+s
∼= Fn+s/I

n+1Fn+s

= Gn.

Remark 3.3.12. One can easily adapt Proposition 3.3.11 to work for I-adic systems
of R-modules. In the assumptions, F = (Fn)n∈N has then to be a system of finitely
generated R-modules with In+1Fn = 0. The statement stays the same replacing the
term ”sheaf” by ”R-module”.

The main advantage of Proposition 3.3.11 is that we can check all the conditions ”lo-
cally”. This gives the possibility to check if a sheaf is AR I-adic via the use of noetherian
induction or to consider in some cases the system of stalks defined in Definition 3.3.9.
We make this precise in the following lemma.

Lemma 3.3.13. Let F = (Fn)n∈N be an inverse system of constructible schemes on X
and further assume In+1Fn = 0 for all n ∈ N. Then F is AR I-adic if and only if there
exists integers r and s, such that for any stalk ξ one can show that (Fn,ξ)n∈N fulfills
ARML and ARLM2 using the fixed integers r and s for Proposition 3.3.11.

Proof. Taking stalks is exact and commutes with the tensor product. Therefore, for a
geometric point ξ we have the equalities(

Fn
)
ξ

= Fnξ and
(
InFn

)
ξ

= InFnξ.

Further, checking that a morphism is an isomorphism can be done on stalks. It is now
a straightforward calculation to show the desired result.

Lemma 3.3.14. Let F = (Fn)n∈N be a system of locally constant sheaves of R-modules
with finitely generated stalks. Further assume that X is noetherian and connected.
Then for any two geometric points s and s′ of X there is an isomorphism of systems of
R-modules

(Fn,s)n∈N ∼= (Fn,s′)n∈N.

Moreover, for any n ∈ N the isomorphisms Fn,s ∼= Fn,s′ come from the composition of
specialization maps and their inverses.

Lukas Krinner Master’s Thesis
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Proof. Let s,s′ be two geometric points and fix a natural number n. If the images x and
x′ of s and s′ lie in the same irreducible component we have Fn,s∼=Fn,s′ by Lemma 2.2.1
and Proposition 2.2.3. Concretely, let η the generic point of this irreducible component4.
Then by Lemma 2.2.1 and Proposition 2.2.3 we have specialization maps

Fn,s
∼=−→Fn,η and Fn,s′

∼=−→Fn,η.

Since X is connected by assumption, two irreducible components Y,Y ′ ⊂ X are con-
nected via a finite chain Y = Y1, . . . ,Yn = Y ′ of irreducible subsets5, such that the inter-
section Yi∩Yi+1 is non-empty. This proves Fn,s ∼=Fn,s′ , even if s and s′ are in different
irreducible components. Moreover, this isomorphism is the composition of specializa-
tion maps and their inverses. To conclude, we have to show that these isomorphisms
Fn,s∼=Fn,s′ give rise to an isomorphism of systems of R-modules (Fn,s)n∈N∼= (Fn,s′)n∈N.
Therefore it remains to prove the commutativity of the diagram

Fn,s Fn,η

Fn−1,s Fn−1,η,

where the horizontal arrows are specialization maps. This follows directly from the
construction in Lemma 2.2.2.

The easy but essential corollary from [5, p. 124] is the following:

Corollary 3.3.15. Let F = (Fn)n∈N be an inverse system of constructible sheaves with
In+1Fn = 0. Then the following statements hold

1. Assume F is AR I-adic. For any morphism of noetherian schemes f :X ′→X the
system f∗F = (f∗Fn)n∈N is an AR I-adic sheaf.

2. Let (Ui→X)i∈{1,...,n} be a finite étale cover of X. Then F is an AR I-adic sheaf
if and only if F|Ui is an AR I-adic sheaf on Ui for all i.

3. Let A ⊂X be a closed subscheme and U := X \A. Then F is AR I-adic if and
only if

F|U and F|A

are AR I-adic.

4. Assume Fn is locally constant for all n ∈ N and X is a connected and noetherian
scheme. Then F is an AR I-adic sheaf if and only if (Fn,s)n∈N is an AR I-adic
system of R-modules for at least one geometric point s : Spec(Ω)→X.

4I.e. x,x′ ∈ {η}
5The Yi can be chosen to be the irreducible components of X.
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Proof. We start with the first claim. Note that the constructibility of f∗Fn is covered
by Proposition 2.3.4. Since F is AR I-adic we can find integers r and s such that
the two conditions ARML and ARML2 in Proposition 3.3.11 are fulfilled. We claim
that these integers also work for f∗F . Checking that r and s are suitable integers for
Proposition 3.3.11 can be done on stalks by Lemma 3.3.13. For any geometric point ξ
of X ′ we use the equality f∗Fξ ∼= Ff(ξ) in Proposition 2.1.9 to conclude.
For 2 first assume that F is AR I-adic. It follows directly from 1 that F|Ui is AR I-adic
for all i. Conversely, assume F|Ui is I-adic and consider the integers ri and si as in the
notion of Proposition 3.3.11. Define

r = max
i
{ri} and s= max

i
{si}.

A stalkwise calculation easily verifies that ARML and ARML2 are fulfilled using r
and s.
For 3 it is trivial to show that F|U and F|A are AR I-adic, if F is so. The other
direction works analogously to 2, using that any geometric point factors either through
A or through U .
To show 4, first assume (Fn,ξ)n∈N is an AR I-adic system of R-modules at one geo-
metric point ξ. Choose suitable integers r and s such that ARML and ARML2 from
Proposition 3.3.11 are fulfilled for this particular system. For any other geometric point
η Lemma 3.3.14 implies

(Fn,ξ)n∈N ∼= (Fn,η)n∈N

and, in particular, that r and s work as integers for ARML and ARML2 on any stalk.
Lemma 3.3.13 finally proves the claim. Conversely, if F is an AR I-adic sheaf then
(Fn,s)n∈N is an AR I-adic system of R-modules by Lemma 3.3.10.

3.4 The AR-category of Adic Systems
In this section fix a noetherian scheme X and a noetherian ring R. We investigate in
the subcategory of AR(ModR(Xet)) consisting of AR I-adic sheaves.

Proposition 3.4.1. Let f :F →G be an AR-morphism between two AR I-adic sheaves.
Then ker(f) and coker(f) are AR I-adic. In particular, the category of AR I-adic
sheaves is an abelian subcategory of the AR-category of sheaves of R-modules.

Proof. Without loss of generality we can assume that F and G are I-adic sheaves.
By Corollary 3.3.15 3 we can assume that X is irreducible and go on by noetherian
induction. To be precise, let

M := {A | A is a closed subscheme of X such that ker(f)|A is not AR I adic}

and assume for a contradiction that X ∈M . If we can find an open non-empty sub-
set U ⊂ X such that ker(f)|U is AR I-adic, then we deduce from Corollary 3.3.15
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3 that A := X \U ∈ M . But since restriction is an exact functor we obtain that
ker(f)|A = ker(f |A : F|A→G|A) is again the kernel of a morphism between AR I-adic
sheaves. Replacing X by A we can find an infinitely long decreasing chain of closed
subsets of X, which contradicts the noetherian assumption. One proceeds similarly for
coker(f).
Hence, we have to find an open non-empty subset U ⊂ X such that ker(f)|U and
coker(f)|U are AR I-adic. By Proposition 3.3.7 we can choose an open dense6 sub-
set U in X such that F|U and G|U are lisse. Hence, ker(f)|U and coker(f)|U are lisse
by Lemma 1.1.29. Then we can use Corollary 3.3.15 4 and equivalently show that the
system of stalks at one single stalk is AR I-adic. This proves the claim since taking
stalks is exact and kernels and cokernels of AR I-adic systems of R-modules are AR
I-adic by Proposition 3.2.6.

Lemma 3.4.2. Assume R is complete. Any geometric point x gives rise to an exact
functor

(−)x : {AR I-adic sheaves}→ {finitely generated R-modules}
G = (Gn)n∈N→Gx := limnGn,x.

Moreover, an AR I-adic sheaf F is AR-zero if and only if Fx = 0 for any geometric
point x.

Proof. By Proposition 3.2.4, the limit functor induces an equivalence of categories
between AR I-adic systems of R-modules and the category of finitely generated R-
modules. The functor (−)x is the composition of the exact functor

{AR I-adic sheaves}→ {AR I-adic systems of modules}
(Gn)n∈N→ (Gn,x)n∈N

with the mentioned equivalence of categories. This implies the exactness of (−)x.
Assume, F is an AR I-adic sheaf such that Fx = 0 for all geometric points x. Without
loss of generality we can assume that F is I-adic. Now, Proposition 1.3.7 implies that
the system of stalks (Fn,x)n∈N is zero7. But this implies Fn = 0 for all n ∈N and proves
the claim.

Proposition 3.4.3. The category of AR I-adic sheaves is noetherian. That is, if F is
an AR I-adic sheaf and

F (0) ⊂F (1) ⊂ . . .⊂F (n) ⊂ . . .⊂F

is an increasing chain of AR I-adic subsheaves of F , then this chain gets eventually
constant. To clearify notation, an AR I-adic subsheaf H of F is an AR-injective map
H ↪→ F and eventually constant means that the injections F (n) ↪→ F (n+1) get AR-
isomorphisms for large n.

6In particular non-empty.
7Not only AR-zero.
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Proof. Again we assume that X is irreducible and go on by noetherian induction. Con-
cretely, let

M :=
{
A

∣∣∣∣ A is a closed subscheme of X such that
F (0)|A ⊂ . . .⊂F (n)|A . . . does not get eventually constant

}
and assume for a contradiction that X ∈M . If we can find an open non-empty subset
U ⊂X such that F (0)|U ⊂ . . .⊂F (n)|U gets eventually constant, then we definitly have
A :=X \U ∈M . Continuing with A instead of X yields to an infinitely long decreasing
chain of closed subsets in M , which contradicts the noetherian assumption on X.
Therefore, we have to find an open subset U ⊂X such that

F (0)|U ⊂F (1)|U ⊂ . . .

gets eventually constant.
Let η be a generic point of X and apply Lemma 3.4.2 to get an increasing chain of
finitely generated R∧-modules

F (1)
η ⊂ . . .⊂F (n)

η ⊂ . . .⊂Fη.

The ring R∧ is noetherian, as R is noetherian by assumption. We conclude that the
above chain gets eventually constant. Fix an m� 0, such that F (m)

η = F (m+r)
η for all

r ∈ N. Proposition 3.4.1 shows that F/F (m) is an AR I-adic sheaf. By choosing an
isomorphism to an I-adic sheaf we can assume that F/F (m) is I-adic itself. Applying
Proposition 3.3.7 yields an open dense subset U ⊂ X such that F/F (m)|U is locally
constant.
We claim that

(
F (n)/F (m)

)
|U is AR-zero, which we wanted to show. By Lemma 3.4.2

it is enough to check

F (n)
x /F (m)

x = 0

for all geometric points x over U . Using Lemma 2.2.1 and Proposition 2.2.3 one notices
that for any geometric point x over U the specialization maps induce isomorphisms

Fx/F (m)
x

∼=−→Fη/F (m)
η .

Consider the diagram

F (n)
x /F (m)

x F (n)
η /F (m)

η

Fx/F (m)
x Fη/F (m)

η ,

ϕ

∼=

where the horizontal arrows are the specialization maps and the vertical maps come
from the inclusions. The diagram can be easily verified as commutative using the
construction in Lemma 2.2.2. By the choice of m, we have 0 = F (n)

η /F (m)
η . As ϕ is

injective, F (n)
x /F (m)

x = 0 must hold. This proves the claim.
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4 Sheaves on the Pro-étale Site

This is the main chapter of this thesis. In Section 4.1 and Section 4.2 some preliminaries
about topoi and homological algebra are covered. These are followed by the axioms of a
pro-étale enlargement in Section 4.3 and the statements about adic pro-étale sheaves in
Section 4.4. In Section 4.6, we draw a connection to constructible complexes defined by
B. Bhatt and P. Scholze in [2]. Finally, the last section gives an outlook of two possible
constructions of a pro-étale enlargement.

4.1 A Digression in Homological Algebra
In the following let A be an abelian category. This section can be seen as second part
of Section 3.1. We will investigate in injective objects in the categories AN and AR(A).
We will later use the results to transfer the statements of Chapter 3 to the theory of
adic pro-étale sheaves.

Lemma 4.1.1. Let A and B be two abelian categories and F :A→B a functor which
admits an exact left adjoint L : B → A. Under this conditions, F preserves injective
objects.

Proof. Let I ∈ A be an injective object. Then the adjunction (L,F ) gives rise to an
isomorphism

HomB(−,F (I))∼= HomA(L(−),I) = HomA(−,I)◦L

which is an exact functor as it is the composition of two exact functors. By definition
F (I) is an injective object.

Proposition 4.1.2. Let A be an abelian category. Then AN has enough injectives if
and only if A has enough injectives. Moreover, a system (An,dn) ∈ AN is injective if
and only if all An are injective and the transition maps are split surjections.

Proof. ([10, Proposition 1.1]) Assume AN has enough injectives. For m ∈ N there is a
pair of adjunction

Um :AN �A : Vm

given by Um((An,dn)n) :=Am and

Vm(A) := 0→ ·· ·0→A
id−→ ·· · id−→A︸ ︷︷ ︸
m−times

41
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Observe, that Um is exact and that VmUm(A) = A for any A ∈ A. For A ∈ A choose a
monomorphism Um(A) ↪→ I in an injective object of AN. By Lemma 4.1.1 we obtain
that A= VmUm(A) ↪→ VmI is a monomorphism in the injective object VmI ∈ A. This
implies further, that for an injective object (In)n∈N in AN all In are injective.
Conversly, assume A has enough injectives. We will proceed in a similar fashion as
before. Consider the product category A|N| whose objects are families of the form
(An)n∈N with An ∈A and whose morphisms are defined componentwise. It is trivial to
show that A|N| has enough injectives1. Again we define a pair of adjunction as

V :AN �A|N| : P where

V ((An,dn)n) := (An)n and P ((An)n) := (
n∏
i=0

Ai,πn).

Here πn :
∏n
i=0Ai→

∏n−1
i=0 Ai denotes the canonical projection in the first n−1 entries.

Again it is left to the reader to show that this forms a pair of adjunction, that V is
exact and that P preserves monomorphisms. Let (An,dn)n∈N be an element in AN.
Note that the morphism (An,dn)n∈N → PV ((An,dn)n), which is given by the unit of
the adjunction, is a monomorphism. Now, choose an injective object I ∈A|N| toghether
with a monomorphism V ((An,dN )n) ↪→I. Then by the above we get that

(An,dn)n ↪→ PV ((An,dn)n) ↪→ P (I)

is a monomorphism into the injective object P (I). This completes the proof of the first
part. As we will not use the explicit description of injective objects in AN, we defer the
proof of the second statement to the literature [10, Proposition 1.1].

Assume A is an abelian category which has small limits. The inverse limit functor

limn :AN −→A

is a left exact functor. If A has enough injectives, AN has enough injectives by Propo-
sition 4.1.2. Therefore, we can right derive limn and define

limp
n :=Rp(limn).

In the special case of A = Ab or ModR one can show the following two important
statements.

Lemma 4.1.3. Let R be a ring. If A= Ab or ModR then for p≥ 2 we have

limp
n = 0.

Proof. [14, Proposition 2.4.7]
1Given by families (An)n∈N with all An injective.
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Lemma 4.1.4. Assume A= Ab or ModR and consider an inverse system (Fn)n∈N which
fulfills the Mittag-Leffler condition. Then

lim1
nFn = 0.

Proof. [14, Proposition 2.4.7]

As next step, we want to investigate the passage to the AR-category. We will see
that injective resolutions in AR(A) can be computed using injective resolutions in AN.
This, of course, is useful to determine the right derived of a functor, as one can simply
use the well-known injectives in AN. The crutial proposition is the following.

Proposition 4.1.5. If A has enough injectives then the AR-category of inverse systems
AR(A) has enough injectives. Moreover, if I ∈ AN is injective, then the induced object
in the AR-category is injective.

Proof. Let F,G be two inverse systems and f : F AR
↪→ G an AR-injective map. We will

use Lemma 3.1.7 and explicitly work with the morphisms in AR(A). The map f is
realized via a morphism f ′ : F [r]→G of inverse systems for an r ∈ N. This induces an
injective map of inverse systems f̃ : F [r]/ker(f ′) ↪→ G. Define H := F [r]/ker(f ′) and
note that there is an AR-isomorphism H ∼=AR F .

Assume F → I is an AR-morphism and I is injective in the category AN. The
composite

H ∼= F
AR→ I

is again realized via a morphism H[r′]→I of inverse systems. As the shift [r′] is exact
we get a diagram of inverse systems.

H [r′] G [r′]

I

where the dotted arrow exists because I is injective. This diagram induces a commu-
tative diagram in the AR-category

F ∼=H G

I .

AR

AR
AR

This proves that I is injective in the AR-category.
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Definition 4.1.6. Recall that the inverse limit is a well-defined left exact functor

limAR : AR(A)−→A
(Fn)n∈N 7−→ limnFn.

As AR(A) has enough injectives if A has, we can consider its right derived RlimAR.

Corollary 4.1.7. Let (Fn)n be an inverse system in A. Then

RlimAR(Fn)n ∼= Rlim(Fn)n.

Proof. An injective resolution in the AR-category can be computed via an injective
resolution in AN by Proposition 4.1.5. A straightforward calculation yields the claim.

4.2 Some Properties of Topoi

In the study of a site C, it is essential to investigate the associated category of sheaves
of sets, Sh(C). Many properties of a site translate to corresponding properties of Sh(C)
and vice versa. This section briefly introduces the notion of a topos and discusses
the properties of topoi that will be of certain interest for the pro-étale site. While
the material in this section is standard, for an initial reading, we recommend that the
reader focuses at least on the parts concerning weakly contractible objects and replete
topoi. The material of this section can be found in [15, Tag 00X9] and originally in
[1, Exposé IV].

Definition 4.2.1. A topos is the category Sh(C) of sheaves of sets on a site C. A
morphism of topoi Sh(C)→ Sh(D) is a tupel (f∗,f

−1), where

f∗ : Sh(D)→ Sh(C) and f−1 : Sh(C)→ Sh(D)

are functors such that the following hold.

• There is an isomorphism HomSh(D)(f−1G,F)∼= HomSh(C)(G,f∗F) functorial in F
and G.

• f−1 is left exact, i.e. commutes with finite limits.

Composition of morphism of topoi is carried out by composing the respective compo-
nents of the tupel. Depending on the context, we sometimes write f∗ for f−1.

Remark 4.2.2. Let ε : C → D be a morphism of sites. We can define a morphism of
topoi f : Sh(D)→ Sh(C) by setting f∗ := ε∗ and f−1 := ε∗.
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4.2.1 Representable Sheaves and Extension by Zero
Definition 4.2.3. Define the Yoneda embedding to be the functor

y : C −→ PSh(C,Set)
U 7−→MorC(−,U).

Presheaves of the form y(U) are called representable presheaves. Similarly, we define
representable sheaves as sheaves of the form ay(U) for a U ∈ C. We will also use the
standard notation

hU := y(U) and h#
U := ay(U).

Definition 4.2.4. A site C is called subcanonical if every representable presheaf is
already a sheaf. The canonical topology from Example 1.1.4 is by definition the finest
possible subcanonical topology.

We will make use of the following version of the Yoneda lemma.

Lemma 4.2.5. (Yoneda lemma) Let F be a presheaf on C. Then for any U ∈ C

HomPSh(hU ,F )∼= F (U).

In particular, if F is a sheaf then the universal property of sheafification implies
HomSh(h#

U ,F ) ∼= F (U). Restriction to V/U on the left handside is given by the pre-
composition with the canonical morphism hV → hU .

Proof. [15, Tag 001P]

Lemma 4.2.6. Let C be a site and {Ui→U}i∈I a covering of U ∈ C. Then the canonical
morphism

ϕ :
⊔
i∈I

ay(Ui)→ ay(U)

of sheaves of sets is an epimorphism.

Proof. Let F be any sheaf and consider s ∈ Hom(ay(U),F ). Then s is the same as a
section in F (U). Consider the morphism

s◦ϕ ∈Hom(
⊔
i∈I

ay(Ui),F ) =
∏
i∈I

Hom(ay(Ui),F ).

The morphism s ◦ϕ is therefore the same as a family of sections (si)i∈I , such that
s|Ui = si. The injectivity of

Hom(ay(U),F )→Hom(
⊔
i∈I

ay(Ui),F )

follows now directly from the sheaf property of F . This implies that ϕ is an epimorphism
and proves the claim.
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An important tool in topos theory is the extension by zero. For any U ∈ C and any
abelian sheaf F ∈ Ab(C/U) we will construct a sheaf jU !F ∈ Ab(C). The functor jU ! is
a left adjoint of the restriction to U and has some useful properties.

Proposition 4.2.7. Let C be a site and U ∈ C. The restriction functor

(−)|U = j∗
U : Sh(C,Ab)−→ Sh(C/U,Ab)

admits a left adjoint jU !, called the extension by zero. Moreover, if G is an abelian sheaf,
then the extension by zero jU !G is given by the sheafification of

V 7−→
⊕

ϕ∈HomC(V,U)
G(ϕ : V → U).

Similarly, the restriction functor (−)|U = j∗
U : Sh(C,Set)−→ Sh(C/U,Set) on the sheaves

of sets has a left adjoint which we will also denote by jU !. It is called extension by the
empty set and for a sheaf of sets F it is given by the sheafification of

V 7−→
⊔

ϕ∈HomC(V,U)
G(ϕ : V → U).

Proof. The statement concerning abelian sheaves is [15, Tag 03DI] applied to O = aZ.
The claim about sheaves of sets is proved in [15, Tag 00XZ]. For a more general
statement defining the extension of zero for morphisms of topoi with certain properties
see [15, Tag 09YW].

Lemma 4.2.8. The extension by zero jU ! is an exact functor Sh(C/U,Ab)−→Sh(C,Ab).

Proof. As jU ! is a left adjoint, it is right exact by general knowledge. So it suffices to
show that any injection of sheaves F ↪→G on C/U turns into an injection jU !F → jU !G.
Let V ∈ C and consider the induced morphism of presheaves⊕

ϕ∈HomC(V,U)
F(ϕ : V → U)−→

⊕
ϕ∈HomC(V,U)

G(ϕ : V → U).

It is injective, because F ↪→G is injective and taking sections is left exact. As sheafifica-
tion is exact, the map between the associated sheaves is injective. This map is exactly
jU !F → jU !G, which proves the claim.

Lemma 4.2.9. The extension by the empty set preserves monomorphisms and epimor-
phisms.

Proof. The main idea is to observe that the extension by the empty set gives rise to an
equivalence of categories

Sh(C/U,Set)
∼=−→ Sh(C,Set)/ay(U).

A justification about this equivalence can be found in [15, Tag 00Y1]. Now, the state-
ment becomes clear as the canonical functor Sh(C,Set)/ay(U)→ Sh(C,Set) obviously
preserves monomorphisms and epimorphisms.
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Lemma 4.2.10. Let C be a site and X ∈ C the terminal object. Assume U →X is a
monomorphism in C, then the canonical map

F → j∗
UjU !F

is an isomorphism. This is true both for abelian sheaves and for sheaves of sets.

Proof. We restrict to the case of abelian sheaves. The proof for sheaves of sets works
analogously. Let V be an object in C. The assumption that U ↪→X is a monomorphism
directly translates to the fact that there is at most one morphism from V to U in the
site C. In particular, jU ! for a sheaf F on C/U is given by the sheafification of

F̃ : V 7−→
{

0 if there is no morphism V → U,

F(V → U) else.

It is elementary to show that restriction commutes with sheafification2. Hence, one
obtains the formula (jU !F)|U = a(F̃ |U ). But F̃ |U equals F and, therefore, sheafification
is redundant. This finishes the proof.

4.2.2 Open and Closed Subtopoi

Definition 4.2.11. A morphism of topoi (f∗,f
−1) : Sh(C)→ Sh(D) such that f∗ is fully

faithful is called embedding. A strictly full subcategory3 E ⊂ Sh(C) is called subtopos if
it is the essential image of f∗ for an embedding (f∗,f

−1).

Lemma 4.2.12. Let C be a site and U ∈ C. Then the extension by zero gives rise to
an equivalence of categories

jU ! : Sh(C/U)
∼=−→ Sh(C)/h#

U

Proof. [15, Tag 00Y1]

Lemma 4.2.13. Let X be the terminal object in C. If U ↪→ X is a monomorphism,
then h#

U is a subsheaf of the terminal object of Sh(C).

Proof. The assumptions imply that the representable presheaf hU is a subpresheaf of
hX . As sheafification preserves injections, h#

U is a subsheaf of h#
X . The latter is exactly

the terminal object of Sh(C).

Lemma 4.2.14. Assume ε : C →D is a morphism of sites. Then the functor ε−1 :D→C
preserves monomorphisms.

2A possible proof uses that both, the restriction and the sheafification, are left adjoints.
3I.e. E is full and if A ∼= B in Sh(C) and A ∈ E then B ∈ E.
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Proof. Let V ↪→ U be a monomorphism in D. Equivalently, the diagonal morphism
V → V ×U V is an isomorphism. As ε−1 preserves pullbacks by definition, the statement
follows immediately.

Lemma 4.2.15. For an F ∈ Sh(C) the following are equivalent:

• Sh(C)/F is a subtopos of Sh(C).

• F is a subsheaf of the terminal object of Sh(C).

Proof. [15, Tag 08LW]

Lemma 4.2.16. Let F be a subsheaf of the terminal object of Sh(C). Then the category
of all sheaves G ∈ Sh(C) such that

F ×G
∼=−→F

is an isomorphism, forms a subtopos of Sh(C).

Proof. [15, Tag 08LY]

Definition 4.2.17. An open subtopos of Sh(F) is a subtopos of the form Sh(C)/F where
F is a subsheaf of the terminal object of Sh(C). The complementary closed subtopos
of Sh(C)/F is then defined to be the subtopos from Lemma 4.2.16. Similary, one
uses Lemma 4.2.13 to define the associated open or closed subtopoi for monomorphism
U ↪→X into the terminal object X of C.

Example 4.2.18. Let X be a scheme and i :Z ↪→X a closed subscheme. Let j :U ↪→X
be the open subscheme given by the complement of Z. It is easy to show that hU is a
subsheaf of the terminal object of Sh(Xet). Together with the formula Uet∼=Xet/U , this
implies that Sh(Uet) is an open subtopos of Sh(Xet). Now consider the pushforward i∗
of the closed immersion. It is fully faithful as

HomSh(Xet)(i∗F , i∗G)∼= HomSh(Zet)(F , i∗i∗G)∼= HomSh(Zet)(F ,G).

Further, for any sheaf G ∈ Sh(Zet) and any étale scheme U ′ over X we have

i∗G×hU (U ′) = G(i−1(U ′))×hU (U ′) =
{
G(∅)×{∗}= {∗} if U ′ factorizes over U,
∅ else.

It is elementary to show that this is canonically isomorphic to hU . Conversely, assume
F is a sheaf on Xet such that F ×hU → hU is an isomorphism. It follows that F|U
is the sheaf with F|U (U ′) = ∅ for all U ′ ∈Xet/U . A stalkwise calculation4 shows that
F ∼= i∗i

∗F . Hence, the topos Sh(Zet) is actually the complementary closed subtopos of
Sh(Uet).

4For any x ∈ Z we have i∗i∗Fx = Fx and for x ∈ U we have i∗i∗Fx = {∗} = Fx.
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For the following fix a topos T and an open subtopos U ⊂ T . Let A be the comple-
mentary closed subtopos of U in T and let R be a sheaf of rings. Further, let

j : U → T and i :A→ T

be the canonical morphisms of topoi. We then formulate the following proposition.

Proposition 4.2.19. For any sheaf of R-modules F there is a canonical short exact
sequence

0→ j!j
∗F →F → i∗i

∗F → 0 (4.1)

functorial in F .

Proof. [1, p. 269]

Proposition 4.2.20. The functor i∗ : ModR(A)→ ModR(T ) has a right adjoint i!.
Moreover, the counit i∗i! → id is an isomorphism and any sheaf of R-modules F fits
into a left exact sequence

0→ i!i∗F →F → j∗j
∗F

Proof. [1, Proposition 14.5] and [1, Proposition 14.6].

Corollary 4.2.21. The functor i∗ commutes with small limits and colimits. In partic-
ular, i∗ is exact.

4.2.3 Weakly Contractible Objects and Replete Topoi
For this subsection, let C be a site.

Definition 4.2.22. An object U ∈ C is called weakly contractible if for any epimorphism
F → G of sheaves of sets the induced map

F(U)→G(U)

is surjective. We say C has enough weakly contractible objects if every V ∈ C has a
covering (Ui→ V )i∈I ∈ Cov(V ) by weakly contractible objects Ui.

Definition 4.2.23. Let C be a site and T := Sh(C) the induced topos. An object F ∈ T
is called weakly contractible if any surjection

π :G� F

has a section s : F →G, i.e. π◦s= idF . The topos T is called locally weakly contractible
if for any G ∈ T there is a family (Fi)i∈I of weakly contractible objects in T and a
surjection ⊔

i∈I
Fi �G.
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Although Definition 4.2.22 and 4.2.23 look different, we will see that any site C with
enough weakly contractible objects produces a locally weakly contractible topos Sh(C).
In fact, any weakly contractible object gives rise to a weakly contractible object in
Sh(C).
Proposition 4.2.24. The following statements are equivalent for U ∈ C:

1. U is weakly contractible.

2. ay(U) is a weakly contractible object in the topos Sh(C).

3. For every covering (Ui → U)i∈I there is a section s : ay(U)→
⊔
i ay(Ui) for the

canonical morphism of sheaves

t :
⊔
i

ay(Ui)→ ay(U).

Proof. We first show that 1 implies 2. Assume there is a surjection t : F � ay(U).
Then, as U is weakly contractible, idU ∈ ay(U)(U) has a preimage s ∈ F (U). By the
Yoneda lemma, s is the same as a morphism s : ay(U)→ F with t◦s= id, which defines
a section for t.
Now assume ay(U) is a weakly contractible object in the topos Sh(C) and let (Ui→U)i∈I
be a covering of U . By Lemma 4.2.6 we get a surjection

ϕ :
⊔
i

ay(Ui)−→ ay(U).

Now, the assumptions immediately imply 3.
Assume we have a surjection of sheaves ϕ : F → G and U ∈ C fulfilling 3. Let g ∈
G(U) be a section. We can find a covering {Ui → U}i of U and elements fi ∈ F (Ui)
such that fi is mapped to g|Ui under ϕ. By assumption, the canonical epimorphism
t :
⊔
i ay(Ui)→ ay(U) has a right inverse

s : ay(U)→
⊔
i

ay(Ui).

Using the Yoneda Lemma, one sees that the elements fi are the same as morphism
fi : ay(Ui)→ F . Now define an element f ∈ F (U) via the morphism

f : ay(U) s−→
⊔
i

ay(Ui)
tifi−→ F.

We claim that f is mapped to g via ϕ. This can be seen considering the commutative
diagram

ay(U)

⊔
i ay(Ui) F

ay(U) G.

s

f

id

t

tifi

ϕ

g

Master’s Thesis Lukas Krinner



4.2 Some Properties of Topoi Page 51

We showed that ϕ◦f = g ∈G(U) which completes the proof.

Corollary 4.2.25. Assume C has enough weakly contractible objects. Then the topos
Sh(C) is locally weakly contractible.

Remark 4.2.26. The literature sometimes uses the following definition of weakly con-
tractible objects. An object U ∈ C is weakly contractible if every covering morphism
V → U has a section. It is not clear if this definition agrees with our definition in gen-
eral, but it is at least true if the site C has certain ”nice” properties. More precisely, M.
Kerz showed in [11] that in an admissible site C the following is equivalent for U ∈ C:

• Every covering morphism V → U has a section.

• Every surjection of sheaves F → y(U) has a section.

But in fact, the latter is exacly one of the equivalent statements given in Proposi-
tion 4.2.24.

Lemma 4.2.27. Let U ∈ C be a weakly contractible object. Then the sections functor
Γ(U,−) : Ab(C)→Ab is exact.

Proof. If 0→F →G →H→ 0 is a short exact sequence of abelian sheaves then we get
a left exact sequence

0→F(U)→G(U)→H(U).

The surjectivity of G(U)→ H(U) follows from the definition of weakly contractible
objects.

Proposition 4.2.28. Assume C has enough weakly contractible objects. Let B ⊂ C be
a subcategory such that every object in B is weakly contractible and every element in
C admits a covering by elements in B. Let O be a sheaf of rings. Then a sequence of
O-modules F → G →H is exact if and only if

F(U)→G(U)→H(U)

is exact for every U ∈ B. In particular, checking if a map F →G is an isomorphism can
be checked on sections of weakly contractible objects in B.

Proof. This is clear using the defining property of weakly contractible objects and the
assumption that every element U ∈ C can be covered by weakly contractible objects.

Lemma 4.2.29. Let F be a sheaf of Λ-modules on a site C and let U ∈ C be a weakly
contractible object. For any finitely generated ideal I ⊂ Λ we have

Γ(U,IF) = IΓ(U,F).
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Proof. Write I = (a1, . . . ,an) for elements ai ∈ Λ. Then we see

IF = im
(
I⊗ΛF →F

)
= im

((
(a1)⊗ΛF

)
⊕ . . .⊕

(
(an)⊗ΛF

)
→F

)
.

As taking section at U is exact, it commutes with images and direct sums. This is

Γ(U,IF) = im
(
Γ
(
U,(a1)⊗ΛF

)
⊕ . . .⊕Γ

(
U,(an)⊗ΛF

)
→ Γ(U,F)

)
. (4.2)

For i ∈ {1, . . . ,n} we can compute im
(
Γ
(
(ai)⊗ΛF ,U

)
→ Γ(F ,U)

)
. Consider the fac-

torization
(ai)⊗ΛF F

F
·ai

(·ai)⊗id

This shows im
(
Γ
(
(ai)⊗ΛF ,U

)
→ Γ(F ,U)

)
= aiΓ(F ,U). Together with Eq. (4.2) this

proves the claim.

Example 4.2.30. Having enough weakly contractible objects is a property that, in
general, the sites defined in this thesis do not possess:

• Consider the Zariski site XZar defined by the scheme X :=A1
C = Spec(C[T ]). Then

XZar has no weakly contractible objects except for the empty subscheme. To proof
this, consider an open non-empty subscheme U ⊂X. Then by basic knowlege, U
contans infinitely many closed points. Choose two distinct closed points p,q ∈ U
and define Y := {p,q} and V := X \Y . We have a closed immersion i : Y ↪→X.
We denote ZY := i∗i

∗Z as the extension of zero of the constant sheaf Z. The unit
of the adjunction (i∗, i∗) induces a morphism η : Z→ ZY . One computes on stalks

Zx = Z and ZY,x =
{
Z if x ∈ {p,q},
0 else.

It is now easy to show that η is an epimorphism. Using the sheaf property we can
compute

ZY (U)∼= {(x,y) ∈ ZY (U \{p})×ZY (U \{q}) | x|U\Y = y|U\Y }.

As U is irreducible, ZY |U\Y = 0 and ZY (U \ {p}) = ZY (U \ {q}) = Z and we im-
mediately get the formula

Z(U) = Z and ZY (U) = Z×Z.

Further η(U) is the morphism sending 1 to (1,1) and is therefore not surjective.

• The étale site associated to a scheme has in general not enough weakly contractible
objects, see Examples 4.2.32.
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• If X is any scheme then the pro-étale site Xproet will have enough weakly con-
tractible objects.

Before stating the main axioms, introduce an interesting property of a site with
enough weakly contractible objects. In connection with this a ”good” behavior of limits
arises. In the following sections, we will often make use of this property. For instance,
it is used to derive a connection between the cohomology of the pro-étale site and Uwe
Jannsens coninuous étale cohomology [10].

Definition 4.2.31. A topos T is replete if for any sequence of morphisms

F0← F1← ·· · ← Fn← ·· ·

with surjective transition maps the induced morphism limiFi→ Fn is surjective for any
n ∈ N.

Examples 4.2.32.

• The category Set of sets is replete.

• For any site C the topos PSh(C) is replete.

• The following example from [2, Example 3.1.5] shows that the topos induced by
the étale site is in general not replete. Let k be a field such that a separable
closure of k is not finite over k. Let k be a separable closure. Then the topos
Sh(Spec(k)et) is not replete. To see this consider a chain

k = k1 ⊂ k2 ⊂ ·· · ⊂ k

of non-trivial finite separable field extensions k ⊂ ki. We then get a sequence of
representable sheaves

hSpec(k1)← hSpec(k2)← ·· · ← hSpec(kn).

The transition maps are surjective as they come from the covering morphisms
Spec(ki+1)→ Spec(ki). We claim that the canonical map limihSpec(ki)→ hSpec(k)
is not surjective. Any étale covering of Spec(k) can be refined by a covering
of the form (Spec(Li)→ Spec(k))i with k ⊂ Li a finite separable field extension.
Consider the element idk ∈ hSpec(k)(Spec(k)) and assume there is a finite separable
field extension k ⊂ L such that idk|Spec(L) is in the image of

limihSpec(ki)(Spec(L))→ hSpec(k)(Spec(L))

But this exactly means that for any i ∈N there is a k-morphism ki→L. This is a
contradiction as k-morphisms of fields are injective k-linear mappings, L is finite
over k and dimk(ki)≥ i for all i∈N. Hence, the morphism limihSpec(ki)→ hSpec(k)
cannot be surjective, which proves the claim.
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Proposition 4.2.33. Let C be a site with enough weakly contractible objects. Then
the topos Sh(C) is replete.

Proof. Consider a system F : Nopp→ Sh(C) with surjective transition maps. To show
that

limnFn→ Fi

is surjective, it suffices to show that it surjective after applying Γ(U,−) for arbitrary
weakly contractibles U . This is obviously true as Set is a replete topos and the system
(Fi(U))i∈N has surjective transition maps.

Proposition 4.2.34. Let T = Sh(C) be a replete topos and F : Nopp → Ab(C) be a
diagram with surjective transition maps Fi+1→ Fi. Then

RlimFn ∼= limnFn.

Proof. [2, Proposition 3.1.10]

4.3 Axioms for a Pro-étale Enlargement
This section contains the promised axioms for the pro-étale site. After introducing the
aforementioned axioms, we will provide an explanation of our intention behind their
formulation. This is followed by some basic definitions and first statements which then
lead to the definition of adic pro-étale sheaves in Section 4.4. Note, that the axioms are
designed such that they yield a good theory of adic pro-étale sheaves and that it is not
a standard notation in the literature.

Definition 4.3.1 (Axioms for the pro-étale site). Let E ⊂ Sch be a subcategory. A
pro-étale enlargement for E is a functor

(−)proet : E→ Sites

together with a natural transformation

ε : (−)proet −→ (−)et

such that for any schemeX ∈E the following axioms are fulfilled5. By abuse of notation,
we write ε for the morphism of sites ε(X) :Xproet→Xet.

1. The site Xproet has enough weakly contractible objects.

2. For any abelian sheaf F on Xet we have

Riε∗(ε∗F) =
{
F if i= 0,
0 else.

5Note that we are ignoring problems that arise with the notion of 2-categories, see Remark 2.1.3.
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3. Let j : U →X be a morphism in E. If j : U ↪→X is an open subscheme then we
have a commutative diagram

Xproet/ε
−1(U) Xproet

Uproet Xproet.

∼= id
jproet

Here, the morphism of sites Xproet/ε
−1(U)→Xproet is the restriction morphism

defined in Section 1.1.3. In particular, Sh(Uproet) defines an open subtopos of
Sh(Xproet).

4. Let i : Z → X be a morphism in E. Assume i : Z ↪→ X is a closed immersion
such that its open complement j : U ↪→X is quasi-compact and lies in E. Then
Sh(Zproet) is the complementary closed subtopos of Sh(Uproet). That means,
iproet∗ is fully faithful and its essential image is the complementary closed subtopos
of Sh(Uproet).

5. The pullback i∗proet along any closed immersion i : Z ↪→X in E has a left adjoint
i!. In particular, i∗proet commutes with small limits.

Notation 4.3.2 (The meaning of (∗)). Let X be a scheme and let {X} be the category
with the single object X and only one morphism. Note that a pro-étale enlargement
for {X} exactly consists of a site Xproet together with a morphism ε : Xproet → Xet
such that the Axioms 1 and 2 are fulfilled. In the following we mark those theorems,
propositions and lemmas with (∗) if the respective statement works for any pro-étale
enlargement for {X}.

Remark 4.3.3 (about the axioms). We want to explain the intention behind our choice
of the axioms. In the literature there are two concrete approaches to define a pro-étale
topology, one from Bhatt and Scholze [2] and another from M. Kerz [12]. Our goal was
to collect the most important properties, which are true in both versions. The axioms
are designed, such that the notion of adic sheaves on the pro-étale site, introduced in
Section 4.4, comes with good properties and is in equivalence with the definition of
classical adic sheaves. However, let us briefly go through the axioms and explain the
underlying intentions behind each one.

The first axiom is definitely the most important one. The existence of weakly con-
tractible objects is the main advantage that comes with the pro-étale site.

We need the second axiom to draw a connection between étale and pro-étale sheaves.
We can apply this property for i = 0 and see that ε∗ε∗ ∼= id and, therefore, ε∗ is a
fully faithful functor. Moreover, this axiom guarantees that the cohomology groups
of an abelian sheaf F on Xet agree with the cohomology group of ε∗F on Xproet, see
Proposition 4.3.6. Of course, this is a property that the pro-étale site should have in
order to extend the classical theory.
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At first glance, Axiom 3 seems rather restricting because defining a pro-étale site
associated to X requires careful consideration of the behavior of sites induced from
any open subscheme U ⊂X. However, this is not a significant problem since the first
two axioms are automatically fulfilled for the localization category Xproet/U if they
hold in Xproet. This statement is specified in Proposition 4.3.15. Moreover, without
assuming this axiom, two different notions of restriction to open subschemes arise (see
Section 1.1.3 and Definition 4.3.4).

The latter axiom describes a property of the pro-étale site for open subschemes. Of
course, one also wants conditions for closed subschemes. Axiom 4 is the canonical
one. It comes with many advantages, especially the short exact sequence (4.1) from
Proposition 4.2.19. We had to restrict this axiom for immersions with quasi-compact
open complement, as one needs this assumption in the pro-étale site of B. Bhatt and
P. Scholze to show that the pushforward along a closed immersion is exact. Note that
in their version it is not known if i∗ for arbitrary closed subschemes i : Z ↪→X is exact.

Finally, we introduced Axiom 5 to ensure that the extension by zero along a quasi-
compact open immersion preserves adic constructible sheaves. In their paper [2], Bhatt
and Scholze state that the existence of a left adjoint to i∗ is an important property
of the pro-étale site, which is in general not true for the étale site. As this axiom is
valid in both versions, we decided that it is necessary to include it into the elementary
properties of the pro-étale site.

In the following let ((−)proet, ε) be a pro-étale enlargement for E = Sch. Of course,
the statements can be adjusted in a straightforward manner to work for more general
subcategories E ⊂ Sch.

Definition 4.3.4. Let X be a scheme and ι : Z ↪→X a locally closed immersion. For
a sheaf F ∈ Sh(Xet) define the restriction to Z as

F|Z := ι∗proetF ,

where ιproet : Zproet→Xproet is the induced morphism of sites. By Axiom 3 the restric-
tion to an open subscheme is exactly the restriction defined in Definition 1.1.25.
Let f : X → Y be a morphism of schemes. To simplify notation, we often write f for
the morphism of sites fproet.

Remark 4.3.5. Axiom 3 assures that for an open immersion j : U ↪→ X, we have
Uproet =Xproet/ε

−1(U). In particular, by the material of Section 4.2.1, the pullback j∗

has a left adjoint j!. To get a better insight in this theory, we recommend to recall
Section 1.1.3 and 4.2.1.

Proposition 4.3.6 (∗). Let F be an abelian sheaf on Xet. We then have the equality

H i(Xet,F ) =H i(Xproet, ε
∗F )

Proof. This is a direct consequence of Axiom 2 and the Leray spectral sequence. For
instance, see [15, Tag 0733].
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Definition 4.3.7. LetX be a scheme, Λ a noetherian ring and F ∈ModΛ(Xproet). Then
F is called constructible if it is isomorphic to ε∗G for a constructible étale sheaf G.

Lemma 4.3.8 (∗). The pullback ε∗ gives rise to an equivalence of categories

ε∗ : {Constructible sheaves on Xet}
∼=−→ {Constructible sheaves on Xproet}

Proof. By Axiom 2, ε∗ is fully faithful. Now, the claim follows directly from the defini-
tions.

Proposition 4.3.9 (∗). Let S ⊂ Ab(Xet) be a weak Serre subcategory. Then the
essential image of S inXproet via the functor ε∗ is a weak Serre subcategory of Ab(Xproet)

Proof. Assume we have F = ε∗F , H = ε∗H for sheaves F,H ∈ S and a short exact
sequence

0→F →G →H→ 0.

By Axiom 2 we have R1ε∗F = 0, so we obtain an exact sequence

0→ ε∗F︸︷︷︸
∼=F

→ ε∗G → ε∗H︸︷︷︸
∼=H

→ 0.

By assumption ε∗G ∈ S and the 5-lemma applied to

0 ε∗ε∗F ε∗ε∗G ε∗ε∗H 0

0 F G H 0

∼= ∼=

yields the claim.

Corollary 4.3.10 (∗). The category of constructible sheaves on Xproet forms a weak
Serre subcategory of the category of sheaves on Xproet.

Lemma 4.3.11. Let f : Y →X be a morphism of schemes. Then we have the following
properties

1. fet∗ ◦ ε∗ = ε∗ ◦fproet∗ and f∗
proet ◦ ε∗ = ε∗ ◦f∗

et.

2. Assume f is a closed immersion with quasi-compact complement, then the formula
fproet∗ ◦ ε∗ = ε∗ ◦fet∗ holds.

3. If f is an open immersion then f∗
etε∗F = ε∗f

∗
proetF and fproet!ε

∗F = ε∗fet!F .
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Proof. The first claim follows from the composition of pullbacks and pushforwards,
Lemma 1.1.15, and the commutative diagram

Yproet Xproet

Yet Xet

fproet

ε ε

fet

which comes from the naturality of ε.
Let i : Y →X be a closed immersion with quasi-compact open complement j : U →X.
Then for any sheaf G on Yet we have

(ε∗iet∗G)|U = j∗
proetε

∗iet∗G= ε∗j∗
etiet∗G= 0. (4.3)

The axioms assure that Sh(Yproet) is the complementary closed subtopos of Sh(Uproet).
Equation (4.3) implies that ε∗iet∗G∼= iproet∗i

∗
proetε

∗iet∗G. A computation leads to

iproet∗i
∗
proetε

∗iet∗G= iproet∗ε
∗i∗etiet∗G∼= iproet∗ε

∗G.

We used the equality i∗etiet∗G ∼= G coming from Proposition 2.1.12. This proves the
second claim.
For 3 let V/U ∈ Uet. A section-wise calculation yields

f∗
etε∗F (V/U) = ε∗F (V ) = F (ε−1(V )) = f∗

proetF (ε−1(V )/ε−1(U)) = ε∗f
∗
proetF (V/U).

which proves the first part of 3. The second part follows immediately from the adjoint-
ness properties.

In order to gain a better understanding of constructible sheaves on the pro-étale site,
we will make use of the short exact sequence (4.1) to obtain an equivalent definition of
constructibility.

Proposition 4.3.12. A sheaf F ∈ Sh(Xproet) is constructible if and only if for every
affine open U ⊂X there is a finite partition U =

⊔n
i=1Ui in constructible locally closed

subsets of U such that F |Ui is isomorphic to ε∗Gi, where Gi is a locally constant étale
sheaf of finite type on Uiet.

Proof. (⇒) If F is constructible, it is of the form ε∗G for a constructible étale sheaf G.
Then for any affine open U ⊂X there is a finite partition U =

⊔n
i=1Ui in constructible

locally closed subsets of U such that G|Ui is locally constant. Hence, F |Ui
∼= (ε∗G)|Ui

∼=
ε∗(G|Ui) is the pullback of a locally constant étale sheaf.

(⇐)For the other implication we will first show that the canonical morphism

ε∗ε∗F → F

is an isomorphism. As we can do this locally, we can assume that X is affine. Let
X =

⊔n
i=1Ui be the partition from the assumption. We proceed by induction on n. If

Master’s Thesis Lukas Krinner



4.3 Axioms for a Pro-étale Enlargement Page 59

n= 1 then there is nothing to prove.
Assume n > 1. For every Ui there is a decomposition

Ui
i
↪→ Vi

j
↪→X,

where i is a closed and j an open immersion. Again, it is enough to check the isomor-
phism on the Vi. So without loss of generality assume that Ui is a closed subscheme of
X for some i ∈ {1, . . . ,n}. Let i : Z := Ui ↪→X be the closed immersion with open com-
plement j : U ↪→X. By induction hypothesis i∗F and j∗F are of the form i∗F ∼= ε∗G1
and j∗F ∼= ε∗G2 for étale sheaves G1,G2. In particular, Lemma 4.3.11 implies

j!j
∗F ∼= ε∗j!G1 and i∗i

∗F ∼= ε∗i∗G2.

Then Proposition 4.2.19 gives a short exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0,

where j!j∗F and i∗i
∗F lie in the essential image of ε∗. Proposition 4.3.9 shows that

F is in the essential image of ε∗ and in particular ε∗ε∗F ∼= F . It remains to show
that G := ε∗F is constructible. For any affine open U ⊂ X there is a finite partition
U =

⊔n
i=1Ui in constructible locally closed subsets of U such that F |Ui is isomorphic to

ε∗Gi, where Gi is a locally constant étale sheaf on Uiet. Especially, ε∗G|Ui
∼= ε∗Gi and

hence by the fully faithfulness of ε∗ we have that G|Ui
∼= Gi is locally constant. This

proves the claim, as now G is by definition a constructible sheaf.

Lemma 4.3.13. Let I ⊂R be an ideal and j :U ↪→X a quasi-compact open immersion.
Then for any sheaf F of R-modules on Uproet we have the formula

j!IF ∼= Ij!F.

Proof. Denote by i :Z ↪→X as the complement of U in X. An elementary computation
shows i∗Ij!F = Ii∗j!F = 0. The short exact sequence from Proposition 4.2.19 implies

Ij!F ∼= j!j
∗Ij!F ∼= j!Ij

∗j!F ∼= j!IF.

The Pro-étale Site for Open Immersions
Notation 4.3.14. Let U be an étale scheme over X. If the meaning is clear, we will
sometimes denote the element ε−1(U) ∈Xproet by U to simplify notation.

Proposition 4.3.15 (∗). Let X be a scheme and j : U ↪→ X an open immersion.
Assume that Xproet together with ε : Xproet → Xet fulfill the Axioms 1 and 2. Then
both axioms are also true for Xproet/U together with the induced map

ε′ :Xproet/U −→Xet/U.
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Proof. To show that Xproet/U has enough weakly contractible objects, it suffices to
prove that any V → U is weakly contractible in Xproet/U if V is weakly contractible
in Xproet. Let FU → GU be a surjective map of sheaves of sets in Xproet/U and
V/U ∈Xproet/U an object such that V is weakly contractible in Xproet. As jU ! pre-
serves epimorphisms by Lemma 4.2.9, we get a surjection

jU !FU (V )−→ jU !GU (V ).

Using the explicit formula for j∗
U in Lemma 1.1.26 one obtains that the map

j∗
UjU !FU (V/U) = jU !FU (V )−→ jU !GU (V ) = j∗

UjU !GU (V/U).

is surjective. As U ↪→ X is a monomorphism, we can apply Lemma 4.2.10. Now,
j∗
UjU ! ∼= id which finally proves that FU (V/U)→GU (V/U) is surjective and hence that
V → U is weakly contractible in Xproet/U .
The morphism of sites ε :Xproet→Xet induces a morphism of sites

ε′ :Xproet/U −→Xet/U.

We claim that for an abelian sheaf FU on Xet/U we have

Riε′∗ε
′∗FU =

{
FU if i= 0,
0 else.

For an intermediate step, let F be an abelian sheaf on Xproet and choose an injective
resolution F → I•. As j∗

U admits an exact left adjoint it follows from Lemma 4.1.1 that
j∗
U preserves injectives. Even better, as j∗

U is exact it preserves injective resolutions.
Hence j∗

UF → j∗
UI

• is an injective resolution of j∗
UF . A direct computation shows that

ε′∗j
∗
U = j∗

U,etε∗, which in turn implies

Riε′∗j
∗
UF =H i(ε′∗j∗

UI
•) =H i(j∗

U,etε∗I
•) = j∗

U,etH
i(ε∗I•) = j∗

U,etR
iε∗F .

With this result in mind, we can finally finish the proof, using the calculation

Riε′∗ε
′∗FU =Riε′∗ε

′∗j∗
UjU !FU

=Riε′∗(jU ◦ ε′)∗(jU !FU )
=Riε′∗(ε◦ jU )∗(jU !FU )
=Riε′∗j

∗
U (ε∗jU !FU )

= j∗
UR

iε∗ε
∗(jU !FU ).

The claim follows as we have the respective result for Riε∗ε∗ and by Lemma 4.2.10 the
identity j∗

UjU ! ∼= id.
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Remark 4.3.16. One should ask why we demanded Axiom 3 to work only for open
immersions and not for all étale morphisms. The reason is exactly the proof of Propo-
sition 4.3.15. We used the assumption that open immersions are monomorphisms in
the category of schemes over X in order to use Lemma 4.2.10. In [7, Theorem 17.9.1],
it is proven that étale monomorphisms are exactly the open immersions. Nevertheless,
in both version of the pro-étale site presented in Section 4.7 the statement of the above
proposition is true for any étale morphism U →X.

Example 4.3.17. Let X be a scheme. Assume one has a site Xproet together with a
morphism ε :Xproet→Xet such that Axioms 1 and 2 are fulfilled. Let E ⊂ Sch be the
subcategory, which has open subschemes of X as objects and inclusions as morphisms.
Proposition 4.3.15 shows that one can define a pro-étale enlargement for E by

Uproet :=Xproet/U

for an open immersion U ↪→X.

4.4 Adic Pro-étale Sheaves
In this section we define adic sheaves for the pro-étale site. We will see that this
definition is equivalent to the classical version introduced in Chapter 3 and derive
important properties of the category of adic sheaves. For this section let ((−)proet, ε)
be a pro-étale enlargement for E = Sch. Further let X be a scheme, Λ a ring and I ⊂Λ
an ideal.

Definition 4.4.1. A sheaf of Λ-modules F is called constructible Λ-sheaf or I-adic
sheaf on Xproet if F/InF is a constructible sheaf of Λ/InΛ-modules for every n∈N and

F ∼= limnF/InF .

If I is finitely generated, this is indeed equivalent to the classical definition in the
following sense.

Theorem 4.4.2 (∗). Assume I ⊂ Λ is finitely generated. Then there is a well-defined
equivalence of categories

φ :


I-adic sheaves on

Xproet


∼=−→


I-adic sheaves on

Xet


F 7−→ (ε∗(F/In+1F))n∈N.

Moreover, the quasi-inverse for φ is given by

(Gn)n∈N 7−→ limnε
∗Gn =: ψ((Gn)n∈N).
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Proof. We will first show that φ is well-defined. We have to prove that for an I-
adic pro-étale sheaf F the inverse system φ(F) is an I-adic étale sheaf. By definition
F/In+1F is constructible and therefore the pullback of an étale constructible sheaf Gn.
In particular,

ε∗(F/In+1F) = ε∗ε
∗Gn =Gn

is constructible for all n ∈ N. In order to prove that In+1Gn = 0, we apply the fully
faithful functor ε∗ and show ε∗(In+1Gn) = 0 instead. Using Corollary 1.1.38 we compute

ε∗(In+1Gn) = In+1ε∗Gn = In+1(F/In+1F) = 0.

This proves In+1Gn = 0. We further have

ε∗(Gn+1/I
n+1Gn+1) = ε∗Gn+1/ε

∗(In+1Gn+1)
= ε∗Gn+1/I

n+1(ε∗Gn+1).

The latter is isomorphic to ε∗Gn = F/In+1F as ε∗Gn+1 = F/In+1F . The fully faith-
fulness of ε∗ implies Gn+1/I

nGn+1 ∼=Gn and proves that φ(F) is an I-adic étale sheaf.
Conversely, let (Fn)n∈N be an I-adic étale sheaf. Define

F := limnε
∗Fn.

Claim: There is a canonical isomorphism F/In+1F ∼= ε∗Fn.
The projection to the n’th component yields a map F → ε∗Fn. As In+1ε∗Fn = ε∗In+1Fn
vanishes, we get a map F/In+1F → ε∗Fn. It remains to show that this is an isomor-
phism. By Proposition 4.2.28 it is enough to check this on all weakly contractible objects
of Xproet. That is, Γ(U,F/In+1F)∼= Γ(U,ε∗Fn) for all weakly contractible U ∈Xproet.
As an intermediate step, we want to show that (ε∗Fn(U))n is an I-adic system of Λ-
modules. Using the exactness of Γ(U,−) and Lemma 4.2.29, we compute

(ε∗Fn+1(U))/In+1(ε∗Fn+1(U))∼= (ε∗Fn+1(U))/(ε∗In+1Fn+1(U))
∼=
(
ε∗Fn+1/ε

∗In+1Fn+1
)

(U).

As ε∗ is exact, we see

ε∗Fn+1/ε
∗In+1Fn+1 ∼= ε∗(Fn+1/I

n+1Fn+1)∼= ε∗Fn.

Summerizing, one can say (ε∗Fn+1(U))/In+1(ε∗Fn+1(U))∼= ε∗Fn(U), which proves that
(ε∗Fn(U))n is an I-adic system of modules. We can apply Proposition 1.3.7 to the
system (ε∗Fn(U))n∈N to see that F(U) is an I-adically complete Λ-module and that

F(U)/In+1F(U)∼= ε∗Fn(U).

Finally, ε∗Fn(U)∼=
(
F/In+1F

)
(U), which completes the proof of the claim, i.e. we have

shown F/In+1F ∼= ε∗Fn.
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The remaining part just consists of formalities. To ensure completeness, we will provide
all the details. The claim shows that F is indeed an I-adic sheaf on Xproet, i.e. the
functor (Fn)n∈N 7→ limnε

∗Fn := ψ((Fn)n∈N) is well-defined. Further,

φ◦ψ((Fn)n∈N) = (ε∗ε∗Fn)n∈N
∼= (Fn)n∈N and

ψ ◦φ(F) = limnε
∗ε∗F/In+1F = limnF/In+1F ∼= F .

Here, ε∗ε∗F/In+1F ∼=F/In+1F as F/In+1F is in the essential image of ε∗. This proves
that ψ and φ are quasi-inverse functors and in particular that φ is an equivalence of
categories.

Remark 4.4.3. In the proof of Theorem 4.4.2 we did not speak of constructibility
in the sense of its definition. More precisely, we could replace the assumptions of
the foregoing theorem by the following data. Let S ⊂ ModΛ(Xet) be a strictly full
subcategory. We call F ∈ModΛ(Xet) an adic S-sheaf if F is I-adically complete and
F/InF is isomorphic to ε∗Gn for a sheaf Gn ∈ S. An inverse system (Fn)n∈N of sheaves
on Xet is called I-adic S-sheaf, if Fn ∼= Fn+1/I

n+1Fn+1 and Fn ∈ S for all n ∈ N. Then
the proof of Theorem 4.4.2 shows that

φ :


I-adic S-sheaves on

Xproet


∼=−→


I-adic S-sheaves on

Xet



is an equivalence of categories. Later statements cannot be generalized in this way, as
we need the finiteness conditions of constructibility to apply the theory developed in
Chapter 3.

Proposition 4.4.4. Extension by zero along a quasi-compact open subset preserves
I-adic pro-étale sheaves. That is, if j : U ↪→X is a quasi-compact open immersion and
F an I-adic sheaf on Uproet, then j!F is an I-adic sheaf on Xproet.

Proof. We will first show that j!F is I-adically complete. Consider the I-adically com-
plete sheaf

G := limnj!F/I
nj!F

and compute with Axiom 5 for the complement i : Z :=X \U ↪→X that

G|Z = i∗limnj!F/I
nj!F = limni

∗ (j!F/Inj!F ) = 0.

The short exact sequence from Proposition 4.2.19 then implies that G= j!H for a sheaf
H ∈ Sh(Uproet). We can compute H ∼= j∗G ∼= limnj

∗j!F/j
∗Inj!F ∼= limnF/I

nF , which
is the I-adic completion of F in Sh(Uproet). As F is I-adically complete, this implies
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H ∼= F , which proves j!F ∼=G. This implies the completeness of F .
For the constructibility of j!F we can use the methods from Section 4.3 to show

j!F/I
nj!F ∼= j! (F/InF ) .

By assumption we can write F/InF as ε∗Gn for a constructible sheaf Gn on Uet. We
then have by Lemma 4.3.11

j!F/I
nj!F ∼= j!ε

∗Gn = ε∗j!Gn.

Hence, j!F/Inj!F is the pullback of the constructible étale sheaf j!Gn.

Proposition 4.4.5. Assume i :Z ↪→X is a closed immersion with quasi-compact com-
plement j : U ↪→X. Further, let F be an I-adic sheaf on Zproet. Then i∗F is I-adic.

Proof. Note that i∗ has a left adjoint i∗ and a right adjoint i!, see Proposition 4.2.20 and
Proposition 1.1.14. Therefore, i∗ commutes with small limits and colimits. Moreover,
Corollary 1.1.38 implies that for any ideal J ⊂R the equation

j∗Ji∗F ∼= Jj∗i∗F = 0

holds. As Sh(Zproet) is the complementary closed subtopos of Sh(Uproet), we have

Ji∗F ∼= i∗i
∗Ji∗F ∼= i∗Ji

∗i∗F ∼= i∗JF .

Now we can show completeness of i∗F . We compute

limni∗F/Ini∗F ∼= limni∗ (F/InF)∼= i∗limn (F/InF)∼= i∗F .

The constructibility of F/InF is immediate using Lemma 4.3.11 and the above calcu-
lations.

The Pro-étale Site for Noetherian Rings and Noetherian Schemes
In the following we will discuss properties of I-adic sheaves if X is a noetherian scheme
and R a noetherian ring. Remarkably, this assumption is sufficient to attain that the
adic pro-étale sheaves form an abelian subcategory of ModR(Xproet). Recall that in
the classical case we had to pass to the AR-category to obtain that property. In the
pro-étale world there is no need for such formality. Note that this section strongly relies
on the Artin-Rees lemma which is why we demand R to be noetherian.

Remark 4.4.6. As ε∗ is an exact functor, the functor

ε∗ : {Inverse systems of étale sheaves}→ {Inverse systems of pro-étale sheaves}
(Fn)n∈N 7→ (ε∗Fn)n∈N

is well-defined and exact. Moreover, it maps null-systems to null-systems, which is why
we can apply the universal property of the AR-category in Proposition 1.2.3 to get an
exact functor

ε∗ : AR(Ab(Xet))→AR(Ab(Xproet)).
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For the following we assume that all considered schemes and rings are noetherian.
Recall that in this case the AR I-adic sheaves on Xet form an abelian subcategory of
AR(ModR(Xproet)) by Proposition 3.4.1. We can formulate the following theorem.

Theorem 4.4.7 (∗). Let X be a noetherian scheme and Λ a noetherian ring. Then we
obtain an exact functor

limARε
∗ : {AR I-adic sheaves on Xet}→ModR(Xproet)

(Fn)n∈N 7→ limnε
∗Fn.

Proof. Let

0→ (Fn)n→ (Gn)n→ (Hn)n→ 0

be a short exact sequence in the AR-Category of sheaves on Xet, such that all systems
involved are I-adic. Then by the previous remark we get a short exact sequence

0→ (ε∗Fn)n→ (ε∗Gn)n→ (ε∗Hn)n→ 0

in the AR-Category of systems of sheaves on Xproet. Applying RlimAR we obtain a long
exact sequence

0→ limAR(ε∗Fn)n→ limAR(ε∗Gn)n→ limAR(ε∗Hn)n→ R1limAR(ε∗Fn)n→ ·· · .

But (ε∗Fn)n is an inverse system with surjective transition maps, as it is I-adic. Hence,
by Corollary 4.1.7 and Proposition 4.2.34 we have

R1limAR(ε∗Fn)n = R1lim(ε∗Fn)n = 0.

This proves that limARε
∗ is exact.

Corollary 4.4.8 (∗). Let X be a noetherian scheme and R a noetherian ring. Then
the category of I-adic sheaves on Xproet is an abelian subcategory of ModR(Xproet).

Proof. By Theorem 4.4.2 and Theorem 4.4.7 we see that the category of I-adic sheaves
on Xproet is exactly the essential image of the fully faithful exact functor

limARε
∗ : {AR I-adic sheaves on Xet}→ModR(Xproet).

This proves the claim.

Proposition 4.4.9 (∗). Let X be a noetherian scheme and R a noetherian ring. Then
the category of I-adic sheaves on Xproet is a noetherian category, i.e. if F is an I-adic
sheaf, then every increasing chain

F0 ⊂F1 ⊂ . . .⊂F

of I-adic subsheaves of F gets eventually constant.
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Proof. This is a direct consequence of Proposition 3.4.3.

Proposition 4.4.10 (∗). Let X be a noetherian scheme and R a noetherian ring.
The category of I-adic sheaves on Xproet is stable under extensions. That means the
following. If there is a short exact sequence

0→F →G →H→ 0

where F and H are I-adic, then G is an I-adic sheaf.

Proof. First, we have to prove the completeness of G. By the strategy of the proof
of Theorem 4.4.2, it is equivalent to check the completeness for G(U), where U runs
over all weakly contractible objects of Xproet. As I is finitely generated, we can write
I = (a1, . . . ,an). By Lemma 1.3.11 it suffices to prove that G is ai-adic complete for all
i ∈ {1, . . . ,n} and therefore we assume that I = (a) is a principle ideal. Consider for
arbitrary n ∈ N the commutative diagram

0 F G H 0

0 F G H 0

·an ·an ·an

with exact rows. We call this diagram Dn. There is a morphism of commutative
diagrams Dn+1→Dn given by multiplication by a in the top row and taking the identity
in the lower row. As the snake lemma also includes a functoriality result, we obtain
from Dn+1→Dn a diagram with exact rows

H[an+1] F/an+1F G/an+1G H/an+1H 0

H[an] F/anF G/anG H/anH 0.

·a (4.4)

Here, H[an+1] is the kernel of H an

→H by definition. By Corollary 4.4.8, H[an+1] is an
I-adic sheaf. Furthermore, Proposition 4.4.9 implies that the sequence

H[a]⊂H[a2]⊂ ·· · ⊂ H[an]⊂ ·· · ⊂ H

gets eventually constant. This means that there is an N ∈N with H[am] =H[aN ] for all
m≥N . In particular, the inverse system (H[an], ·a)n∈N, which is on the left of Eq. (4.4),
is AR-zero6. We conclude that

0→ (F/anF)n→ (G/anG)n→ (H/anH)n→ 0

6The shift by N is the zero morphism.
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is AR-exact. As (F/anF)n is a system with surjective transition maps, Corollary 4.1.7
and Proposition 4.2.34 imply that R1limARF/anF ∼= R1limnF/anF = 0, which in turn
implies that

0→ limnF/anF → limnG/anG → limnH/anH→ 0

is exact. The 5-lemma applied to the diagram

0 F G H 0

0 limnF/anF limnG/anG limnH/anH 0

∼= ∼=

finishes the proof of completeness.
It remains to show that G/InG is a constructible sheaf on Xproet. We can write

In = (a1, . . . ,al) and proceed by induction on l.
If In = (a) for an a ∈R, define Fn := F/aF , Gn := G/aG and Hn :=H/aH and obtain
by the snake lemma an exact sequence

H[a] δ−→Fn→Gn→Hn→ 0

as above. Note that Fn and Gn are constructible sheaves on Xproet. Further, the
sheaf H[a] = ker(H ·a−→H) is an I-adic sheaf by Corollary 4.4.8. As aH[a] = 0, we have
H[a]/aH[a] =H[a] and therefore H[a] is also the pullback of a constructible étale sheaf.
By Corollary 4.3.10 we conclude that Gn is an I-adic sheaf on Xproet.
If l > 1 set a := a1 and define Fn := F/aF , Gn := G/aG and Hn :=H/aH. We get an
exact sequence

H[a] δ−→Fn→Gn→Hn→ 0.

Corollary 4.4.8 implies that H[a] = ker(H ·a−→H), Fn = coker(F ·a−→F) and Hn are I-adic
sheaves. All involved sheaves have a canonical Λ′ := Λ/(a)-module structure and Fn,
Hn and H[a] are I ′-adic sheaves of R′-modules with respect to the ideal I ′ = I/(a)⊂R′.
In particular, im(δ) is an I ′-adic sheaf. Using this, we get a short exact sequence

0→ (F/aF)/ im(δ)→G/aG →H/aH→ 0,

where both, the left and the right sheaf are I ′-adic sheaves. As I ′n is generated by
l−1 elements, the induction hypothesis implies that Gn = G/aG is an I ′-adic sheaf. In
particular,

Gn/I ′nGn ∼= G/InG

is the pullback of a constructible sheaf on Xet.
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Corollary 4.4.11 (∗). The category of I-adic sheaves on Xproet forms a weak Serre
subcategory of ModR(Xproet).

Proof. This is an immediate consequence of Corollary 4.4.8 and Proposition 4.4.10.

Corollary 4.4.12. Let F be a sheaf of R-modules on Xproet and j : U ↪→X an open
immersion immersion and consider its closed complement i : Z ↪→X. Assume F|U and
F|Z are I-adic, then F is I-adic.

Proof. Proposition 4.2.19 gives a short exact sequence

0→ j!j
∗F →F → i∗i

∗F → 0.

By assumption, j∗F and i∗F are I-adic. This, in turn, implies that j!j∗F and i∗i
∗F

are I-adic, see Proposition 4.4.4 and Proposition 4.4.5. We conclude using Proposi-
tion 4.4.10.

Corollary 4.4.13. Let F be a sheaf of R-modules on Xproet. If there is a finite
stratification7 X =

⊔n
i=1Xi such that F|Xi is an I-adic sheaf, then F is I-adic.

Proof. First assume X is irreducible. We prove the claim by induction on the length of
the partition. For n= 1 the assertion is clear.
Assume n > 1. Analogously to Corollary 3.3.8, one of the stata Xi is open in X. Let
j :U ↪→X be the associated open immersion and i :Z ↪→X its closed complement. The
induction hypothesis implies that i∗F and j∗F are I-adic. Now the claim follows from
Corollary 4.4.12.

Now we come to the general case. Let X1, . . . ,Xm be the irreducible components of
X. We use induction on m. If m= 1, X is irreducible. We already proved this case.
For m> 1 define

U :=X1 \
m⋃
i=2

Xi.

Now, U is an open and irreducible subset of X. Hence, by the above F|U is I-adic.
The induction hypothesis applied to Z :=X \U yields that F|Z is I-adic. We conclude
using Corollary 4.4.12.

Definition 4.4.14. Let F be an I-adic sheaf. Then F is called locally constant or
lisse8 if each F/InF is a locally constant sheaf of Λ-modules.

Corollary 4.4.15. Let F be an I-adic sheaf on the pro-étale site Xproet. Then there
exists a finite partition X =

⊔n
i=1Xi such that F |Xi is lisse.

7With our convention, a stratification is a partition consisting of constructible locally closed subsets.
8In this context we will usually prefer the term lisse to avoid confusion with the term locally constant

sheaf of Λ-modules.
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Proof. This is a direct consequence of Proposition 3.3.7.

Corollary 4.4.16. Let F be an I-adic sheaf on the pro-étale site Xproet. Then there
exists an open dense subset U ⊂X such that F |U is lisse.

Proof. This is the corresponding statement to Corollary 3.3.8.

4.5 Cohomology of Adic Pro-étale Sheaves
Let A and B be two abelian categories and h :A→B a left exact functor. Consider the
induced left exact functor

hN :AN −→BN.

Assume inverse limits exist in B, then there is a well-defined left exact functor

limn : BN −→B

sending a system to its inverse limit. We denote the composite limn ◦hN as limnh. In
[10] one can find the following definition.

Definition 4.5.1 (continuous étale cohomology). LetX be a scheme and (Fn,dn)n∈N an
inverse system of abelian sheaves on Xet. Then define the continuous étale cohomology
groups as

H i
cont(Xet,(Fn,dn)n) :=Ri(limnΓ)((Fn,dn)n)

Lemma 4.5.2. Let A be a Grothendiecke abelian category and B an abelian category.
Assume that countable products are exact in B and that F : A → B is an additive
functor, which commutes with countable products. Then RF commutes with derived
limits.

Proof. [15, Tag 08U1]

Example 4.5.3. Lemma 4.5.2 can be applied to the sections functor

Γ(U,−) : Ab(C)→Ab.

Therefore, for any inverse system (Fn,dn)n∈N of abelian sheaves, we have

RlimnRΓ(U,Fn) = RΓ(U,RlimnFn).

Lemma 4.5.4 (composition of derived functors). Let A,B and C abelian categories
and assume that A and B have enough injectives. Assume F :A→B and G : B→C are
two left exact functors and F sends injective objects to G-right acyclic objects. Then
the canonical map

R(G◦F )→ R(G)◦R(F )

is an isomorphism of functors D+(A)→D+(C).

Lukas Krinner Master’s Thesis
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Proof. [15, Tag 015M]

Theorem 4.5.5 (∗). Let X be a scheme. Consider an inverse system of sheaves (Fn)n∈N
on the étale site Xet with surjective transition maps9. Then we have

H i
cont(Xet,(Fn)n∈N)∼=H i(Xproet, limnε

∗Fn)

Proof. Composition of derived functors implies R(Γ(Xet,−)◦ limn) = RΓ(Xet,−)◦Rlimn.
We compute

RΓ(Xet,Rlimn(Fn)n∈N)∼= Rlimn(RΓ(Xet,Fn))
∼= Rlimn(RΓ(Xproet, ε

∗Fn))
∼= RΓ(Xproet,Rlimn(ε∗Fn)n∈N)
∼= RΓ(Xproet, limn(ε∗Fn))

The first and third equation use the commutation of Rlim and RΓ from Example 4.5.3.
The second equation is Proposition 4.3.6 and the last isomorphism comes from Propo-
sition 4.2.34.

Definition 4.5.6. Let (Fn)n∈N be an I-adic sheaf. Define the I-adic cohomology group
of (Fn)n∈N as

H i(Xet,(Fn)n∈N) := limnH
i(Xet,Fn).

We have the following connection to continuous étale cohomology.

Proposition 4.5.7. Let (Fn,dn)n∈N be an inverse system of abelian sheaves on Xet.
Then there is a canonical short exact sequence

0→ lim1
nH

i−1(X,Fn)→H i
cont(X,(Fn)n∈N)→H i(Xet,(Fn)n∈N)→ 0.

Proof. [10, Equation (3.1)]

Proposition 4.5.8 (∗). If the system
(
H i−1(Xet,Fn)

)
n fulfills the Mittag Leffler con-

dition, then

H i(Xproet, limnε
∗Fn)∼=H i

cont(Xet,(Fn)n∈N)∼=H i(Xet,(Fn)n∈N)

Proof. The first isomorphism comes from Theorem 4.5.5. The second isomorphism
comes from the short exact sequence in Proposition 4.5.7 and from the vanishing of
lim1

nH
i−1(Xet,Fn) by Lemma 4.1.4.

9E.g. an I-adic sheaf.
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4.6 Constructible Complexes vs Adic Pro-étale Sheaves
In their paper [2] Bhatt and Scholze introduced a derived category Dcons(Xproet,R) ⊂
D(Xproet,R), whose objects are called constructible complexes. In this subsection we
want to draw a connection to our definition of I-adic sheaves on Xproet in some special
cases. At the end, all statements should work for R = Z` and I = (`). This section
uses the notion of derived categories without further explanation. We will sketch many
preliminary statements and instead of detailed proofs refer to the literature. However,
the goal of this chapter is achieved in Theorem 4.6.21. LetX be a noetherian scheme and
R a noetherian ring. We write D(Xproet,R) for the derived category of ModR(Xproet).

Notation 4.6.1. We use the following notation. If G ∈ModR(Xproet) and i ∈ Z we
write G[i] for the complex

· · · → 0→G → 0→ ·· · ,

where G sits in degree i. If it is clear from the context, we will also write G for G[0].

Definition 4.6.2 (derived complete). Let K ∈D(Xproet,R). We say that K is derived
I-complete if for all U ∈Xproet and all x ∈ I(U) the derived limit

T (K,x) := Rlim(· · · ·x−→K
·x−→K

·x−→K) ∈D(Xproet,R)

vanishes. We say that F ∈ModR(Xproet) is derived complete if F [0] is derived complete.
Although, this seems to be the accepted definition we will mainly use the following
lemma to deal with derived complete complexes.

Lemma 4.6.3. Assume R is a noetherian ring. Then a complex K ∈ D(Xproet,R) is
derived I-complete if and only if the canonical maps induce an isomorphism

K ∼= Rlim(K⊗L
RR/I

n).

Proof. [2, Proposition 3.5.1]

Lemma 4.6.4. A sheaf F ∈ ModR(Xproet) is complete if and only if it is derived
complete and

⋂
n∈N I

nF = 0.

Proof. [15, Tag 099Q]

First, we have to introduce constructible complexes on the étale site.

Definition 4.6.5. A complex K ∈ D(Xet,R) is called constructible if there is a finite
stratification X =

⊔n
i=1Xi such that K|Xi is locally constant with perfect values on Xet.

That is, K|Xi is locally quasi-isomorphic to a complex which comes from a bounded
complex L ∈D(R) of finite projective R-modules, see [2, Definition 6.3.1]. Also see the
definition of a perfect complex in [15, Tag 0657].
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In the paper of B. Bhatt and P. Scholze [2] one can find the following definition.

Definition 4.6.6. A complex K ∈D(Xproet,R) is called constructible if

• K is derived complete and

• The complex K⊗L
RR/I is the pullback of a constructible R/I complex on Xet.

We donote Dcons(Xproet,R)⊂D(Xproet,R) as the full subcategory of constructible com-
plexes.

However, sometimes it is more useful to use the following equivalent definition from
the Stacks Project [15, Tag 09C1].

Definition 4.6.7. A complex K ∈D(Xproet,R) is called constructible if

• K is derived complete and

• The complex K⊗L
RR/I has constructible cohomology sheaves and finite tor di-

mension.

Lemma 4.6.8. Definition 4.6.6 and Definition 4.6.7 are equivalent.

Proof. It is clear that Definition 4.6.6 implies 4.6.7. For the converse assume K⊗L
RR/I

has constructible cohomology sheaves and finite tor dimension. In this case [15, Tag
09C2] implies that there is an isomorphism

K⊗L
RR/I

∼= ε∗L

for a complex L ∈ D(Xet,R) with finite tor dimension and constructible cohomology
sheaves. The claim then follows from [15, Tag 03TT].

Proposition 4.6.9. Let K ∈D−(Xproet,Λ) such that K1 :=K⊗L
Λ Λ/I has constructible

cohomology sheaves. Then eachKn :=K⊗L
Λ Λ/In has constructible cohomology sheaves.

Proof. We use induction on n to prove this claim. Let n ≥ 1 and consider the distin-
guished triangle

K⊗L
Λ I

n/In+1→Kn+1→Kn→K⊗L
Λ I

n/In+1[1] (4.5)

which comes from applying −⊗L
ΛK to the canonial exact sequence

0→ In/In+1→ Λ/In+1→ Λ/In→ 0.

Computations with the derived tensor product yields K⊗L
Λ I

n/In+1 ∼=K1⊗L
Λ I

n/In+1.
In particular, K1⊗L

Λ I
n/In+1 is a sequence with constructible cohomology sheaves, for

instance see [15, Tag 0961]. Consider the long exact sequence of cohomology sheaves
associated to (4.5) and finish the proof using that the constructible sheaves form a weak
Serre subcategory of ModΛ(Xproet) (see Corollary 4.3.10).
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Corollary 4.6.10. Let F be a sheaf on Xproet such that F [0]⊗L
Λ Λ/I has constructible

cohomology sheaves, then F/InF is constructible for all n ∈ N.

Proof. This follows directly from Proposition 4.6.9, as F/InF =H0(F [0]⊗L
Λ Λ/In).

Definition 4.6.11. A regular local ring is a local noetherian ring R, such that for the
maximal ideal m⊂R the equality

dimR/m(m/m2) = dim(R)

holds. Here, dim(R) is the Krull dimension of R.

Definition 4.6.12. A regular sequence on R is a n-tupel (x1, . . . ,xn) such that x1 is a
non-zero divisor in R and xi for i > 0 is a non-zero divisor in R/(x1, . . . ,xi−1).

Lemma 4.6.13. Any minimal generating system x1, . . . ,xn of a the maximal ideal of
a regular local ring R forms a regular sequence on R.

Proof. [17, Proposition 4.4.6]

Lemma 4.6.14. Let R be a ring and I ⊂R a finitely generated ideal such that R/I is
artinian. Then R/In is artinian for all n ∈ N.

Proof. It is enough to show that R/In has finite length as R-module. This can be done
via induction on n. In the induction step one considers the short exact sequence

0→ In/In+1→R/In+1→R/In→ 0

and concludes as l(R/In+1) = l(R/In) + l(In/In+1). Here, l(In/In+1) is finite since
In/In+1 is a finitely generated R/I-module.

Proposition 4.6.15 (Koszul resolution). Let R be a ring and I = (x1, . . . ,xn) an ideal
which is generated by a regular sequence. Then there is a free resolution of R/I given
by

0→ Λn(Rn)→ ·· · → Λ2(Rn)→Rn
x−→R→R/I → 0.

Here, Rn x−→ R is the morphism that comes from the multiplication with xi in each
component. The module Λp(Rn) is finitely free of rank

(n
p

)
. Applying sheafification to

this sequence yields therefore a flat resolution of the constant sheaf with value R/I.

Proof. [17, Corollary 4.5.5]

Lemma 4.6.16. Assume R is a ring and I ⊂ R an ideal such that R/I is artinian.
Let (ε∗Fn)n∈N be an inverse system such that for all n ∈ N we have In+1Fn = 0 and
Fn ∈ModR(Xet) is locally constant with finitely generated values. Then the system
(ε∗Fn)n∈N fulfills the Mittag-Leffler condition.
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Proof. Assume (Fn)n∈N is an inverse system of locally constant étale sheaves with
finitely generated stalks. By passing to connected components, we can assume that
X is connected. It is enough, to check the Mittag-Leffler condition at one stalk η, as
the specilization maps give isomorphisms Fnη ∼= Fnx for any other geometric point x
(see Proposition 2.2.3). The rings R/In are artinian by Lemma 4.6.14 and Fnη is a
finitely generated R/In+1-module. Now the claim is clear, as any finitely generated
module over an artinian ring has the descending chain condition.

Lemma 4.6.17. Assume K ∈Dcons(Xproet,R). Then there exists a finite stratification
X =

⊔n
i=1Vi, such that the cohomology sheaves of (K ⊗L

R R/I)|Vi are given by the
pullbacks of locally constant sheaves with finitely generated values on Xet.

Proof. By definition, K ⊗L
R R/I is a bounded complex which is the pullback of an

constructible complex on Xet. Hence, it is of the form

· · ·0→ ε∗F a→ ·· · → ε∗F b→ 0 · · ·

for a,b ∈ Z. Proposition 4.3.12 implies that vor every k ∈ {a, . . . , b} there is a finite
stratification X =

⊔nk
ik=1Vk,ik such that (ε∗F )|Vk,ik

is the pullback of a locally constant
étale sheaf with finitely generated values. The family(

b⋂
k=a

Vk,ik

)
(ia,...,ib)

is then a finite stratification which fulfills our claim.

Lemma 4.6.18. Let K ∈D−(Xproet,R) and let Vi ↪→X be a locally closed immersion.
We then have the formula

(K⊗L
RR/I)|Vi =K|Vi⊗L

RR/I.

Proof. Derived pullback commutes with derived tensor product, see [15, Tag 0D6D].
As by our conventions pullbacks are exact, the claim follows trivially from this fact.

Lemma 4.6.19. Assume (Fn)n∈N is an inverse system in ModR(Xproet) which fulfills
the Mittag-Leffler condition. Then

Rlimn(Fn)∼= lim
n
Fn[0]

Proof. The corresponding statement is true forR-modules for any ringR, see Lemma 4.1.4.
Assume U ∈ Xproet is any weakly contractible object. As Γ(U,−) is exact, we have
RΓ(U,−) = Γ(U,−). Moreover, by Example 4.5.3 derived limits commute with RΓ(U,−).
Hence,

RΓ(U,−)◦Rlimn(Fn) = Rlimn(RΓ(U,Fn)) = Rlimn(Fn(U)).
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But as U is weakly contractible, the system (Fn(U))n∈N fulfills the Mittag-Leffler con-
dition and therefore

Rlimn(Fn(U))∼= limnFn(U).

This proves the claim as Xproet has enough weakly contractible objects.

Lemma 4.6.20. Assume (Ln)n∈N is a system of uniformly bounded complexes in
D(Xproet,R) such that Rlimn(H i(Ln)) = 0 for all i ∈ Z. Then Rlimn(Ln) = 0.

Proof. As (Ln)n∈N is uniformly bounded, there is a k ∈ Z such that for all n ∈ N and
all i < k the cohomology sheaves H i(Ln) vanish. In particular, the truncation τ≤kLn
computes as

τ≤kLn =Hk(Ln)[k].

We can apply Rlim to the exact triangle

(τ≤kLn)n∈N→ (Ln)n∈N→ (τ≥k+1Ln)n∈N→ (τ≤kLn)n∈N[−1].

By assumption Rlimn(Hk(Ln)) = 0, which implies Rlimn(Ln)∼= Rlimn(τ≥k+1Ln). Pro-
ceeding with τ≥k+1Ln, one can inductively show Rlimn(Ln) ∼= Rlim(τ≥k′

Ln) for any
k′ ∈ N. As (Ln)n∈N is uniformly bounded, this proves the claim.

Theorem 4.6.21. Let R be a regular local ring with maximal ideal I ⊂R. Further fix
an F ∈Mod(Xproet,R) and consider the complex K :=F [0]. Then F is a constructible
R-sheaf10 if and only if K is a constructible complex.

Proof. For the proof we fix the following notation:

Kn :=K⊗L
RR/I

n.

(⇐) Assume K is a constructible complex. The constructibility of F/InF is covered
by Proposition 4.6.9. It remains to prove the completeness of F . By Corollary 4.4.13,
it is enough to show that F|Vi is an I-adic sheaf for a finite stratification X =

⊔n
i=1Vi.

Using Lemma 4.6.18 and Lemma 4.6.17, we can assume that K1 is the pullback of a
locally constant complex with finitely generated values. With the strategy of Proposi-
tion 4.6.9, it is an easy exercise to show that in this case the cohomology sheaves of Kn

are the pullbacks of locally constant étale sheaves of finite type. Moreover, we know
that K ∼= Rlimn(Kn), as K is derived complete.
Claim. For i < 0 we have Rlimn(H i(Kn)) = 0.
As K1 has finite tor dimension, the Kn are uniformly bounded, see [15, Tag 0942].
That is, there are k,k′ ∈Z, such that for all n∈N and l 6∈ [k,k′] the cohomology sheaves
H l(Kn) vanish. In particular, for i < k, the equation Rlimn(H i(Kn)) = 0 is trivially ful-
filled.
10I.e. an I-adic sheaf on Xproet.
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Assume there is an m < 0 such that Rlimn(H i(Kn)) = 0 for all i < m. Consider the
exact triangle

(τ≤m−1Kn)n∈N→ (Kn)n∈N→ (τ≥mKn)n∈N→ (τ≤m−1Kn)n∈N[−1] (4.6)

and apply Lemma 4.6.20 to prove that Rlimn(τ≤m−1Kn) = 0. Applying Rlim to the
exact triangle (4.6) yields K = Rlimn(Kn) ∼= Rlimn(τ≥mKn). As m < 0, we have
Hm(K) = 0 and hence 0 =Hm(Rlimn(τ≥mKn)). The usual computations with derived
functors show

0 =Hm(Rlimn(τ≥mKn)) = limnH
m(Kn).

This is, because for all n ∈ N and all i < m the sheaves H i(τ≥mKn) vanish. As ex-
plained above, the sheaves Hm(Kn) are given by the pullbacks of locally constant étale
sheaves of finite type. Lemma 4.6.16 shows that (Hm(Kn))n∈N fulfills the Mittag-Leffler
condition. Finally, lim and Rlim agree for ML-systems by Lemma 4.6.19. This proves

0 = limnH
m(Kn) = Rlimn(Hm(Kn)).

Now, 0 = Rlimn(H i(Kn)) for all i <m+1 and we can proceed inductively to prove that
Rlimn(H i(Kn)) = 0 for all i < 0.
The claim together with Lemma 4.6.20 implies that Rlimn(τ≤−1Kn) = 0. In particular,
with a similar exact triangle as Eq. (4.6) we can show

Rlimn(Kn)∼= Rlim(τ≥0Kn) = Rlimn(F ⊗RR/In).

To complete the proof we apply Proposition 4.2.34 to get isomorphisms

K ∼= Rlimn(Kn)∼= Rlimn(F ⊗RR/In)∼= (limnF ⊗RR/In) [0].

This directly implies F ∼= limnF/InF , which we wanted to show.
(⇒) Conversely, assume F is a constructible R-sheaf, i.e. it is complete and the

quotient sheaves F/InF are constructible. By Lemma 4.6.4, F is already derived
complete. It remains to show that F ⊗L

RR/IR has constructible cohomology sheaves
and is of finite tor dimension. Note that the claim about the finite tor dimension is
trivial as R is a regular local ring and has therefore finite global dimension, see [17,
Theorem 4.4.6].
For the constructibility of H i(F⊗L

RR/IR) we use induction on the number of generators
of I. If I = (a) for a non-zero devisor a ∈ R, then one can compute, using the Koszul
resolution for R/(a), that

F ⊗L
RR/IR= 0→F ·a−→F → 0. (4.7)

In particular, H0(F ⊗L
RR/IR) = F/aF and H1(F ⊗L

RR/IR) = ker(F ·a−→ F) =: F [a].
By the argumentation of Proposition 4.6.9, both cohomology sheaves are constructible
and we are done.
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Now assume I = (a1, . . . ,an) for an n≥ 2. Define R′ :=R/(a1) and denote by I ′ ⊂R the
ideal generated by (a2, . . . ,an) in R′. The usual rules for computation with the derived
tensor product imply

F ⊗L
RR/IR

∼=
(
F ⊗L

RR/(a1)
)
⊗L
R′ R′/I ′.

The complex C∗ := F ⊗L
RR/(a1) looks similar to Eq. (4.7). We can compute the trun-

cations

τ≤−1C∗ = 0→F [a1]→ 0→ 0 and τ≥0C∗ = 0→ 0→F/a1F → 0

By Corollary 4.4.8, both F [a1] and F/a1F are I-adic sheaves and, in particular, they
are I ′-adic sheaves of R′-modules. We have a canonical exact triangle

τ≤−1C∗→ C∗→ τ≥0C∗→ τ≤−1C∗[−1].

The induction hypothesis shows that (τ≤−1C∗)⊗L
R′ R′/I ′ and (τ≥0C∗)⊗L

R′ R′/I ′ have
constructible cohomology sheaves. Apply the derived functor (−)⊗L

R′ R′/I ′ to the
above exact triangle and consider the associated long exact sequence of cohomology
sheaves. As the constructible sheaves on Xproet form a weak Serre subcategory by Corol-
lary 4.3.10, the cohomology sheaves of C∗⊗L

R′ R′/I ′ ∼= F ⊗L
RR/IR are constructible.

This completes the proof.

4.7 Two Versions of a Pro-étale Site

4.7.1 The Pro-étale Site by B. Bhatt and P. Scholze

The goal of this section is to give a construction of the pro-étale site introduced in the
paper [2] of B. Bhatt and P. Scholze. Their construction satisfies all desired axioms,
thereby justifying that the theory presented above is valid. Indeed, a concrete descrip-
tion offers advantages over the axiomatic viewpoint. For instance, certain statements in
the mentioned paper heavily rely on the explicit construction and may not be general-
ized to our setting. After giving the construction, we will state some of the properties,
the pro-étale topology of Bhatt and Scholze fulfills and which may not generalize to the
setting given in Section 4.3. First the notion of weakly étale morphisms is introduced.
We also refer to the respective section on pro-étale cohomology in the Stacks Project
[15, Tag 0965].

Definition 4.7.1. A morphism of rings A→B is called weakly étale if it is flat and if
the morphism B⊗AB→B is flat.
Analougusly, a morphism of schemes X→ Y is weakly étale if X→ Y and X→X×Y X
are flat.
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Lemma 4.7.2. The composition of two weakly étale maps is again weakly étale. Fur-
ther, the class of weakly étale morphisms is stable under base change. That is, if X→ Y
is a weakly étale morphism and Y ′→ Y is a morphism of schemes, then the base change
map X×Y Y ′→ Y ′ is weakly étale. Moreover, if f :X→ Y fits in a commutative triangle

X Y

Z

f

g h

where g and h are weakly étale then f is already weakly étale.

Proof. [2, Lemma 4.1.6] and [2, Lemma 4.1.7]

Definition 4.7.3. Let X be a scheme. Define Xproet as the category of weakly étale
morphisms over X. A family (fi : Yi→ Y )i∈I of weakly étale morphisms is defined to
be a covering if it is a covering in the fpqc topology, i.e. for every affine open U ⊂ Y
there is a map α : {1, . . . ,n}→ I and affine opens Vj ⊂ Tα(j) such that U =

⋃n
i=1 fα(i)(Vi).

That these coverings form a topology on Xproet can be found in [2, §4.1].

It is not part of this thesis to go into deep calculations with this particular defini-
tion. Nevertheless, we want to provide references to demonstrate that the pro-étale
site fulfilles all the desired axioms. We will also explain the parts that are not directly
accessible in the literature. For this section fix a scheme X.

Lemma 4.7.4. The pro-étale topology on a scheme X is finer than the étale topology.
That is, any étale covering is also a pro-étale covering.

Proof. [15, Tag 098B]

Definition 4.7.5. An object U ∈ Xproet is called pro-étale affine if there is a small
cofiltered diagram (Ui)i∈I of affine étale schemes over X such that U = limiUi. The full
subcategory of Xproet spanned by pro-étale affines is denoted Xaff

proet.

Lemma 4.7.6. The topos Sh(Xproet) is generated by Xaff
proet. That means that any

Y ∈Xproet can be covered by elements in Xaff
proet.

Proof. [2, Lemma 4.2.4]

Lemma 4.7.7. If X is an affine scheme, then Xaff
proet is simply the category of all affine

schemes which are pro-étale over X.

Proof. [2, Remark 4.2.5]

Lemma 4.7.8. Assume X is affine and i : Z ↪→ X is a closed immersion. Then the
functor

i−1 :Xaff
proet −→ Zaff

proet

Y 7−→ Y ×X Z
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has a fully faithful left adjoint V 7→ Ṽ . Moreover, for any weakly contractible V ∈Zaff
proet

and any sheaf F ∈ Sh(Xproet) one has

i∗F (V ) = F (Ṽ ).

Proof. [2, Lemma 6.1.1] and [2, Lemma 6.1.3].

Definition 4.7.9. Any étale morphism is weakly étale and any étale covering is a
pro-étale covering. Hence, the inclusion Xet ↪→ Xproet defines a morphism of sites
ε :Xproet→Xet. It is obvious that ε defines a natural transformation (−)proet→ (−)et.

Lemma 4.7.10. Let i :Z→X be a closed immersion with quasi-compact open comple-
ment U . Then i∗ preserves surjections. Moreover, if V ∈Xproet is weakly contractible
then V0 := V ×X Z is weakly contractible.

Proof. Assume φ : F → G is a surjective map of sheaves on Zproet. Let Y ∈ Xproet
and g ∈ i∗G(Y ). Define Y0 := Y ×X Z and Y |U := Y ×X U . Then there exists a
cover (W → Y0) by weakly contractible objects such that g|W is in the image of φ.
The quasi-compactness of U implies that W̃ t Y |U → Y is a cover11 of Y such that
G(Y |U ) = F (Y |U ) = {∗} and g|W̃ is in the image of i∗φ(W̃ ). This trivially implies that
i∗F → i∗G is surjective. The second claim follows from the first by a straightforward
calculation.

The main focus of this section lies on the following theorem, using several properties
of Section 4.4.

Theorem 4.7.11. The pro-étale topology from Definition 4.7.3 is a pro-étale enlarge-
ment for E = Sch. In particular, the pro-étale site fulfilles all axioms from Defini-
tion 4.3.1.

Proof. For most of the statements we will give references. However, Axiom 4 is not
readily available in [2], so we will give some ideas for this particular axiom.

In Xproet any object can be covered by affine weakly contractible objects, so Axiom 1
is true. This fact can be found in [15, Tag 0F4P]. Axiom 2 is the statement of [15, Tag
099V].

For any étale morphism U→X, we have Xproet/U =Uproet by definition. So Axiom 3
is trivially fulfilled.

To prove Axiom 4 we will use the ideas from [2, Section 6.1]. Let i : Z ↪→ X be a
closed immersion with quasi-compact open complement j :U ↪→X. Assume G is a sheaf
of sets on Xproet such that G×hU

∼=−→ hU is an isomorphism. We have to show that
G ∼= i∗i

∗G. As this can be checked locally, we pick a weakly contractible V ∈ Xaff
proet.

Define V0 := V ×X Z ∈ Zaff
proet and V |U := V ×X U ∈ Xaff

proet. Note that Lemma 4.7.10
implies that V0 is a weakly contractible affine object in Zproet. As U is quasi-compact,
11The quasi-compactness ensures that the cover is a cover in the fpqc topology.
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we deduce that V |U is quasi-compact and hence it is true that Ṽ0tV |U → V is a cover
of V . We can finally compute

i∗i
∗G(V ) = i∗G(V0) =G(Ṽ0).

As V |U factorizes over U , we can use the equality G×hU
∼=−→ hU to show G(V |U ) = {∗}

and G(V |U ×X Ṽ0) = {∗}. The sheaf property applied to the cover Ṽ0tV |U → V implies
that G(V )∼=G(Ṽ0)∼= i∗i

∗G(V ), which proves i∗i∗G∼=G.
Conversely assume i∗i∗G ∼= G, then for any object V ∈ Xproet, which factorizes over
U , we have i∗i∗G(V )∼= i∗G(V ×X Z) = i∗G(∅) = {∗}. This means, G×hU

∼=−→ hU is an
isomorphism.

Finally, Axiom 5 can be found in [2, Corollary 6.1.5]. For instance, the state-
ment without additional assumptions on the closed immersion i can be referenced in
[15, Tag 09BL].

Facts 4.7.12. Here is a list of some facts which are true in the pro-étale topology of
B. Bhatt and P. Scholze and which might not generalize to our setting.

• The site Xproet is subcanonical.

• For any Y ∈ Sh(Xproet) we have Sh(Yproet) ∼= Sh(Xproet)/Y . This is indeed an
improvement to Axiom 3. In our definition, this is only demanded for open
immersions U ↪→X.

• Being classical can be checked on a pro-étale cover (Xi → X)i∈I . That is, an
F ∈ Sh(Xproet) is the pullback of an étale sheaf if and only if F |Xi is the pullback
of an étale sheaf for all i ∈ I.

• If f : Y → X is a quasi-compact and quasi-separated map of schemes and F ∈
Sh(Yet), then the canonical morphism

ε∗fet∗F → fproet∗ε
∗F

is an isomorphism. Our theory gives this result only for a closed immersion with
quasi-compact complement, see Lemma 4.3.11.

• The pushforward f∗ for a finitely presented and finite morphism of schemes
f : Y →X is exact.

4.7.2 The Pro-étale Site by M. Kerz
In this short section we want to indicate that there is another possibility to define a
site which fulfills all the axioms from Section 4.3. We only give a rough idea and sketch
the construction. We completely omit the proofs.

Definition 4.7.13 (pro-categories). Let C be a category. Then we define the pro-
category pro-C associated to C as follows
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Objects are functors I →C, where I is a small cofiltered category.

Morphisms are given by Morpro-C(F,G) := limjcolimiMorC(F (i),G(j)).

Definition 4.7.14. Let λ be a ordinal and C a category. A functor F : λopp → C is
called λ-tower if for any limit ordinal µ < λ the limit

F<µ := limi<µFi

exists and the canonical morphism Fµ→ F<µ is an isomorphism.

Definition 4.7.15. The transfinite topology on pro-C is the coarsest topology on pro-C
such that

1. The canonical functor C → pro-C is continuous.

2. Assume (Fi)i<λ is a tower in pro-C such that the maps Fi+1 → Fi are covering
morphisms. Then the canonical morphism limi<λFi→ F0 is a covering morphism.

Definition 4.7.16. Let X be a quasi-compact and separated scheme. Note that the
site Xet is then admissible. Define Xproet as the site given by pro-Xet together with the
transfinite topology. The morphism of sites ε : Xproet→Xet comes from the canonical
functor Xet→ pro-Xet, which sends an étale scheme U over X to the functor {∗}→Xet
where ∗ 7→ U .

Theorem 4.7.17. Definition 4.7.16 defines a pro-étale enlargement for the category E
of quasi-compact and separated schemes.

Proof. The functoriality results follow immediately from the definitions. They are left
as an exercise. Axiom 1 and Axiom 2 are covered by [12, Theorem 4.2] and [12, Propo-
sition 6.6], respectively. Note that the notion of weakly contractible objects in the sense
of [12] agrees with our definition by the observations in Remark 4.2.26.
For Axiom 3 consider an étale scheme U overX. We will also write U for ε−1(U) ∈Xproet.
By definition we have

Morpro-Xet(F,U) = colimjMorXet(F (i),U).

In particular, a morphism φ : F → U in the category pro-Xet is the same as a functor
φ : I→Uet such that F is the composition I φ−→Uet→Xet. Hence, pro-Uet and pro-Xet/U
are canonically isomorphic.
Axiom 4 for a closed immersion i : Z ↪→ X works similarly as the respective part in
Theorem 4.7.11. If X if affine, [12, Lemma 10.5] gives a concrete left adjoint ipre

[ to the
functor

(−)×X Z :Xproet→ Zproet

Lukas Krinner Master’s Thesis
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Moreover, the presheaf pullback i• is given by the formula,

i•F (V ) = F (ipre
[ V ).

The proof of [15, Tag 09BL] shows that for a weakly contractible object V we have
i∗F (V ) = i•F (V ). We can use the strategy of Theorem 4.7.11 to prove the claim.
Finally, Axiom 5 is covered by [12, Section 10].
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