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1 Introduction

Rigidity phenomena appear in many places in geometric topology. They generally state that the type of
some geometric structure possible on a manifold is heavily determined only by its topology. One such
phenomenon is Mostow rigidity [Mos68: Theorem 12.1, Corollary 12.3] which implies in particular that
a closed smooth manifold of dimension at least 3 admits at most one structure of a hyperbolic manifold
and that this structure, if it exists, is already completely determined by the fundamental group:

Theorem (Mostow rigidity). Let M and N be closed hyperbolic manifolds of dimension at least 3.
If there exists an isomorphism π1(M) → π1(N), it is induced by a unique isometry M → N .

After observing that hyperbolic manifolds are Eilenberg-MacLane spaces of type K(G, 1), it follows
from Mostow rigidity that the isometry group of a hyperbolic manifold is isomorphic to its group of
self-homotopy equivalences. Since the isometry group of a closed hyperbolic manifold is always finite,
we obtain the following corollary:

Corollary 4.13. A closed hyperbolic manifold of dimension at least 3 has finite group of self-homotopy
equivalences.

In this essay we will approach this statement from a different direction without using Mostow rigidity.
The path to avoiding it is to notice that since a hyperbolic manifold is an Eilenberg-MacLane space,
its group of self-homotopy equivalences is also isomorphic to the outer automorphism group of its
fundamental group. Since we know that the fundamental groups of hyperbolic manifolds are precisely the
discrete subgroups of Isom(Hn) that act freely and properly discontinuously on Hn (see Theorem 4.7),
we have now turned our original topological question into a question about outer automorphism groups
of certain groups acting on Hn. It turns out that it is fruitful to consider a somewhat larger class of
groups encompassing any group acting cocompactly and properly discontinuously on a proper hyperbolic
metric space – i.e. hyperbolic groups in the sense of Gromov [Gro87].
Their key property for us is that they also exhibit a rigidity phenomenon – namely, mostly having finite
outer automorphism group:

Corollary 3.3. A hyperbolic group has finite outer automorphism group unless it splits over a virtually
cyclic subgroup.

Proving this involves two steps: By work of Bestvina, Feighn [BF95] on the Rips machine, hyperbolic
groups acting on R-trees with virtually cyclic arc stabilizers and no global fixed points split over a
virtually cyclic subgroup (see Theorem 3.2). We will not explore this part further. Instead, we focus on
the other half of the required argument which is encapsulated by Paulin’s Theorem [Pau91]:

Theorem 3.1. Let Γ be a hyperbolic group. If the outer automorphism group Out(Γ) is infinite, Γ acts
on an R-tree with virtually cyclic arc stabilizers and no global fixed points.

The central point in the proof we give for this is the idea of degenerating a sequence of actions on
hyperbolic spaces to an action on an R-tree: An infinite sequence of outer automorphisms of Γ induces
a sequence of actions of Γ on its Cayley graph. In a suitable limit, these will converge to the desired
action on an R-tree.
The structure of this essay is now as follows: We develop the required background in an introductory
chapter beginning with hyperbolic metric spaces. We define hyperbolicity for an arbitrary metric space,
discuss that it is a quasi-isometry invariant on geodesic spaces and establish the connection between
0-hyperbolic spaces and R-trees. We then turn to hyperbolic groups, where we are primarily interested
in ideas pertinent to their subgroups. We study the notion of quasi-convex subgroups which allows us



to show that centralizers in hyperbolic groups are small leading to a proof that no hyperbolic group
contains Z2.
The second chapter is dedicated to Paulin’s Theorem: We give the statement and some immediate
consequences and then dive into the proof as indicated above. This is divided into two parts: We first
develop the necessary notion of convergence by associating to a Γ-space a pseudometric on Γ and prove
a criterion for when sequences converge to R-trees. After that we specialize to a sequence of Γ-actions
on its Cayley graph and carefully analyse the arc stabilizers to complete the argument.
In the last chapter we bring these ideas together with hyperbolic manifolds. We first construct the
pointed and unpointed group of self-homotopy equivalences of a topological space and study how they
relate to each other and the fundamental group. We then calculate them for Eilenberg-MacLane spaces
and use the argument indicated in the beginning to prove Corollary 4.13.
To give ourselves the space to properly explore the results of the later chapters, our path through the
first chapter will be quite stringent and we will not take the time to discover these very interesting areas
more than we need to for proving Paulin’s Theorem.
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2 General preparations

In this first chapter we set up some basic definitions needed later as stated in [Bes02: Section 2]. In this
we generally follow the development of [BH99: Chapters III.H, III.Γ] with some adjustments.
Before we start properly, we establish some basic conventions and notations that do not warrant a
dedicated introduction later:
Let X be a metric space. For a subset A ⊆ X we denote by Nδ(A) := {x ∈ X | ∃a ∈ A : d(x, a) ≤ δ}
its closed δ-neighbourhood. The diameter of A is diam(A) := sup{d(a, b) | a, b ∈ A} where we take the
diameter of the empty set to be 0.
For a group G and elements g, h ∈ G we write [g, h] := ghg−1h−1 for their commutator. We denote
by Z(G) := {g ∈ G | ∀h ∈ G : [g, h] = e} the centre of G and by CG(g) := {h ∈ G | [g, h] = e} the
centralizer of g in G. For a generating set S of G we denote by CayS(G) the corresponding Cayley
graph.
If a group acts on a metric space it is assumed that this action is by isometries, in particular, G-space
always refers to a metric space with a G-action by isometries.

2.1 Hyperbolic metric spaces

We now properly begin by developing a notion of hyperbolicity for general metric spaces. We want to
view groups acting on such hyperbolic metric spaces as a generalization of groups acting on the standard
hyperbolic space Hn. Since we consider discrete groups, we need to capture large scale geometric
properties of Hn and translate them to the realm of metric spaces. To get an idea of how this can be
achieved, we look to the 2-dimensional case:

Here there are three possible geometries, distinguished by the appearance of their triangles (or really any
polygon): In the usual uncurved Euclidean geometry the triangles look as we expect, in the positively
curved elliptic geometry they look thicker and in the hyperbolic geometry they look thinner. Our goal is
now to capture this intuitive idea precisely. We begin by defining which triangles we want to consider:

Definition. Let X be a metric space and x, y ∈ X. A geodesic from x to y is an isometric embedding
γ : [a, b] → X with γ(a) = x and γ(b) = y. A geodesic segment [x, y] between x and y is the image of
such a geodesic1.
The metric space X is geodesic if there exists a geodesic between any two points in X.
A geodesic triangle spanned by x, y, z ∈ X consists of geodesic segments [x, y], [x, z], [y, z].

There are three different ways to capture the concept of thinness of triangles in a geodesic metric space.
We establish them in the following construction. Eventually, it will conspire that they lead to equivalent
notions.

1Some care is needed when using the notation [x, y], as it might make the geodesic segment appear unique.
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Construction 2.1. Let X be a geodesic metric space and ∆ be a geodesic triangle in X spanned by
x, y, z ∈ X

– slim triangles:
The geodesic triangle ∆ is δ-slim if [a, b] ⊆ Nδ([a, c]∪ [c, b]) for all permutations (a, b, c) of (x, y, z).

– thin triangles:
The Gromov product of y, z with respect to x is

(y · z)x :=
1

2

(
d(x, y) + d(x, z)− d(y, z)

)
This is defined precisely such that

d(x, y) = (y · z)x + (x · z)y d(x, z) = (y · z)x + (x · y)z d(y, z) = (x · z)y + (x · y)z

The associated tripod T∆ of ∆ is the metric space obtained by wedging intervals of length
(y · z)x, (x · z)y and (x · y)z. These equalities therefore imply that there is a map

χ∆ : [x, y] ∪ [x, z] ∪ [y, z] → T∆

that restricts to an isometry on [x, y], [x, z] and [y, z]. The geodesic triangle ∆ is δ-thin if for all
t ∈ T∆ the diameter of χ−1

∆ (t) is at most δ.

x y

z

ix
iy

iz

χ∆

(y · z)x (x · z)y

(x · y)z
x y

z

o∆

– insize of triangles:
There is precisely one point o∆ ∈ T∆ whose preimage χ−1

∆ (o∆) contains a point on all three sides
of the triangle, i.e. χ−1

∆ (o∆) = {ix, iy, iz} with ix ∈ [y, z], iy ∈ [x, z], iz ∈ [x, y]. The i’s are the
internal points of ∆. The insize of ∆ is the diameter of χ−1

∆ (o∆).
With this terminology in place, we can now capture our intuitive idea of the sides of a triangle being
thin in three ways by requiring that for a fixed δ ≥ 0 all geodesic triangles in X are δ-thin, or δ-slim or
have insize at most δ.

δ

x y

z

δ-slim

≤δ

x y

z

ix
iy

iz

δ-thin

≤δ

x y

z

ix
iy

iz

insize ≤ δ

There is a further way of capturing negative curvature in a metric space. It is a bit more abstract, but
more general, since it applies even when the space is not geodesic. Hence, we will use it as our definition:

Definition. Let δ ≥ 0. A metric space X is δ-hyperbolic if for all w, x, y, z ∈ X

(x · y)w ≥ min{(x · z)w, (y · z)w} − δ

We say X is hyperbolic if X is δ-hyperbolic for some δ ≥ 0.
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The geometry behind this harder to intuit. If we assume that the minimum on the right is (x · z)w it
means that the signed distance l = (x · z)w − (x · y)w in the figure below is at most δ.

l

x

y

z w

ixiy

iw

i′x

i′w i′z

Thankfully, we do not have to work much with this abstract definition since we mostly care about
geodesic spaces. In these the following proposition allows us to consider the much more concrete notions
from Construction 2.1:

Proposition 2.2. Let X be a metric space. The following are equivalent:
(1) There exists a δ ≥ 0 such that X is δ-hyperbolic.
(2) There exists a δ ≥ 0 such that X for all w, x, y, z ∈ X

d(x, y) + d(w, z) ≤ max{d(x, z) + d(w, y), d(y, z) + d(w, x)}+ 2δ

If X is geodesic, the following are also equivalent to the above:
(3) There exists a δ ≥ 0 such that all geodesic triangles in X are δ-slim.
(4) There exists a δ ≥ 0 such that all geodesic triangles in X are δ-thin.
(5) There exists a δ ≥ 0 such that all geodesic triangles in X have insize at most δ.

These δ’s depend on each other up to constant multiple and not on the metric space. In particular, if
one of the δ’s can be chosen to be 0, the others can be too.

Proof. The condition in (2) is obtained from the definition of hyperbolicity by multiplying both sides by
−2 and adding d(w, x) + d(w, y) + d(w, z). Hence, (1) and (2) are equivalent.
Since (1) and (2) can only easily be related to internal points, we show that they are equivalent to (5):
Assume (5) holds and let w, x, y, z ∈ X. Wlog min{(x · z)w, (y · z)w} = (x · z)w and we need to show

(x · y)w ≥ (x · z)w − δ

This is clear if d(w, iy) = (x · y)w ≥ (x · z)w = d(w, i′z), so assume this does not hold. Consider geodesic
triangles ∆ spanned by x,w, z and ∆′ spanned by x,w, y with interior points ix, iw, iz and i′x, i

′
w, i

′
y as

in the figure above. Then

d(y, z) = d(y, ix) + d(ix, iy) + d(iy, i
′
z) + d(i′z, i

′
w) + d(i′w, z)

triangle inequality
↓
≤ d(y, ix) + d(iy, i

′
z) + d(i′w, z) + 2δ

=
↑

d(w, iy) < d(w, i′z)

d(y, ix) +
(
d(x, iy) + d(w, i′z)− d(x,w)

)
+ d(i′w, z) + 2δ = d(x, y)− d(x,w) + d(w, z) + 2δ

Adding d(x,w) + d(w, y)− d(y, z)− d(x, y) to both sides and dividing by −2 shows the claim.
Now assume (2) holds. Let ∆ be a geodesic triangle spanned by x, y, z ∈ X. Let ix ∈ [y, z], iy ∈ [x, z],
iz ∈ [x, y] be its internal points and P := d(x, y) + d(y, z) + d(z, x) its perimeter. Observe that by
construction of the internal points and the triangle inequality

d(z, ix) + d(x, y) = d(y, ix) + d(x, z) = d(x, iz) + d(y, z) =
P

2

d(x, ix) + d(y, z) =
1

2

(
d(x, ix) + d(ix, z)︸ ︷︷ ︸

≥d(x,z)

+ d(x, ix) + d(ix, y)︸ ︷︷ ︸
≥d(x,y)

+d(y, z)

)
≥ P

2
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Applying (2) to x, ix, y, z therefore yields that

d(x, iz) + d(y, z) ≤ d(x, ix) + d(y, z) ≤ P

2
+ 2δ = d(x, iz) + d(y, z) + 2δ

and thereby 0 ≤ d(x, ix) − d(x, iz) ≤ 2δ. Analogously, 0 ≤ d(z, iz) − d(z, ix) ≤ 2δ. Therefore by the
triangle inequality

d(x, ix) + d(z, iz) ≤ d(z, ix) + d(x, iz) + 4δ = d(x, z) + 4δ

Then by (2) applied to ix, iz, x, z

d(ix, iz) + d(x, z) ≤ max{
=d(x,z)︷ ︸︸ ︷

(ix, z) + d(x, iz),

≤d(x,z)+4δ︷ ︸︸ ︷
d(iz, z) + d(x, ix)}+ 2δ ≤ d(x, z) + 6δ

implying d(ix, iz) ≤ 6δ. Analogous arguments show that the insize of ∆ is at most 6δ.
The equivalence of (3)-(5) is a much nicer geometric argument:
Clearly, (4) implies (3). To show that (3) implies (5) consider again the geodesic triangle ∆. By
assumption ix ∈ Nδ([x, y]) or ix ∈ Nδ([x, z]). Suppose d(ix, p) ≤ δ for some p ∈ [x, y]. Then

d(iz, p)

[x, y] geodesic
↓
= |d(y, p)− d(y, iz)|

construction of internal points
↓
= |d(y, p)− d(y, ix)|

triangle inequality
↓
≤ d(p, ix) ≤ δ

and therefore by the triangle inequality d(ix, iz) ≤ 2δ. Taking into account the case ix ∈ Nδ([x, z]), we
have shown that d(ix, {iy, iz}) ≤ 2δ. Since the same inequality holds for any permutation of x, y and z,
it follows that the insize of ∆ is at most 4δ.
To see that (5) implies (4) consider again ∆ as above. Let t ∈ T∆. We claim diamχ−1

∆ (t) ≤ δ: This is
by assumption if t = o∆, so assume wlog t ̸= o∆ is on the interval connecting o∆ and x in T∆. Then
χ−1
∆ (t) = {p, q} with p ∈ [x, y] between x and iz and q ∈ [x, z] between x and iy. Consider an isometry
f : [0, c] → [x, y]. For h ∈ [0, C] let ∆h be a geodesic triangle with two sides [x, z] and f([0, h]). The
internal point ih ∈ f([0, h]) varies continuously along [x, y] as it can be defined by the Gromov product.
Since i0 = x and ic = iz, it follows from the Intermediate Value Theorem that there exists h ∈ [0, c]
such that ih = p. Then q is also an internal point of ∆h and the claim follows. ■

Having now developed the definition of hyperbolicity in metric spaces, we can give some (non-)examples:

Examples 2.3.
– The hyperbolic plane H2 is hyperbolic: A geodesic triangle ∆ in H2 is δ-slim where δ is the radius

of the largest semicircle within ∆. The area of such a semicircle is bounded above by the area of
∆ which is less than π. Hence, δ is less than the radius of a semicircle with area π in H2.
One can more generally show that the hyperbolic space Hn is indeed hyperbolic.

– Metric spaces of finite diameter δ – in particular, finite and compact spaces – are δ-hyperbolic.
– If a metric space X is a tree (i.e. it can be given the structure of a 1-dimensional CW-complex

and two points in its 0-skeleton are connected by a unique arc), geodesic triangles are tripods.
Hence, X is 0-hyperbolic.

– The last example in particular yields that R is hyperbolic. In contrast, Rn is not hyperbolic for
n ≥ 2 since an equilateral triangle of side length a has insize a/2.

Hyperbolicity in geodesic metric spaces has a further advantage, namely that it is a quasi-isometry
invariant:

Theorem 2.4 ([BH99: Theorem 1.9]). Let X,Y be geodesic metric spaces that are quasi-isometric.
Then X is hyperbolic if and only if Y is.
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Sketch of a proof. We will not give a full proof since this would require developing the notions of
quasi-geodesics and Hausdorff-distance between subsets of a metric space. But due to the importance of
the theorem, we still want to sketch the required argument:
The key insight is the Morse Lemma which gives that in a hyperbolic metric space, quasi-geodesics are
Hausdorff-close to actual geodesics. This implies that all geodesic triangles in a geodesic metric space X
are thin if and only if all quasi-geodesic triangles in X are thin in a suitable sense. As a quasi-isometry
maps quasi-geodesic triangles to quasi-geodesic triangles, the claim follows. ■

As indicated hyperbolicity is not a quasi-isometry invariant when it comes to arbitrary metric spaces:

Example 2.5. The map f : R → R2 with f(t) := (t, |t|) is a (
√
2, 0)-quasi-isometric embedding and R is

0-hyperbolic. But its image endowed with the subspace metric is not hyperbolic by a direct calculation.

The following proposition allows us to replace a metric space with a nicer – say, geodesic – metric space
in some situations:

Proposition 2.6. Let f : X → Y be an isometric embedding of metric spaces.
(1) If Y is δ-hyperbolic, then X also is δ-hyperbolic.
(2) If f is quasi-surjective and X is hyperbolic, then Y also is hyperbolic.

Proof. (1) follows directly from the definition. For (2) letK ≥ 0 such that for all y ∈ Y there exists x ∈ X
with dY (y, f(x)) ≤ K and suppose X is δ-hyperbolic. Let w, x, y, z ∈ Y . There exist w′, x′, y′, z′ ∈ Y
such that dY (w, f(w

′)), dY (x, f(x
′)), dY (y, f(y

′)) and dY (z, f(z
′)) are it most K. Then by the triangle

inequality

(y · z)x ≥ 1

2

(
(dX(x′, y′)− 2K) + (dX(x, z)− 2K)− (dX(y, z) + 2K)

)
= (y′ · z′)x′ − 3K

Hence,

(x · y)w ≥ (x′ · y′)w′ − 3K ≥ min{(x′ · z′)w′ , (y′ · z′)w′} − δ − 3K ≥ min{(x · z)w, (y · z)w} − δ − 6K

and Y is (δ + 6K)-hyperbolic. ■

In our later discussion of hyperbolic groups, we will need the following lemma on geodesics:

Lemma 2.7. Let X be a metric space with a δ-slim geodesic triangle ∆ spanned by x, y, z ∈ X. Let
γ : [0, l] → X, γ′ : [0, l′] → X be the geodesics in ∆ with x = γ(0) = γ′(0). Then d(γ(t), γ′(t)) ≤ 2δ+d(y, z)
for t ∈ [0,max{l, l′}] where we set γ(t) := γ(l) for t ≥ l and analogously for γ′.

Proof. By δ-slimness of triangles we only need to consider the following cases:

Case 1: There exists t′ ∈ [0, l′] such that d(γ(t), γ′(t′)) ≤ δ.
Then

|t′ − t|
γ′ geodesic

↓
= |d(γ′(0), γ′(t′))− d(γ′(0), γ′(t))| = |d(γ′(0), γ′(t′))− d(γ(0), γ(t))|

triangle inequality
↓
≤ d(γ(t′), γ(t)) ≤ δ

so d(γ′(t′), γ′(t)) ≤ δ. By the triangle inequality d(γ(t), γ(t′)) ≤ 2δ.

Case 2: There exists t′ ∈ [0, l] such that d(γ′(t), γ(t′)) ≤ δ.
Analogous to Case 1 with γ and γ′ switched.

Case 3: There exist p, q ∈ [γ(l), γ′(l′)] such that d(γ(t), p), d(γ′(t), q) ≤ δ
Then clearly by the triangle inequality

d(γ(t), γ′(t)) ≤ d(γ(t), p) + d(p, q) + d(γ′(t), q) ≤ 2δ + d(γ(l), γ(l′)) ■
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We now turn our attention to 0-hyperbolic spaces. We have seen that trees are examples for such
spaces. It was somewhat arbitrary in that example to require the metric space to allow the structure of
a CW-complex, and we therefore generalize this notion to arbitrary geodesic metric spaces:

Definition. Let X be a metric space and x, y ∈ X. An arc between x and y is the image of a topological
embedding γ : [a, b] → X with γ(a) = x and γ(b) = y. The arc is degenerate if it is a point.
An R-tree is a geodesic metric space X such that for all x, y ∈ X there is a unique arc between x and y.

The following example of an R-tree shows that this notion is indeed more general than the graph-theoretic
definition of a tree:

Example 2.8. Consider the set X = R2 with the metric

d : X ×X → R2

(
(x1, x2), (y1, y2)

)
7→

{
|x2|+ |y2| − |x1 − y1|, if x1 ̸= y1

|x2 − y2|, if x1 = y1

Intuitively, this may be understood as a generalization of the French railway metric with trains now
operating along the x-axis and all vertical lines2. By direct calculation, this makes X an R-tree. But X
is not a graph-theoretic tree since in any such tree the set of all points whose complement has at least 3
components is a subset of the vertex set and in particular discrete – whereas in X this set is the x-axis.

Our interest in R-trees stems from their close relation with 0-hyperbolic metric spaces. Essentially, the
only obstruction for a 0-hyperbolic metric space to be an R-tree is connectedness and one can turn any
0-hyperbolic metric space into an R-tree in a unique way by connecting up the components:

Proposition 2.9 (Connecting-the-dots Proposition). Let X be a 0-hyperbolic metric space. Then
there exists an R-tree T and an isometric embedding i : X → T such that

– no proper sub-R-tree of T contains i(X) and
– if j : X → T ′ is an isometric embedding of X into an R-tree T ′, there is a unique isometric
embedding k : T → T ′ such that k ◦ i = j.

In particular, T is unique up to isometry. If a group acts on X, the action extends to T .

Proof. The claim is clear if X = ∅, hence we may choose ∗ ∈ X. If such a T exists, it must be the
union of the geodesic from ∗ to the points of i(X). Therefore,

Y :=
⊔
x∈X

{(x, h) | h ∈ [0, d(∗, x)]}︸ ︷︷ ︸
=:Ix

surjects onto T . This motivates the idea of defining T as a quotient of Y :
Consider the equivalence relation on Y generated by (x, h) ∼ (y, h) for x, y ∈ X and h ∈ [0, (x · y)∗] and
set T := Y/∼. To equip T with a metric, consider Y with the extended metric

d̂ : Y × Y → R≥0 ∪ {∞}(
(x, h), (y, t)

)
7→

{
|h− t|, if x = y

∞, else

and consider the usual quotient metric d on T (see [BH99: Definitions 5.19, 5.23]).

2Note that the French railway metric itself also defines an R-tree – but that one is in fact a graph-theoretic tree.
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Since every point in Y has finite distance to only a compact set of points and every point in Y has finite
distance to a point in the equivalence class [∗, 0], this is indeed a well-defined metric and the quotient
topology on T aligns with the topology induced by d. More precisely, for [x, h], [y, t] ∈ T

d
(
[x, h], [y, t]

)
= inf

m∈T

{
d̂((x, h), (z, s)) + d̂((z′, s′), (y, t))

∣∣∣ [z, s], [z, s′] ∈ m
}
= min
s∈[0,(x·y)∗]

{|h− s|+ |t− s|}

and the quotient map Y → T restricts to an isometric embedding on each Ix. It now follows from
the Intermediate Value Theorem that the unique arc between [x, h], [y, t] ∈ T is the image under the
quotient map of {

(x, h′)
∣∣ h′ between h and s

}
∪
{
(y, t′)

∣∣ t′ between t and s}
where s ∈ [0, (x · y)∗] attains the minimum above. To see that this is a geodesic, observe that we can
always take s ∈ {h, t, (x · y∗)}. In the first two cases, it is already a geodesic in Y , in the last case, it
is the union of two geodesics in Y that are glued together correctly by the definition of the Gromov
product. Hence, T is an R-tree. The two further claims of the proposition follow directly from the
observation that T is the union of the geodesics in T between ∗ and i(x) for x ∈ X.
The “in particular” statement follows in the usual manner when defining a space via a universal property.
A group action on X induces a group action on Y that is compatible with ∼ since the Gromov product
on X is invariant under the action, and thereby descends to a group action on T . It follows from the
last equation that this action is compatible with d for the same reason. ■

This proposition gives us the following previously alluded – and surprisingly tricky – corollary:

Corollary 2.10. A metric space X is an R-tree if and only if it is path-connected and 0-hyperbolic. In
particular, path-connected subspaces of R-trees are R-trees.
Proof. Let X be a path-connected 0-hyperbolic metric space. By the Connecting-the-dots Proposition 2.9
there exists an R-tree T and an isometric embedding i : X → T such that no proper sub-R-tree
of T contains i(X). Suppose i : X → T is not surjective, i.e. there exists p ∈ T \ i(X). Since
i(X) is path-connected, there exists a path-component T ′ of T \ {p} such that i(X) ⊆ T ′. By the
Hahn–Mazurkiewicz Theorem (see [Wil70: Section 31]) T ′ is arc-connected, and therefore a proper
sub-R-tree of T . Contradiction! Hence, i is an isometry and X and R-tree.
Now suppose X is an R-tree. Then X is in particular path-connected. Let ∆ be a geodesic triangle
spanned by x, y, z ∈ X. By compactness, we can consider px ∈ [x, y] ∩ [x, z] with d(x, px) maximal.
We analogously define py, pz. Considering only the part of ∆ between the p’s gives a geodesic triangle
spanned by px, py, pz whose sides do not intersect except in the vertices. Since a pair of points in X is
connected by a unique arc, it follows that px = py = pz ∈ [x, y] ∩ [x, z] ∩ [y, z]. Hence, the p’s are the
internal points of ∆ which therefore has insize 0 and X is 0-hyperbolic by Proposition 2.2. ■

We will need one further technical construction:

Definition. Let X be a set. A pseudometric on X is a map d : X ×X → R≥0 such that
– d(x, x) = 0 for all x ∈ X
– d(x, y) = d(y, x) for all x, y ∈ X
– d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A pseudometric is trivial if it is identically 0.
The pseudometric descends to a metric on X/∼ where ∼ is the equivalence relation on X generated by
x ∼ y if d(x, y) = 0. The metric space X/∼ is the associated metric space of the pseudometric.
A pseudometric space is δ-hyperbolic for δ ≥ 0 if the associated metric space is δ-hyperbolic.

In principle, one could now generalize many of the previous results to pseudometric spaces, but we will
not do so. Not least due to our definition of hyperbolicity by transferring it via the associated metric
space, the few results that we will need, will be immediate.
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2.2 Hyperbolic groups

We now turn our attention back to group theory. As motivated in the introduction, we want hyperbolic
groups to generalize groups acting on Hn, so it is natural to take the following definition:

Definition. A group Γ is hyperbolic if Γ acts properly discontinuously and cocompactly on a proper
hyperbolic geodesic metric space.

The next lemma relates this definition closely with Cayley graphs and word metrics:

Proposition 2.11. Let Γ be a group. The following are equivalent:
(1) Γ is hyperbolic.
(2) Γ has a finite generating set S such that Γ equipped with the word metric corresponding to S is a

hyperbolic metric space.
(2’) Γ is finitely generated and a hyperbolic metric space when equipped with the word metric corre-

sponding to every finite generating set of Γ.
(3) Γ has a finite generating set S such that CayS(Γ) is hyperbolic.
(3’) Γ is finitely generated and CayS(Γ) is hyperbolic for every finite generating set S of Γ.

Proof. (2) and (3) are equivalent by Proposition 2.6, the same holds for (2’) and (3’). (3), (3’) and (1)
are equivalent by the Schwarz-Milnor Lemma and Theorem 2.4. ■

Since we have already seen (non)-examples of hyperbolic metric spaces, it is now quite easy to give at
least a few (non)-examples of hyperbolic groups:

Examples 2.12. The examples given here parallel the examples in Examples 2.3:
– Finite groups are hyperbolic because their Cayley graphs are finite.
– The non-abelian free groups are hyperbolic since their Cayley graphs are trees.
– The last example in particular yields that Z is hyperbolic. In contrast, Zn is not hyperbolic for
n ≥ 2 since its Cayley graph with the usual generating set is quasi-isometric to Rn.

Hyperbolic groups are quite a fruitful topic of study as they exhibit several quite interesting properties:
For example, they satisfy the Tits alternative, are finitely presented with solvable word problem and
play an important role in the study of hyperbolic manifolds. We will discuss the last relationship in
Section 4.2, but otherwise only develop their theory in so far as we need to prove Paulin’s Theorem. We
therefore point to the seminal article [Gro87] or [BH99: Chapter III.Γ].
We will mainly be interested in subgroups of hyperbolic groups, in particular, in the question when
are they also hyperbolic. Since the inclusion of a subgroup need not be an isometric embedding, this
will not always be the case. For example, hyperbolic groups are finitely generated but already the free
groups contain non-finitely generated subgroups. In fact, there are even examples of finitely generated
and finitely presented non-hyperbolic subgroups of hyperbolic groups (see [Rip82] and [Bra99]).
We begin with the following obvious criterion for hyperbolic subgroups:

Lemma 2.13. Let Γ be a hyperbolic group and H ⊆ Γ a subgroup.
(1) If the inclusion H → Γ is a quasi-isometric embedding in the word metrics corresponding to some

finite generating sets on H and Γ, then H also is hyperbolic.
(2) The inclusion of a finite index subgroup is a quasi-isometric embedding in all choices of word

metrics corresponding to finite generating sets.

Proof. (1) follows from Theorem 2.4, Proposition 2.6 and Proposition 2.11, (2) follows from the Schwarz-
Milnor Lemma. ■
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We want to look for more examples of quasi-isometrically embedded subgroups. We have already seen
that it can be convenient to be able to work with geodesics. In view of this, we consider the following
definition which will give such subgroups:

Definition. A subset A of a metric space X is C-quasi-convex for C ≥ 0 if for x, y ∈ A every geodesic
segment between x and y in X is contained in NC(A). The subset A is quasi-convex if it is quasi-convex
for some C ≥ 0.
Let G be a finitely generated group. A subgroupH ⊆ G is quasi-convex ifH ⊆ CayS(G) is a quasi-convex
for all finite generating sets S of G3.

We note the following properties of quasi-convex subgroups:

Proposition 2.14. Let G be a finitely generated group.
(1) If H ⊆ G is a quasi-convex subgroup, then H is finitely generated and the inclusion H → G is

a quasi-isometric embedding in all choices of word metrics on H and G corresponding to finite
generating sets.

(2) If H1, H2 ⊆ G are quasi-convex subgroups, then their intersection H1 ∩H2 ⊆ G is also a quasi-
convex subgroup.

Proof.
(1) Let S be a generating set of G such that H is C-quasi-convex in CayS(G). We claim that the

finite set T of elements of H with word length at most 2C + 1 generates H:
Let h ∈ H. Then [e, h] is an edge-path in CayS(G). Suppose the edges it traverses are labelled
by s1, . . . , sn ∈ S. Since H is C-quasi-convex there exist u0, . . . , un ∈ G of word length at most
C such that hi := ui−1asu

−1
n ∈ H for i ∈ {1, . . . , n}. By the triangle inequality hi ∈ T . We can

assume that u0 = un = e, then h = s1 · · · sn = h1 · · ·hn is generated by T .
The inclusion H → G is quasi-isometric in the word metrics corresponding to T and A as for
h, h′ ∈ H by the above

1

2C + 1
dA(h, h

′) ≤ dT (h, h
′) ≤ dA(h, h

′)

The claim now follows since two word metrics corresponding to finite generating sets on the same
group are quasi-isometric by the Schwarz-Milnor Lemma.

(2) Let S be a generating set of G such that H1, H2 are C-quasi-convex in CayS(G). We claim that
H1 ∩H2 ⊆ CayS(G) is (K + 1)-quasi-convex for

K := |{g ∈ G | d(e, g) ≤ C}︸ ︷︷ ︸
=:M

|2

Let h, h′ ∈ H1 ∩H2. Again [h, h′] is an edge-path in CayS(G) and we can suppose the vertices it
traverses are labelled by v1, . . . , vn ∈ G. For i ∈ {1, . . . , n} let g ∈ G be the element of minimal
length such that vi · g ∈ H1 ∩H2. Write g = s1 · · · sk for si ∈ T with k minimal. For 1 ≤ j ≤ k

there exist t
(1)
j , t

(2)
j ∈M such that

h
(1)
j := (vi · s1 · · · sj) · t(1)j ∈ H1 and h

(2)
j := (vi · s1 · · · sj) · t(2)j ∈ H2

since there exists a geodesic segment between elements of H1 ∩H2 containing vi · s1 · · · sj .
3It is convenient for our purposes to require H to be quasi-convex with respect to all finite generating sets, but of course

this condition is a priori hard to check. For a hyperbolic group, it suffices to assume H is quasi-convex with respect to one
finite generating set, but we did not develop enough theory of hyperbolic spaces to show this (see [BH99: Corollary 3.6]).
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Suppose k > K. Then by the pigeonhole principle there exist 1 ≤ a < b ≤ k such that

(t
(1)
a , t

(2)
a ) = (t

(1)
b , t

(2)
b ) as there are only K possibilities for such pairs. Therefore

vi · (s1 · · · sa · sb+1 · sk) = h(1)a · (t(1)a )−1 · (sb+1 · · · sk) = h(1)a · (t(1)b )−1 · (sb+1 · · · sk)

= h(1)a · (h(1)b )−1 · h′ ∈ H1

and analogously vi ·(s1 · · · sa ·sb+1 ·sk) ∈ H2. But then s1 · · · sa ·sb+1 ·sk contradicts the minimality
of g. Hence, d(vi, H1 ∩H2) = k ≤ K. Since by construction of the Cayley graph every point on γ
is a distance of at most 1 from vi for some i, the claim follows. ■

The next proposition gives a large class of examples of quasi-convex subgroups of hyperbolic groups:

Proposition 2.15. Let Γ be a hyperbolic group and g ∈ Γ. The centralizer CΓ(g) ⊆ Γ is quasi-convex.

Proof. Let S be a finite generating set of G. By Proposition 2.11 and Proposition 2.2 there exists δ ≥ 0
such that all geodesic triangles in X are δ-slim.
We begin with the following claim:

Claim. There exists an increasing function f : R≥0 → R≥0 such that if g, h ∈ Γ are conjugate and have
word length at most M , there exists v ∈ Γ of word length at most f(M) such that g = vhv−1.
Let v ∈ Γ be of minimal length such that g = vhv−1. Let γ : [0, d(e, v)] → CayS(Γ) be a geodesic
from e to v. It is an edge-path, suppose the vertices it transverses are labelled v1, . . . , vn. Let
γ′ : [0, d(e, vh)] → CayS(Γ) be a geodesic from e to vh. By Lemma 2.7 for t ∈ [0, d(e, v)]

d(γ(t), γ′(t)) ≤ 2δ + d(e, h)

d(g · γ(t), γ′(d(e, vh)− (d(e, v)− t))) ≤ 2δ + d(e, g)

and by the triangle inequality

d(γ′(t), γ′(d(e, vh)− (d(e, v)− t))) = |d(e, vh)− d(e, v)| ≤ d(e, h)

Taken together these inequalities show by the triangle inequality that

d(e, v−1
i gvi) = d(vi, gvi) ≤ 4δ + d(e, g) + 2d(e, h) ≤ 4(δ +M)

By minimality of v, the elements v−1
i gvi ∈ Γ for i ∈ {1, . . . , n} must be pairwise different. The claim

follows when defining f(k) to be the number of elements with word length at most 4(δ + k) in Γ since n
is the word length of v. □

Let h ∈ CΓ(g) and consider p ∈ [1, h]. By construction of the Cayley graph there exists p ∈ [1, h] ∩ Γ
such that d(p, p) ≤ 1. As in the proof of the Claim d(e, p−1gp) = d(p, gp) ≤ 4(δ+ d(e, g)). By the Claim
there exists v ∈ Γ such that p−1gp = v−1gv and

d(e, v) ≤ f
(
max

{
d(e, p−1gp), d(e, g)

})
≤ f(max{4(δ + d(e, g)), d(e, g)}) =: C

Then pv−1 ∈ CΓ(g) and therefore

d(p,CΓ(g)) ≤ d(p, pv−1) ≤ d(p, pv−1) + 1 = d(e, v) + 1 ≤ C + 1

This proves the proposition since the definition of C does not depend on p. ■

With this knowledge on centralisers, we can now show that centralizers in hyperbolic groups are small:

Theorem 2.16. Let Γ be a hyperbolic group and g ∈ Γ of infinite order.
(1) The inclusion ⟨g⟩ → Γ is a quasi-isometric embedding in all choices of word metric corresponding

to a finite generating set.
(2) The subgroup ⟨g⟩ ⊆ CΓ(γ) has finite index.
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Proof.
(1) The inclusion CΓ(g) → Γ is a quasi-isometric embedding by Proposition 2.15 and Proposition 2.14.

In particular, CΓ(g) is hyperbolic by Lemma 2.13 and thereby has a finite generating set T . Since

Z(CΓ(g)) =
⋂
t∈T

CΓ(t)

it follows from Proposition 2.14 that Z(CΓ(g)) is also quasi-convex with the inclusion Z(CΓ(g)) → G
being a quasi-isometric embedding. Hence, again Z(CΓ(g)) is hyperbolic. Since Z(CΓ(g)) is
abelian, it follows from the classification of finitely generated abelian groups and Lemma 2.13
that ⟨g⟩ ⊆ Z(CΓ(g)) is a finite index subgroup since g is not torsion. Going back up through the
subgroups now proves (1) by Lemma 2.13.

(2) Let S be a generating set of Γ. By Proposition 2.11 there exists δ ≥ 0 such that all geodesic triangles
in CayS(Γ) are δ-slim. Let p, q ∈ Z such that t−1gpt = gq for t ∈ Γ. Then t−mgp

m
tm = gq

m
for all

m ≥ 1 implying that

λ|q|m · d(e, g) + C ≤ d(e, gq
m
) ≤ |p|m · d(e, g) + 2m · d(1, t)

where the inclusion in (1) is a (λ,C)-quasi-isometric embedding with the generating set {g} on ⟨g⟩.
For large enough m this implies |q| ≤ |p|. Together with a symmetrical argument, |p| = |q|. This
shows that the powers of g fall into infinitely many distinct conjugacy classes. Hence, we can after
replacing g with one of its powers assume that g is not conjugate to any element of distance at
most 4δ + 2 from the identity as there are only finitely many (conjugacy classes of) such elements
and CΓ(g) ⊆ CΓ(g

n). Set K := 2d(e, g) + 4δ. We now claim CΓ(g) ⊆ NK(⟨g⟩), proving (2):
Suppose there exists h ∈ CΓ(g) with d(h, ⟨g⟩) > K. After replacing h with its multiplication
by the inverse of its closest power of g, we may assume that d(h, ⟨g⟩) = d(g, 1). Consider the
quadrilateral with sides [e, g], [e, h], g · [e, h], h · [e, g]. This really is a quadrilateral since hg = gh.

≤ 2δ

e h

hg = ghg

M

g ·M ′

d(e, g) + 2δ

Let M be the midpoint of [e, h]. By applying δ-slimness of triangles twice, it follows that there is
a point of distance at most 2δ from M on one of the other sides. By choice of K, M is at least a
distance of d(e, g) + 2δ = d(h, gh) + 2δ from e and h, hence by the triangle inequality this point
must be on g · [e, h], i.e. it equals g ·M ′ for some M ′ ∈ [e, h]. By the triangle inequality and since
the sides are geodesics

d(M ′,M) = |d(⟨g⟩,M)− d(⟨g⟩,M ′)| = |d(⟨g⟩,M)− d(⟨g⟩, gM ′)| ≤ 2δ

and therefore d(M, g ·M) ≤ 4δ. By construction of the Cayley graph there exists m ∈ Γ with
d(m,M) ≤ 1. By the triangle inequality

d(e,m−1gm) = d(m, gm−1) ≤ d(M, g ·M) + 2 ≤ 4δ + 2

giving a contradiction. ■
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The last theorem restricts the size of centralizers in hyperbolic groups. This also restricts how large
abelian subgroups can be:

Corollary 2.17. No hyperbolic group contains Z2 as a subgroup.

Proof. Let G be a group and H ⊆ G a subgroup isomorphic to Z2. A non-trivial h ∈ H has infinite order
and index, and H ⊆ CG(h). Therefore, ⟨h⟩ ⊆ CG(h) has infinite index in contrast to Theorem 2.16. ■

More generally, along the same way one can argue that a hyperbolic group cannot contain any group
with large (i.e. not virtually cyclic) centralizers – for example Baumslag-Solitar groups.

2.3 Miscellaneous group theory

This last preparatory section contains a somewhat eclectic collection of group-theoretic constructions
that did not fit properly anywhere else but are nevertheless needed in further discussions:

Definition. Let G be a group. The inner automorphisms group of G is the normal subgroup of Aut(G)
defined as

Inn(G) :=

{
G → G
x 7→ gxg−1

∣∣∣∣ x ∈ G

}
The outer automorphism group of G is the quotient Out(G) := Aut(G)/ Inn(G).

In general, it is a hard problem to determine outer automorphism groups. In the case of free groups,
one can at least obtain some information by elementary means:

Example 2.18. Consider the non-abelian free group on n-generators G = ⟨a1, . . . , an⟩. We have a
group homomorphism

Out(G) → Aut(Gab) ∼= GLn(Z)

f 7→
(
Gab → Gab

[x] 7→ [f(x)]

)
where Gab

∼= Zn is the abelianization of G. It is surjective by the universal property of free groups. For
n = 2 it even is an isomorphism. This is not the case for n ≥ 3 since then its kernel will contain the
non-inner automorphism fixing a1, . . . , an−1 and mapping an 7→ an · [a1, a2].

A useful way of studying a group is to decompose it into smaller subgroups. Developing this further
eventually leads to Bass-Serre Theory, see [Ser80]. We are only interested in the most basic way of
splitting a group:

Definition. A group G splits over a subgroup H if it is isomorphic to
– a proper amalgamated product with amalgam H, i.e. there exist group monomorphisms φ : H → A,
ψ : H → B that are not isomorphisms such that

G ∼= A∗HB := A∗B/⟨⟨φ(c) · ψ(c)−1 | c ∈ H⟩⟩

or
– an HNN-extension over H, i.e. there exist group monomorphisms φ,ψ : H → A such that

G ∼= A∗H := (A∗⟨t⟩)/⟨⟨t−1φ(h)−1tψ(h) | h ∈ H⟩⟩

The splitting is essential if H is abelian and if gn ∈ H for some g ∈ G, n ≥ 1 already implies g ∈ H.
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The significance of the following definition stems from Geometric Group Theory being unable to
distinguish between a group and its finite index subgroups as they have quasi-isometric Cayley graphs:

Definition. Let P be a property of groups. A group G is virtually P if there exists a finite index
subgroup of G with property P.

We will mainly be interested in “virtually cyclic” or “virtually abelian”. We consider these properties in
the next three lemmas, beginning by noting that the two properties are equivalent for hyperbolic groups:

Lemma 2.19. An abelian hyperbolic group is virtually cyclic. In particular, a virtually abelian hyperbolic
group is virtually cyclic.

Proof. Let Γ be an abelian hyperbolic group. By the classification of finitely generated abelian groups
and Corollary 2.17, Γ is virtually cyclic. The “in particular” statement then follows from Lemma 2.13. ■

The following criterion for detecting virtually abelian groups is [Pau91: Lemma 1.A]:

Lemma 2.20. A finitely generated group G with G′ := {[a, b] | a, b ∈ G} finite is virtually abelian.

Proof. The group G acts on G′ by conjugation since g−1[a, b]g = [g−1ag, g−1bg] for a, b, g ∈ G. The
kernel H of this action is a finite index subgroup of G and hence finitely generated by the Schwarz-
Milnor Lemma. Let {h1, . . . , hn} be a generating set for H. For every a ∈ G we have a finite subgroup
[a,H] := {[a, h] | h ∈ H} ⊆ G as for h, k ∈ H by definition of H

[a, h] · [a, k] = aha−1h−1 · aka−1k−1 = aha−1 · aka−1k−1 · h−1 = ahka−1k−1h−1 = [a, hk]

[a, h−1] = ah−1a−1h = h−1 · hah−1a−1 · h = hah−1a−1 = [a, h]−1

This also shows that have homomorphisms

φa : H → [a,H]
h 7→ [a, h]

and
Φ: H → [h1, H]× · · · × [hn, H]

h 7→ (φh1(h), . . . , φhn(h))

The kernel of Φ is the centre of H, hence the centre of H is a finite index subgroup. Therefore, H and
by extension G are virtually abelian. ■

Lastly, we note the following result for later usage:

Lemma 2.21. A torsion-free virtually cyclic group is cyclic.

Proof. Any virtually cyclic group G surjects {e}, Z or (Z/2Z)∗(Z/2Z) with finite kernel. This can be
seen by algebraic calculation (see [Hem04: Lemma 11.4]) or geometrically by studying ends of groups
(see [Sta71: Section 4.A.6]). If G is torsion-free this kernel must be trivial, i.e. G is isomorphic to one of
the three given groups. This cannot be to (Z/2Z)∗(Z/2Z) since this group clearly has torsion. ■

With this Lemma, we can also obtain another corollary to Theorem 2.16:

Corollary 2.22. A non-cyclic torsion-free hyperbolic group has trivial centre.

Proof. Let Γ be a torsion-free hyperbolic group and γ ∈ Z(Γ) non-trivial. Then CΓ(γ) = Γ and it follows
from Theorem 2.16 that Γ is virtually cyclic. Hence, Γ is cyclic by Lemma 2.21. ■

Before finally coming to Paulin’s Theorem, we again bring together geometry and group theory in the
last definition of this section:

Definition. Let G be a group, X a G-space and γ ⊆ X an arc. The arc stabilizer of γ is

Stab(γ) := {g ∈ G | g · γ = γ}

If P is a property of groups, X has P arc stabilizers if the stabilizer of every non-degenerate arc in X
has property P.
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3 Paulin’s theorem

3.1 Statement and Consequences

We have now developed enough of the general theory that we can come to the core of this essay. It is
encapsulated in the following theorem originally proven in [Pau91]:

Theorem 3.1 (Paulin). Let Γ be a hyperbolic group. If the outer automorphism group Out(Γ) is
infinite, Γ acts on an R-tree with virtually cyclic arc stabilizers and no global fixed points.

We postpone the proof of this theorem to Section 3.3 and instead discuss some consequences. For this we
will need the following theorem applying the Rips machine to actions on R-trees. It picks up precisely
where the last one left off, giving us an immediate corollary:

Theorem 3.2 ([BF95: Corollary 1.1]). A hyperbolic group that has an action on an R-tree with virtually
cyclic arc stabilizers and no global fixed points splits over a virtually cyclic subgroup.

Corollary 3.3. Let Γ be a hyperbolic group. If the outer automorphism group Out(Γ) is infinite, Γ
splits over a virtually cyclic subgroup.

If we additionally assume the group to be torsion-free, the converse of this also holds:

Theorem 3.4. Let Γ be a non-cyclic torsion-free hyperbolic group. The outer automorphism group
Out(Γ) is infinite if and only if Γ splits essentially over a cyclic subgroup (i.e. {e} or Z).

Proof. In the “only if”-direction Corollary 3.3 provides that Γ splits over a virtually cyclic subgroup H.
By Lemma 2.21 H is trivial or infinite cyclic. That the splitting can be assumed to be essential requires
a more careful study of the Rips machine, see [DG08: Theorem 5.6].
For the “if”-direction we consider the following possibilities separately. We implicitly use normal form
theory for amalgamated products and HNN-extensions to do calculations (see [BH99: Lemma 6.4]):

Case 1: Γ splits as a amalgamated product over {e}
Then Γ ∼= A∗B with A,B non-trivial. The inclusions of A and B into A∗B are isometric embeddings in
the word metrics corresponding to choosing generating sets for A and B separately. Hence, A and B
are hyperbolic by Proposition 2.11 and Theorem 2.4.
If A and B are abelian, we have A ∼= B ∼= Z by the classification of finitely generated abelian groups
and Corollary 2.17. Therefore, by Example 2.18 Out(Γ) ∼= GL2(Z) is infinite.
Hence, we may now wlog assume that A is non-abelian. Fix x ∈ A non-trivial and consider the
automorphism f of A∗B that restricts to the identity on B and conjugation by x on A. Suppose the
subgroup generated by f in Out(A∗B) is finite, i.e. there exists n ∈ N and g ∈ G such that for all
a ∈ A, b ∈ B

gag−1 = fn(a) = xnax−n and gbg−1 = b

It follows that g ∈ A ∩B = {e} and therefore xn ∈ Z(A). By Corollary 2.22 xn = e. Contradiction!

Case 2: Γ splits as a amalgamated product over Z
Then there are monomorphisms φ : Z → A,ψ : Z → B that are not isomorphisms such that Γ ∼= A∗ZB.
Again A and B are hyperbolic by Proposition 2.11 and Theorem 2.4 since their inclusions into A∗ZB
are isometric embeddings in the word metrics corresponding to choosing generating sets for A and B
separately where the generating set of A (respective B) contains φ(1) (respective ψ(1)).
Suppose A or B is abelian, wlog A. As in Case 1 A ∼= Z. There exists a ∈ A \ φ(Z), since φ is not an
isomorphism. But since A ∼= Z, we have an ∈ φ(Z) for some n ∈ N, contradicting that the splitting is
essential. Hence, A and B are non-abelian.
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Consider the automorphism f of A∗ZB that restricts to conjugation by c := φ(1) on A and the identity
on B. Suppose the subgroup generated by f in Out(A∗ZB) is finite, i.e. there exists n ∈ N and g ∈ G
such that for all a ∈ A, b ∈ B

gag−1 = fn(a) = cnac−n and gbg−1 = fn(b) = b

Then g ∈ Z(B), i.e. g = e by Corollary 2.22. Hence, analogously cn = e. Contradiction!

Case 3: Γ splits as an HNN-extension over {e}
Then Γ ∼= A∗{e} ∼= A∗Z for some group A. Since Γ is non-cyclic, A is non-trivial. Hence, we have
already dealt with this in Case 1.

Case 4: Γ splits as an HNN-extension over Z
Then there are monomorphisms φ,ψ : Z → A such that Γ ∼= A∗Z. Again A is hyperbolic by Proposi-
tion 2.11 and Theorem 2.4 since its inclusion into A∗Z is an isometric embedding in the word metric
corresponding to a generating set for A containing φ(1), ψ(1). Since the splitting is essential, A ̸∼= Z
as in Case 2. Set c := φ(1). The automorphism of A∗⟨t⟩ restricting to the identity on A and mapping
t 7→ c · t descends to an automorphism f of A∗Z. Suppose the subgroup generated by f in Out(A∗Z) is
finite, i.e. there exists n ∈ N and g ∈ G such that for all a ∈ A

gag−1 = fn(a) = a and gtg−1 = fn(t) = cn · t

Hence, g ∈ Z(A) is trivial by Corollary 2.22. Then cn = e. Contradiction! ■

3.2 Compactness Theorem

As of now we have seen rather few examples of R-trees. This has to change if we want to prove Paulin’s
Theorem 3.1. The idea behind the relevant construction is as follows: If a group G acts on a sequence
of hyperbolic metric spaces stretching them more and more, the geodesic triangles in those spaces get
drawn thinner and thinner by the action. Hence, one might hope that in the limit the action degenerates
to an action on an 0-hyperbolic space – i.e. an R-tree. This rough idea will be made precise in the
Compactness Theorem 3.7. We follow [Bes02: Section 3] for this section.
To begin working towards our new goal, we need a notion of convergence of group actions. For
pseudometrics there is already a natural sense of convergence:

Definition. Let G be a group. A pseudometric d : G×G→ [0,∞) is equivariant if d(ga, gb) = d(a, b)
for all g, a, b ∈ G. Denote by EDG the space of all non-trivial equivariant pseudometrics on G.
Scaling induces a free R+-action on EDG. The quotient space PEDG of this action is the space of
projectiviced equivariant pseudometrics on G.
We topologize EDG with the topology of pointwise convergence, i.e. by viewing it as a subspace of the
G×G-indexed product of [0,∞),4 and subsequently PEDG with the quotient topology.

We note the following obvious lemma for later use:

Lemma 3.5. Let (dn)n∈N be a convergent sequence in EDG. If dn is δn-hyperbolic for n ∈ N and the
sequence (δn)n∈N converges to δ ∈ [0,∞), a limit of (dn)n∈N is δ-hyperbolic.

Proof. Let d be a limit of (dn)n∈N in EDG. For any points in G the Gromov product with respect to dn
converges to the Gromov product with respect to d. Since the two sides of the “≥”-inequality defining
hyperbolicity are continuous in the involved Gromov products and δ’s, the claim follows. ■

4This is of course the same as the compact-open topology on EDG when viewing G×G as discrete as defined in [Bes02].
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By associating a pseudometric to a G-space we can now transfer this notion of convergence to G-spaces:

Definition. Let G be a group. A based G-space is a pair (X,x) where x is a G-space and x ∈ X is not
fixed by every g ∈ G. A based G-space (X,x) induces a non-trivial equivariant pseudometric d(X,x) on
G by setting

d(X,x) : G×G→ [0,∞)

(a, b) 7→ dX(a · x, b · x)

A sequence of based G-spaces (Xn, xn)n∈N converges to a based G-space (X,x) if their induced pseudo-
metrics (d(Xn,xn))n∈N converge to d(X,x) in PEDG.

Here we only obtain pseudometrics since we do not assume that the basepoint has trivial stabilizer
under the action in which case we could identify G with the orbit of x. But even in the more general
setting we have an isometric map G→ X leading to the following lemma:

Lemma 3.6. Let G be a group and (X,x) a based G-space. If X is δ-hyperbolic, the induced pseudometric
d(X,x) is also δ-hyperbolic.

Proof. Acting on the basepoint x induces an isometric embedding from the metric space associated to
d(X,x) into X, proving the claim by Proposition 2.6. ■

The last two lemmas now set us on the right track for making the intuition from the beginning of this
section precise: Suppose G acts on a sequence of δ-hyperbolic metric spaces (Xn)n∈N for some fixed δ.
We can scale down the metric on Xn by some λn without changing its equivalence class in PEDG. If
the λn tend to infinity, a resulting limit would have to be 0-hyperbolic. Unfortunately, there is a priori
no reason why it should not be the degenerate R-tree consisting of a single point. The first part of the
Compactness Theorem 3.7 provides a sufficient condition to prevent this by ensuring that the basepoint
is not fixed.
In Paulin’s Theorem 3.1 we even want the action to not have any fixed point. To ensure this, we have
to choose our basepoints carefully for the second part of the Compactness Theorem 3.7:

Definition. Let G be a group with a finite generating set S and X a G-space. A point x ∈ X is
centrally located with respect to S if the function

X → [0,∞)

x 7→ max
s∈S

{d(x, s · x)}

attains a global minimum at x.

The reason why some delicacy is needed here, is that our definition of convergence only directly sees the
basepoints and their translates under the action. The above definition hence makes the point moved
the least amount by the action visible. If we additionally require the Xn to be geodesic, we can access
sufficiently many points in Xn by going along geodesics between translates of the basepoints to allow us
to prove that a limit of spaces with centrally located basepoints has again a centrally located basepoint.

Theorem 3.7 (Compactness Theorem). Let G be a group with a finite generating set S and δ ≥ 0.
Consider a sequence of δ-hyperbolic based G-spaces (Xn, xn)n∈N. If

λn := max
s∈S

{dXn(xn, s · xn)}

is unbounded, a subsequence of (Xn, xn)n∈N converges to a based G-space (T, t) where T is an R-tree.
If Xn is geodesic and xn ∈ Xn is centrally located with respect to S for all n ∈ N, then t ∈ T is also
centrally located. In particular, the G-action on T does not have a global fixed point.
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Proof. After passing to a subsequence we may assume that λn ≠ 0 for all n ∈ N and (λn)n∈N tends to
∞. Define a sequence (dn)n∈N of pseudometrics on G by setting dn := d(Xn,xn)/λn.

Claim. A subsequence of (dn)n∈N converges to some d ∈ EDG.
Since S is finite, we may after passing to a subsequence assume that λn = dXn(xn, s0 · xn) for all n ∈ N
for some fixed s0 ∈ S. By construction dn(e, s) = dXn(xn, s · xn)/λn ≤ 1 for all s ∈ S. For g ∈ G the
triangle inequality then implies that dn(e, g) is at most the word length of g. Hence, we can iteratively
construct subsequences of (dn)n∈N, such that for the k-th one, (dn(e, g))n∈N converges for all g ∈ G with
word length at most k. By choosing the diagonal we can find a subsequence for which (dn(e, g))n∈N
converges for all g ∈ G, then (dn(g, h))n∈N converges for all g, h ∈ G by G-equivariance. Defining d(g, h)
as this limit, we obtain a pseudometric d on G which is the pointwise limit of a subsequence of (dn)n∈N.
By the choice at the beginning d(e, s0) = 1, so d is non-trivial, i.e. d ∈ EDG. □

Since dn = d(Xn,xn)/λn is clearly δ/λn-hyperbolic, it follows from Lemma 3.6 and Lemma 3.5 that d is
0-hyperbolic. By applying the Connecting-the-dots Proposition 2.9 to the metric space associated to
d we obtain an action of G on an R-tree T and an isometric map i : G → T given by i(g) = g · t for
t := i(e). In particular, the induced pseudometric d(T,t) equals d, i.e. (Xn, xn)n∈N converges to (T, t).
Since d is non-trivial, (T, t) is a based G-space, proving the first part of the claim.
For the second part, consider the following construction: Let a ∈ T, n ∈ N and F ⊆ G finite. We define
Xn(F, a) ⊆ Xn to be the set of all points p ∈ Xn for which there exists g, h ∈ F such that

– a lies on the geodesic segment [g · t, h · t] in T .
– and p divides a geodesic segment between g · xn and h · xn in the same ratio as a divides [g · t, h · t].

This construction has the following properties:

Claim.
(1) We have Xn(g · F, g · a) = g ·Xn(F, a) for all F ⊆ G finite, a ∈ T , n ∈ N and g ∈ G.
(2) Let F, F ′ ⊆ G finite. If F ⊆ F ′ then Xn(F, a) ⊆ Xn(F

′, a) for all a ∈ T and n ∈ N.
(3) For every a ∈ T there exists some F ⊆ G finite with Xn(F, a) ̸= ∅ for all n ∈ N.
(4) The sequence (diamXn(F, a)/λn)n∈N converges to 0 for all F ⊆ G finite and a ∈ T .
(5) Let a, b ∈ T and F ⊆ G finite. The sequence (dXn(an, bn)/λn)n∈N converges to dT (a, b) for any

choice of sequences (an)n∈N, (bn)n∈N with an ∈ Xn(F, a), bn ∈ Xn(F, b).
Statements (1) and (2) are clear by construction.
Statement (3) clearly holds if a ∈ Γ · t, hence we may assume this is not the case. By the minimality
condition in the Connecting-the-dots Proposition 2.9 T \{a} cannot be an R-tree. Since it is 0-hyperbolic
it must therefore have at least two path-components which are again R-trees by Corollary 2.10. The
minimality condition again implies that there exists g ∈ Γ such that g · t and e · t are not in the same
path-component. Hence, a lies on [e · t, g · t] and Xn({e, g}, a) ̸= ∅.
For (4) let ϵ > 0. By Proposition 2.2 there exists δ′ ≥ 0 such that for all n ∈ N all geodesic triangles in
Xn are δ′-thin. Consider the finite set

P := {(g, h) ∈ F × F | a ∈ [g · t, h · t]}

For (g, h) ∈ P there exists a unique rg,h ∈ [0, 1] such that

dT (g · t, a) = rg,h · dT (g · t, h · t)

Fix pg,hn ∈ Xn({g, h}, a) for (g, h) ∈ P, n ∈ N.

19



Claim. For all (g, h), (g′, h′) ∈ P the sequence (dXn(p
g,h
n , pg

′,h′
n )/λn)n∈N converges to 0.

Since T is an R-tree, we have (g, g′) ∈ P or (g, h′) ∈ P , wlog (g, h′) ∈ P . Consider the geodesic triangle
∆ indicated below where in, i

′
n are internal points.

≤ δ
g · xn

h · xn

h′ · xn

pn = pg,hn

pg,h
′

n p′n

in

i′n

Observe that

dXn(g · xn, p
g,h
n )

λn
= rg,h ·

dXn(g · xn, h · xn)
λn

n→∞−−−→ rg,h · dT (g · t, h · t) = dT (g · t, a)

and by construction of the Gromov product

dXn(g · xn, i1)
λn

=
1

2

(
dXn(g · xn, h · xn)

λn
+
dXn(g · xn, h′ · xn)

λn
− dXn(h · xn, h′ · xn)

λn

)
n→∞−−−→ 1

2

(
dT (g · t, h · t) + dT (g · t, h′ · t)− dT (h · t, h′ · t)

)
≥ dT (g · t, a)

Hence, there exists a sequence (pn)n∈N where pn ∈ [g · xn, in] such that (dXn(p
′
n, p

g,h
n )/λn)n∈N converges

to 0 (take pn := pg,hn when possible and otherwise pn := in). By construction, the point p′n corresponding
to pn under δ′-thinness of ∆ lies on the geodesic between g · xn and h′ · xn. Then

dXn(p
′
n, p

g,h′
n )

λn
=

∣∣∣dXn(g · xn, p′n)− dXn(g · xn, p
g,h′
n )

∣∣∣
λn

=

∣∣∣∣∣dXn(g · xn, pn)
λn

− dXn(g · xn, p
g,h′
n )

λn

∣∣∣∣∣
=

∣∣∣∣∣dXn(g · xn, p
g,h
n )

λn︸ ︷︷ ︸
→d(g·t,a)

− dXn(p
g,h
n , pn)

λn︸ ︷︷ ︸
→0

− dXn(g · xn, p
g,h′
n )

λn︸ ︷︷ ︸
→d(g·t,a)

∣∣∣∣∣ n→∞−−−→ 0

Therefore, by the triangle inequality

dXn(p
g,h
n , pg,h

′
n )

λn
≤ dXn(p

g,h
n , pn)

λn
+
dXn(pn, p

′
n)

λn
+
dXn(p

′
n, p

g,h′
n )

λn

n→∞−−−→ 0

Analogously, the same holds with (g, h) replaced by (g′, h′) which taken together proves the claim. □

Since P is finite, the claim implies that we can find N ∈ N such that for all n ≥ N

∀
(g,h),(g,h′)∈P

dXn(p
g,h
n , pg

′,h′
n )

λn
<
ϵ

2
and

δ′

λn
<
ϵ

4

Then diamXn(F, a)/λn < ϵ for all n ≥ N proving (4):
Let p, p′ ∈ Xn(F, a). There exist (g, h), (g′, h′) ∈ P such that p (respective p′) originates from a geodesic

from g · xn to h · xn (respective g′ · xn to h′ · xn). Then dXn(p, p
g,h
n ) < δ′ (respective dXn(p

′, pg
′,h′

n ) < δ′)
by δ′-slimness. Hence, by the triangle inequality

dXn(p, p
′)

λn
≤ dXn(p, p

g,h
n )

λn
+
dXn(p

g,h
n , pg

′,h′
n )

λn
+
dXn(p

g′,h′
n , p′)

λn
<
ϵ

4
+
ϵ

2
+
ϵ

4
= ϵ
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For (5) take by (3) g, g′, h, h′ ∈ G such that a ∈ [g · t, g′ · t], b ∈ [h · t, h′ · t]. Since T is an R-tree,
[a, b] intersects [a, g · t] or [a, g′ · t] precisely in a, wlog [a, g · t]. Analogously we can wlog assume that
[a, b] ∩ [b, h · t] = {b}. Then a, b ∈ [g · t, h · t]. There exist ra, rb ∈ [0, 1] such that

dT (g · t, a) = ra · dT (g · t, h · t) and dT (g · t, b) = rb · dT (g · t, h · t)

We can then define sequences (a′n)n∈N, (b
′
n)n∈N with a′n ∈ Xn({g, h}, a), b′n ∈ Xn({g, h}, b) where a′n and

b′n lie on the same geodesic connecting g · xn and h · xn. Then

dXn(a
′
n, b

′
n) = |dXn(g · xn, a′n)− dXn(g · xn, b′n)| = |ra − rb| · dXn(g · xn, h · xn)

and therefore

dXn(a
′
n, b

′
n)

λn
= |ra − rb| ·

dXn(g · xn, h · xn)
λn

n→∞−−−→ |ra − rb| · dT (g · t, h · t) = dT (a, b)

By the triangle inequality∣∣∣∣dXn(an, bn)

λn
− dXn(a

′
n, b

′
n)

λn

∣∣∣∣ ≤ dXn(an, a
′
n)

λn
+
dXn(b

′
n, bn)

λn

By (4) applied to F ∪ {g, h} the right side go to 0 for n to infinity. Hence, the two sequences on the left
have the same limit, proving (5). □

Let x ∈ T . By (3) there exists a finite subset F ⊆ G with Xn(F, x) ̸= ∅ for all n ∈ N. Let pn ∈ Xn(F, x).
Observe that for all s ∈ S by (1) Xn(s · F, s · x) = s ·Xn(F, x) and hence by (2) pn ∈ Xn(F ∪ s · F, x),
s · pn ∈ Xn(F ∪ s · F, s · x). Then (5) and implies that

dXn(pn, s · pn)
λn

n→∞−−−→ dT (x, s · x)

Since s ∈ S was arbitrary and S is finite

max
s∈S

{
dXn(pn, s · pn)

λn

}
n→∞−−−→ max

s∈S
{dT (x, s · x)}

Specializing x = t we deduce

max
s∈S

{
dXn(xn, s · xn)

λn

}
n→∞−−−→ max

s∈S
{dT (t, s · t)}

Since xn ∈ Xn is centrally located, it follows by comparing these two limits that

max
s∈S

{dT (x, s · x)} ≥ max
s∈S

{dT (t, s · t)}

Since x ∈ T was arbitrary, this shows that t ∈ T is centrally located. ■

3.3 Proof of Paulin’s Theorem

The last section gave us the main theoretical tool to prove Paulin’s Theorem 3.1, so we can now proceed
to proving our main theorem. The remaining argument is now quite direct: Given a sequence of
non-conjugate automorphisms of Γ, we can compose the usual action of Γ on its Cayley graph with them
to obtain a sequence of Γ-spaces. We then show that the Compactness Theorem 3.7 can be applied to
this sequence, giving us a Γ-action on an R-tree without global fixed points. All that remains, is to
prove that this action as virtually cyclic edge stabilizers which can be done by some hyperbolic geometry
akin to the second half of proof of the Compactness Theorem 3.7 – but a bit more technically involved.
In this section we again follow [Bes02: Theorem 7.3] using [BS94] to fill in some of the details.
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Let us recall what we need to prove:

Theorem 3.1 (Paulin). Let Γ be a hyperbolic group. If the outer automorphism group Out(Γ) is
infinite, Γ acts on an R-tree with virtually cyclic arc stabilizers and no global fixed points.

Proof. Let S be a finite generating set for Γ and X the corresponding Cayley graph. Denote the usual
metric on the Cayley graph by d. By Proposition 2.11 X is hyperbolic. By assumption there exists a
sequence (φn)n∈N of automorphisms of Γ that are pairwise non-conjugate. We get a sequence of Γ-spaces
(Xn)n∈N where the underlying metric space of Xn is still X but the action of g ∈ Γ on Xn is given by
x 7→ φn(g) · x. We always hence denote the metric on Xn by d.

Claim. For every n ∈ N there exists a centrally located xn ∈ Xn.
Consider the function

f : X → [0,∞)
x 7→ max

s∈S
{d(x, φn(s) · x)}

Let e : [0, 1] → X be an isometric embedding onto an edge in X. For h ∈ [0, 1] and s ∈ S

d(e(h), φn(s) · e(h)) = min

{
d(e(0), φn(s) · e(0)) + 2h, d(e(0), φn(s) · e(1)) + 1
d(e(1), φn(s) · e(0)) + 1, d(e(1), φn(s) · e(1)) + 2− 2h

}
Since d(e(a), φn(s) · e(b)) ∈ Z for a, b ∈ {0, 1} the case in which this minimum is attained can only
change for h ∈ {0, 12 , 1} and in between this function is linear in h with slope 0, 2 or −2. Hence, f ◦ e is
linear on [ i4 ,

i+1
4 ] for i ∈ {0, . . . , 3}, i.e. assumes its minimum on {0, 14 ,

1
2 ,

3
4 , 1}. Therefore, the minimum

of f ◦ e lies in (f ◦ e)({0, 14 ,
1
2 ,

3
4 , 1}) ⊆

1
2N0. The claim follows as 1

2N0 is well-ordered. □

Consider
λn := max

s∈S
{d(xn, φn(s) · xn)}

Claim. The sequence (λn)n∈N is unbounded.
Suppose there is a bound C ≥ 0 on (λn)n∈N. For every n ∈ N we can find some gn ∈ Γ with d(xn, gn) < 1
by the construction the Cayley graph. Then for s ∈ S by the triangle inequality

d(e, g−1
n · φn(s) · gn) = d(gn, φn(s) · gn) ≤ d(xn, φn(s) · xn) + 2 ≤ C + 2

Hence, g−1
n · φ(s) · gn ∈ Γ has word length at most C + 2. This implies that (gn)n∈N has a subsequence

on which g−1
n · φn(s) · gn is constant. By applying the same procedure to all finitely many s ∈ S we can

iteratively find subsequences such that eventually g−1
n ·φn(s) · gn is constant over all s ∈ S and n ∈ N in

the last subsequence. In particular, there are distinct n,m ∈ N such that for all s ∈ S

g−1
n · φn(s) · gn = g−1

m · φm(s) · gm

Since S ⊆ Γ is a generating set, this implies that φn and φm are conjugate. Contradiction! □

It now follows from the Compactness Theorem 3.7 that after possibly passing to a subsequence (Xn, xn)
converges to a based Γ-space (T, t) where T is an R-tree and the Γ-action on T does not have a global
fixed point.
It remains to prove that the arc stabilizers of this action are virtually cyclic: Let γ be a non-degenerate
arc from a to b in T . We need to show that Stab(γ) is virtually cyclic. By definition Stab(γ) acts on γ,
inducing a homomorphism ρ : Stab(γ) → Isom(γ). Since T is an R-tree, γ is a geodesic segment and
Isom(γ) ∼= Z/2Z. Therefore,

H := ker(ρ) = {h ∈ Stab(γ) | h · x = x for all x ∈ γ}

has index at most 2 in Stab(γ) and it suffices to show that H is virtually cyclic.
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Using Lemma 2.20 and Lemma 2.19 we only need to prove that H ′ := {[h, k] | h, k ∈ H} is finite. The
intuition behind this is that on a geodesic segment in Xn approximating γ, H is close to acting by
translations. Since translations along a geodesic segment commute, a commutator will be close to acting
trivially giving us an upper bound on the number of commutators.
To make this precise, we need to recall the precise notion for approximating from the proof of the
Theorem 3.7: Let a ∈ T, n ∈ N and F ⊆ Γ finite. We define Xn(F, a) ⊆ Xn to be the set of all points
p ∈ Xn for which there exists g, h ∈ F such that

– a lies on the geodesic segment [g · t, h · t] in T .
– and p divides a geodesic segment between g · xn and h · xn in the same ratio as a divides [g · t, h · t].

We have already seen that this construction has the following properties (see p.19):

Claim.
(1) We have Xn(g · F, g · a) = φn(g) ·Xn(F, a) for all F ⊆ Γ finite, a ∈ T , n ∈ N and g ∈ Γ.
(2) Let F, F ′ ⊆ Γ finite. If F ⊆ F ′ then Xn(F, a) ⊆ Xn(F

′, a) for all a ∈ T and n ∈ N.
(3) For every a ∈ T there exists some F ⊆ Γ finite with Xn(F, a) ̸= ∅ for all n ∈ N.
(4) The sequence (diamXn(F, a)/λn)n∈N converges to 0 for all F ⊆ Γ finite and a ∈ T .
(5) Let a, b ∈ T and F ⊆ Γ finite. The sequence (d(an, bn)/λn)n∈N converges to dT (a, b) for any choice

of sequences (an)n∈N, (bn)n∈N with an ∈ Xn(F, a), bn ∈ Xn(F, b).

By (2) and (3) there exists F ⊆ Γ finite, such that Xn(F, a) and Xn(F, b) are non-empty for all
n ∈ N. Choose sequences (an)n∈N, (bn)n∈N with an ∈ Xn(F, a), bn ∈ Xn(F, b). Consider a geodesic
σn : [0, Dn] → Xn from an to bn and let cn := σn(Dn/2) be its midpoint.
Let h ∈ H and let τh,n := max{d(an, φn(h) · an), d(nn, φn(h) · bn)} be the maximal amount one of the
endpoints is moved by h. Then the map

ĥn : [τh,n, Dn − τh,n] → σn([0, Dn])

x 7→ σn(d(an, φn(h) · bn)−Dn + x)

is well-defined (although possibly on an empty set) since by the triangle inequality for x ∈ [τh,n, Dn−τh,n]

d(an, φn(h) · bn)− d(an, bn) + x ∈ [−d(bn, φn(h) · bn), d(bn, φn(h) · bn)] + x ⊆ [−τh,n, τh,n] + x ⊆ [0, Dn]

Note that ĥn is a translation by at most τh,n along the geodesic segment σn([0, Dn]).

We want to give a more geometric description of ĥn: Observe that by direct calculation

d(an, ĥn(x)) + d(φn(h) · an, φn(h) · bn)− x = d(an, φn(h) · bn)

an
bn

φn(h) · an
φn(h) · bn

φn(h) · x

i

ĥ(x)

Hence geometrically ĥ is given by taking the point i corresponding to φn(h) ·x under δ-slimmness applied
to the triangle spanned by an, φn(h) · bn, φn(h) · an and then letting ĥ(x) be the point corresponding in
turn to i under δ-slimmness applied to the triangle spanned by an, bn, φn(h) · bn. The definition of τh,n
ensures that i lies on the geodesic between an and φn(h) · bn.
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This shows that the maps φn(h) and ĥn are 2δ-close5, where with Proposition 2.2 we have chosen δ ≥ 0
such that for all n ∈ N all geodesic triangles in Xn are δ-thin.
We next want to ensure that ĥn is defined on a sufficiently large set: By (1), (2) and (5) applied to F or
F ∪ h · F

d(an, φn(h) · an)
λn

n→∞−−−→ dT (a, h · a) = 0
d(bn, φn(h) · bn)

λn

n→∞−−−→ dT (b, h · b) = 0

d(an, bn)

λn

n→∞−−−→ dT (a, b) > 0

Hence, there exists Nh ∈ N such that for n ≥ Nh

Dn

λn
=
d(an, bn)

λn
> 10 ·max

{
d(an, φn(h) · an)

λn
,
d(bn, φn(h) · bn)

λn

}
= 10 ·

τh,n
λ

and therefore Dn > 10τhn implying that ĥn is defined on a non-empty set.

Claim. There exists C ≥ 0 such that for all h, k ∈ H there exist N ∈ N such that d(cn, φn([h, k]) ·cn) ≤ C
for all n ≥ N .
Let N := max{Nh, Nk} and τn := max{τh,n, τk,n}. By the above construction ĥn, k̂n (and therefore

also ĥ−1
n, k̂−1

n) are defined on the non-empty set [τn, Dn − τn] and translate by at most τn. By the
10 = 2 · (4 + 1) in the last inequality this implies that the composition of up to four of those maps is at

least defined at the midpoint cn. Since φn(k
−1) and k̂−1

n are 2δ-close, φn(h
−1k−1) and φn(h

−1)k̂−1
n are

also 2δ-close. Hence, φn(h
−1k−1) and ĥ−1

nk̂−1
n are 4δ-close. Iteratively, φn([h, k]) and ĥnk̂nĥ−1

nk̂−1
n

are 8δ-close. As the hat-maps are translations along the same geodesic segment and hence commute

ĥnk̂nĥ−1
nk̂−1

n = ĥnĥ−1
nk̂nk̂−1

n is also 8δ-close to φn(hh
−1kk−1) = id. All together this shows that

φn([h, k]) is 16δ-close to the identity, proving the claim for C = 16δ. □

Let K ∈ N be the number of elements in Γ with word length at most C + 2. Consider a finite subset
A ⊆ H. By the Claim there exists N ∈ N such that d(cN , [h, k]·cN ) < C for all h, k ∈ A. By construction
of the Cayley graph, we can find g ∈ Γ such that d(g, cN ) < 1. Then by the triangle inequality

d(e, g−1 · φn([h, k]) · g) = d(g, φn([h, k]) · g) ≤ d(cn, φn([h, k]) · cn) + 2 ≤ C + 2

Since x 7→ g−1 · φn(x) · g defines an automorphism of Γ, it follows that the set A′ :=
{
[h, k]

∣∣ h, k ∈ A
}

has cardinality at most K.
Since Γ is finitely generated, it is countable. Hence, H is also countable and there exists an ascending
sequence of finite subsets A1 ⊆ A2 ⊆ · · · ⊆ H whose union is H. Then the ascending union of
A′

1 ⊆ A′
2 ⊆ . . . is also H ′. As each of the A′

n has at most K elements, H ′ also has at most K – in
particular finitely many – elements. ■

5We say that two maps f, g : I → X are η-close if d(f(x), g(x)) ≤ η for x ∈ I and let an element of Γ also refer to the
map through which it acts.
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4 Self-homotopy equivalences of manifolds

4.1 Two groups of self-homotopy equivalences

The goal of this section is to define the group of self-homotopy equivalences of a topological space with
and without a basepoint and to study the relationship between these groups and the fundamental group
of the space. The core issue will be to understand how precisely the various objects depend on the
choice of basepoint. We begin by recalling this for the fundamental group (see [Hat02: Proposition 1.5]):

Construction 4.1. Let X be a topological space. Given paths α, β : [0, 1] → X with α(1) = β(0) we
write α · β for the path given by first traversing α followed by β and α for the inverse path of α.
For every path γ : [0, 1] → X there is a group isomorphism, the change-of-basepoint along γ,

bγ : π1(X, γ(1)) → π1(X, γ(0))

[σ] → [γ · σ · γ]

We note some basic properties of this construction:
– If γ : [0, 1] → X is a loop, i.e. x := γ(0) = γ(1), it represents an element [γ] ∈ π1(X,x). Then

bγ : π1(X,x) → π1(X,x) is given by conjugation with [γ].
– If α, β : [0, 1] → X are paths with α(1) = β(0), then bα·β = bα · bβ.
– The change-of-basepoint is natural in the sense that for a path γ : [0, 1] → X and a continuous

map f : X → Y between topological spaces the diagram

π1(X, γ(1)) π1(Y, (f ◦ γ)(1))

π1(X, γ(0)) π1(Y, (f ◦ γ)(0))

f∗

bγ bf◦γ

f∗

commutes.

Having refreshed our memory, we turn to the main object of interest for this section:

Definition. Let X be a topological space and x ∈ X a basepoint. We consider two groups:
– E(X), the group of self-homotopy equivalences of X up to homotopy.
– Ex(X), the group of basepoint preserving self-homotopy equivalences of X up to pointed homotopy.

The group structure is in both cases given by composition.

At first glance it might seem as if Ex(X) were a subgroup of E(X). This is not the case since pointed
homotopy is a more restrictive equivalence relation. Let us recall that in fact the opposite is the case
(see [Hat02: Section 4.A] or [Rut97: Section 1]):

Construction 4.2. Let (X,x) be a well-pointed Hausdorff space, i.e. the pair (X,x) has homotopy
lifting property. We associate to a loop γ : [0, 1] → X based at x a homotopy equivalence φ(γ) : X → X
in the following way: By the homotopy lifting property there exists a homotopy F : X × [0, 1] → X
with F0 = id and γ(t) = F (t, x) for t ∈ [0, 1]. Set φ(γ) := F1. Since we chose γ(t) = F (t, x) (instead of
γ(t) = F (t, x)) this defines a group homomorphism φ that fits into an exact sequence

π1(X,x) Ex(X) E(X) 0
φ p

where p is the map given by forgetting the basepoint.
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Such prepared, we return to exhibiting a relationship between the groups of self-homotopy equivalences
of X and the fundamental group of X. A naive idea might be to associate to a homotopy equivalence
f : X → X the map induced by it on the fundamental group – but this is only well-defined on a specific
fundamental group if f respects a basepoint. For an arbitrary f one must correct this by a suitable
change of basepoint which will only be well-defined up to conjugation:

Proposition 4.3. Let X be a path-connected topological space and x ∈ X. We have homomorphisms

Ψx : Ex(X) → Aut(π1(X,x))

[f ] 7→
(
f∗ : π1(X,x) → π1(X,x)

)
Ψ: E(X) → Out(π1(X,x))

f 7→
[
bγ ◦

(
f∗ : π1(X,x) → π1(X, f(x))

)]
for γ : [0, 1] → X a path from f(x) to x

If (X,x) is well-pointed Hausdorff, they fit into a commutative diagram with exact rows

π1(X,x) Ex(X) E(X) 0

π1(X,x) Aut(π1(X,x)) Out(π1(X,x)) 0

φ

id

p

Ψx Ψ

C q

where C is given by conjugation and q is the quotient map.

Proof. The well-definiteness of Ψx is a classical result, so let us turn to Ψ:
We begin by showing that the definition of Ψ is independent of the choice of path: Let f ∈ E(X) and
α, β : [0, 1] → X be paths from f(x) to x. Then α · β is a path from x to x and the change-of-basepoint
along α · β corresponds to conjugation by [α · β] on π1(X,x). Hence, in Out(π1(X,x))[

bβ ◦ f∗
]
=

[
bα·β ◦ bβ ◦ f∗

]
=

[
bα·β·β · f∗

]
=

[
bα ◦ f∗

]
showing that Ψ is well-defined.
To see that Ψ is a group homomorphism, let f, g ∈ E(X) and α : [0, 1] → X be a path from f(x) to x,
β : [0, 1] → X a path from g(x) to x. Then

Φ(f) ◦ Φ(g) = (bα ◦ f∗) ◦ (bβ ◦ g∗) = bα ◦ bf◦β ◦ f∗ ◦ g∗ = bα·(f◦β) ◦ (f ◦ g)∗ = Φ(f ◦ g)

Commutativity of the right square of the diagram follows by direct calculation: Given [f ] ∈ Ex(X) we
can choose a constant path γ : [0, 1] → X at x to calculate

(φ ◦ p)([f ]) = [bγ ◦ f∗] = [f∗] = (q ◦Ψx)([f ])

Commutativity of the left square is more involved: Let [σ] ∈ π1(X,x). As in Construction 4.2 there
exists a homotopy F : X × [0, 1] → X with F0 = id, F (t, x) = σ(t) for t ∈ [0, 1] and [F1] = φ([σ]). Then
for [τ ] ∈ π1(X,x) by restricting the homotopy F

(Ψx ◦ φ)([σ])([τ ]) = [F1 ◦ τ ] = [σ · τ · σ] = C([σ])([τ ])

The top row in the given diagram is exact by Construction 4.2. The bottom row is exact by definition
of the outer automorphism group ■
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In general, there is of course no hope of these maps being an isomorphism since this would correspond
to a correspondence between algebraic and topological properties. But of course, there is a class of
spaces where such a correspondence does exist:

Definition. Let G be a group and n ≥ 1. A path-connected topological space X is a Eilenberg-MacLane
space of type K(G,n) if X admits a CW-structure and

πi(X) ∼=

{
G, if i = n

0, otherwise

The next proposition summarizes some properties of these spaces (see [Hat02: pp. 365-366, 390]):

Proposition 4.4. Let G be a group and n ≥ 1. If n ≥ 2 we demand that G is abelian.
(1) An Eilenberg-MacLane space of type K(G,n) exists and it is determined up to homotopy equivalence.
(2) We have a group isomorphism

Ex(X) → Aut(πn(K(G,n)))
[f ] 7→ f∗

Combining this with Proposition 4.3 we obtain the following corollary:

Corollary 4.5. Let G be a group and n ≥ 1. If n ≥ 2 we demand that G is abelian. Let X be an
Eilenberg-MacLane space of type K(G,n). Then E(X) and Out(G) are isomorphic.

Proof. In the case n = 1, it follows from Proposition 4.4, the commutative diagram in Proposition 4.3
and the Five Lemma that Ψ: E(X) → Out(π1(X)) is an isomorphism.
For n ≥ 2 we have π1(X) = 0. This implies by the exact sequence in Construction 4.2 that Ex(X) ∼= E(X).
The claim now follows directly from Proposition 4.4 since G is abelian. ■

4.2 Hyperbolic manifolds

In this last section we want to return to the discussion from the introduction and give a finiteness
condition for the group of self-homotopy equivalences of hyperbolic manifolds. We begin by giving
some theory and examples for hyperbolic manifolds. We can however not fully explore the necessary
background in geometry and instead refer to [Lee97].

Definition. A hyperbolic manifold is a complete Riemannian manifold of constant sectional curvature −1.

The class of hyperbolic manifolds is quite large. We give some examples in low dimensions:

Examples 4.6.
– Consider a closed (orientable or non-orientable) surface Σ of Euler characteristic χ. Such a surface

can be defined by suitably gluing the edges of a (4− 2χ)-gon ∆. Under this gluing all vertices
become one point, so to be able to perform this gluing geometrically (i.e. with a Riemannian
metric on ∆ descending to Σ) (4− 2χ)-times the interior angle of ∆ needs to be 2π. Unless χ = 0,
this is not the case with the standard Euclidean metric on ∆.
But a regular hyperbolic n-gon with all interior angles α exists if any only if its area (n−2)π−nα is
positive, so there does exist a regular hyperbolic (4−2χ)-gon ∆ with interior angle α = 2π/(4−2χ)
when χ < 0. Then one can perform the gluing geometrically on ∆ giving Σ a hyperbolic structure.
See [Thu97: p.27] for a more detailed account.
If χ ≥ 0, such a hyperbolic (4− 2χ)-gon does not exist, which might lead us to expect that in this
case there is no hyperbolic structure on the surface. We will return to this after developing some
more theory.
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Gluing a hyperbolic octagon to build the orientable surface of genus 2

– In a similar manner, one can also obtain hyperbolic 3-manifolds by gluing polyhedrons:
Consider a dodecahedron. Two opposing faces are misaligned by a twist of 1/10. Therefore, we
can identify each face with its opposite with clockwise twist by 3/10 of a turn6:

Notice that this operation is symmetrical, i.e. opposing faces get glued to each other in the same
manner. On can check similarly to the surface case that the result is a closed 3-dimensional
manifold – the Seifert–Weber dodecahedral space. All vertices become one point with small
spherical neighbourhoods of them arranged as a subdivision of a icosahedron and the edges are
identified in six groups of five.
The interior dihedral angle along an edge of the dodecahedron is arccos(−1/

√
5) ≈ 2.03 and

therefore too large to perform this gluing geometrically on a Euclidean dodecahedron. But similar
to the surface case one can argue that there exists a hyperbolic dodecahedron with interior angles
2π/5. Gluing together this dodecahedron shows that the Seifert–Weber dodecahedral space can
be given a hyperbolic structure. See again [Thu97: Example 1.4.5] for a more detailed account.

6Of course, we could also identify them with a 1/10 or 5/10 twist. The former leads to the Poincaré homology sphere
(see [Thu97: Example 1.4.4]), the latter is the description of RP3 as a quotient of a ball.
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– While the Seifert-Weber dodecahedral space is difficult to visualise, there are many 3-dimensional
hyperbolic manifolds that can be depicted – if one accepts that they are no longer closed:
In [Thu97: Examples 3.3.8-3.3.10, 3.4.16] there are instructions on how to glue hyperbolic polyhedra
with some of their edges removed to obtain the complements in S3 of the links indicated below.

figure-8 knot Whitehead link Borromean rings

In fact, the complements of many knots can be given a hyperbolic structure. This is a consequence
of Thurston’s Hyperbolization Theorem, see [Thu82: Corollary 2.5].

It is no accident that these examples were all given by suitably gluing sides of a hyperbolic polytopes.
The classification of complete Riemannian manifolds of constant sectional curvature specialised to
hyperbolic manifolds shows that any hyperbolic manifold is of this from:

Theorem 4.7 ([Lee97: Corollary 11.13]). Let M be a connected hyperbolic manifold. Then M is
isometric to Hn/Γ where Γ ⊆ Isom(Hn) is a discrete subgroup isomorphic to π1(M) acting freely and
properly discontinuously on Hn.

We can immediately deduce some properties of the fundamental group of a closed hyperbolic manifold:

Corollary 4.8. Let M be a closed connected hyperbolic manifold.
(1) π1(M) is hyperbolic.
(2) π1(M) is torsion-free.
(3) M is an Eilenberg-MacLane space of type K(π1(M), 1).

Proof.
(1) By Theorem 4.7 and the Schwarz-Milnor Lemma π1(M) is quasi-isometric to Hn which is a

hyperbolic metric space by Examples 2.3. The claim follows from Theorem 2.4.
(2) By Theorem 4.7 π1(M) acts freely on Hn, hence all elements of π1(M) act by parabolic or

hyperbolic isometries which have infinite order.
(3) Since M is a smooth manifold, it admits a CW-structure. All higher homotopy groups of M

vanish as its universal covering is contractible by Theorem 4.7. ■

Here the restriction to closed manifolds is essential to ensure the action of the fundamental group on
Hn is cocompact so that we can apply the Schwarz-Milnor Lemma. In general, the fundamental group
of a hyperbolic manifold confusingly need not be hyperbolic:

Example 4.9. It is a knot-theoretic consequence of the Loop Theorem that the inclusion of the torus
bounding a tubular neighbourhood of a non-trivial knot into its complement induces an injection on the
fundamental group (see [Lic97: Theorem 11.2]). This implies in particular that the fundamental group
of the complement of a non-trivial knot contains Z2 as a subgroup and is therefore not hyperbolic by
Corollary 2.17, in contrast to the existence of hyperbolic knot complements discussed in Examples 4.6.
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With the next example we fulfil our promise to return to discussing hyperbolic structures on surfaces,
confirming our suspicion from Examples 4.6 that surfaces of non-negative Euler characteristic do not
allow hyperbolic structures:

Examples 4.10. A closed surface of Euler characteristic 0 is covered by a torus. Hence, its fundamental
group contains Z2 as a subgroup and is therefore not hyperbolic by Corollary 2.17. By Corollary 4.8 the
surface itself then also cannot be equipped with a hyperbolic structure.
The two surfaces of positive Euler characteristic have universal covering S2. Hence, it follows from
Theorem 4.7 that they also cannot carry a hyperbolic structure.

The next theorem brings together what we discussed. It shows that Paulin’s Theorem 3.1 can be applied
to closed hyperbolic manifolds:

Theorem 4.11. A closed connected hyperbolic manifold M has infinite group of self-homotopy equiva-
lences E(X) if and only if its fundamental group π1(M) essentially splits over a cyclic subgroup.

Proof. Theorem 3.4 applies to π1(M) since
– π1(M) is hyperbolic and torsion-free by Corollary 4.8.
– π1(M) is not cyclic by Theorem 4.7 since cyclic groups do not act cocompactly on Hn.

The claim follows since Out(π1(M)) ∼= E(M) by Corollary 4.8 and Corollary 4.5. ■

This gives us two corollaries. The first one deals with the surface case:

Corollary 4.12. A closed hyperbolic surface has infinite group of self-homotopy equivalences.

Proof. By Examples 4.6 and Examples 4.10 the closed hyperbolic surfaces are precisely those of negative
Euler characteristic. Cutting along a non-separating curve shows that their fundamental group can be
written as an HNN-extension over Z, with the vertex group being the fundamental group of a surface
of non-negative Euler characteristic minus two discs. Such a group is never Z. Hence, this splitting is
essential and the claim follows from Theorem 4.11. ■

The second one deals with the situation in dimension at least 3. It is the corollary of Mostow rigidity
we originally set out to prove and thus a fitting conclusion to this essay:

Corollary 4.13. A closed hyperbolic manifold of dimension at least 3 has finite group of self-homotopy
equivalences.

Sketch of a proof. We tentatively only call this a “Sketch of a proof” since we do not have the space to
establish the required background regarding the Gromov-boundary of a hyperbolic group (see [KB02]):
Let M be a closed hyperbolic manifold of dimension n ≥ 3. We need to show that π1(M) does not split
essentially over a cyclic subgroup. We do this by analysing its Gromov-boundary ∂π1(M): It follows from
Theorem 4.7, the Schwarz-Milnor Lemma and the quasi-isometry invariance of the Gromov-boundary
that ∂π1(M) is homeomorphic to Sn−1. We can therefore derive the claim from the following two
observations which can be deduced from the definition of the Gromov-boundary (see [KB02: Section 7]):

– If a hyperbolic group splits over {e}, its Gromov-boundary is disconnected.
– If a hyperbolic group splits essentially over Z, its Gromov-boundary has a local cut point, i.e. a

point whose removal makes all sufficiently small neighbourhoods of it disconnected. ■
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