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Einleitung

Nach dem Hauptsatz der Differential und Integralrechnung hat jede stetige reelle Funktion eine Stammfunktion.
Allerdings ist der Beweis nicht konstruktiv — dies wirft natiirlich die Frage auf fiir welche Funktionen man eine
Stammfunktion ,konkret hinschreiben* kann. Damit ist gemeint, dass sich die Stammfunktion eine elementare
Funktion ist. Ublicherweise fallen unter diesen Begriff

e gebrochen rationale Funktionen (Konstanten, Potenzfunktionen, ...) und beliebig hohe Wurzelfunktionen
e die Exponential- und Logarithmusfunktionen
e trigonometrische und hyperbolische Funktionen (sin, cos, tan, . ..sinh, cosh,...) und deren Umkehrung

und Funktionen die sich aus dieser Liste durch endliche Addition, Subtraktion, Multiplikation, Differenzen oder
Verkettung erzeugen lassen. Die Auswahl genau dieser Funktionen hat vor allem historische Griinde. Dies macht
den Begriff der elementaren Funktion allerdings mathematisch schwer fassbar. In dieser Arbeit wollen wir ihn
deshalb zuerst prézise algebraisch formulieren um danach mit dem Satz von Liouville eine Antwort auf die Frage
nach elementarer Integrierbarkeit geben zu kénnen.

Der Ansatz den wir dabei verfolgen wollen stammt im Wesentlichen aus [Ros72].

Grundlegende Begriffe zu Differentialkorpern

Definition (Differentialkérper). Ein Differentialkorper ist ein Korper K zusammen mit einer Selbstabbildung
K — K, a— d, sodass fiir alle a,b € K

-(a+b)=d+V
- (ab) = d'b+ al/
Eine Element a € K heikt Konstante, falls a’ = 0.

Beispiel (Meromorphe Funktionen). Der Kérper der meromorphen Funktionen auf einem Gebiet G C C zu-
sammen mit der iiblichen Ableitung ist ein Differentialkorper. Dieser ist fiir uns von besonderem Interesse,
da jede elementare Funktion meromorph auf einem geeigneten Gebiet ist. Die Konstanten dieses Korpers sind
genau die konstanten Funktionen im {iblichen Sinn.

Lemma 1 (Grundlagen Differentialkorper). Ist K ein Differentialkorper, so gelten die iblichen Ableitungsregeln
fira,be K;b#0 undn € Z:

!’

a\’  a'b—ab ay' d n-ab s nel s
G) =" () =p - Fr @V=nl
und 0’ = 1 = 0. Insbesondere bilden die Konstanten einen Teilkérper.
Beweis: Es gilt
0=0+4+0"=0+0 = 00=0 uwud 1'=01-1))=1+1 = 1'=0
somit folgt auc}E]

0=1'=((~1)- (~1) = —(~1) = (-1 = =2+ (-1) = (~1)'=0

m Fall char(K) = 2 gilt —1 = 1, also folgt ebenfalls (—1)" =0
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Weiter gilt

,_ba’_b'a b a\’ a\’  a'b—ab'

=(3) =5+ (G) = () =%

daraus folgt direkt die andere Rechenregel zu Quotienten.

Nach induktiver Anwendung der Produktregel folgt (a™)’ = na™~!-a’ fiir n > 1. Im Fall n = 0 wurde wegen
a® = 1 bereits bewiesen und der Fall n < —1 l&sst sich mit der Quotientenregel und 1’ = 0 auf den Fall n > 1
zuriickfiihren.

Die Konstanten bilden einen Teilkorper, da

-0=1=(-1)=0
- Abgeschlossenheit unter Addition und Multiplikation nach Summen- und Produktregel
- Abgeschlossenheit unter multiplikativen Inversen nach der Quotientenregel o\

Um unsere Problemstelldung vollsténdig zu algebraisieren, bendtigen wir noch Definitionen von Exponential-
und Logarithmusfunktion, die ohne Grenzwerte auskommen. Da wir eigentlich nur an Ableitungen interessiert
sind, bietet es sich an diese iiber ihre Ableitungsregeln zu definieren:

Definition (Exponential und Logarithmus). Ist K ein Differentialkérper und a,b € K mit a # 0, so ist a ein
Ezxponential von b bzw. b ein Logarithmus von a falls

a/

¥==
a

Lemma 2 (Ableitungsregel Logarithmus). Sei K ein Differentialkérper, aq,...,a, € K* und vq,...,v, € Z.

Ist b € K ein Logarithmus von ai* ---alr so gilt

a/vl R a/’U,L)/ (a/l)/ (a )/
b,: ( 1 n = V1 - +"'+'U . n
ait - -ap” Ve " ap

Beweis: Durch induktives Anwenden der Produktregel erhélt man

—

V1 Un )/ n
(al ...an”) — 1 . avl ...aU’" ...aU” . (aw')/
R U, 1 i n i
a DR an "
1 i=1

all)l Salr
1 = —
= e @) (@)
al cee Ay —
=1
/ /
:U1~(a1) Jr"'JrUn'(an) A
aq Qp,

Definition (Differentialkorpererweiterung). Eine Korpererweiterung differentieller Korper K C L heift Diffe-
rentialkorpererweiterung, wenn die beiden Ableitungen auf K iibereinstimmen.

Proposition 3 (algebraische Differentialkorpererweiterung). Sei K ein Differentialkorper und K C L eine se-
parable (insbesondere algebraische) Korpererweiterung. Dann existiert eine eindeutige Erweiterung der Ableitung
von K auf L. Auferdem gilt fiir jeden Automorphismus o von L/K

(o(t) =o'y  firaletelL

Bewets: E| Wir zeigen zunéchst die Eindeutigkeit, sei also angenommen, dass K C L eine Differentialkorperer-
weiterung ist. Dann gilt fiir f:=>"" ;X' € K[X]und t € L

n

(FO) =3 (ait’) =3 ajt! +a; it ' = Do(f)(t) + Dr(f)(¢) - ¥

i=0 i=0
wobel

Do: K[X] — K[X]
Z a; X"~ Z a, X’
=0 =0

2Ist man nur am klassischen Fall iiber R oder C interessiert, so folgt diese Aussage direkt aus dem Satz {iber implizierte Funktionen
und den Ableitungsregeln fiir implizite Funktionen.
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und D;: K[X] — K[X] die iibliche Ableitung. Wahlen wir nun f gleich dem Minimalpolynom von ¢, so gilt
D, (f)(t) # 0 da die Korpererweiterung separabel ist. Also gilt

Do)

Dy(f)(t)
somit ist die Differenzialkérperstruktur auf L eindeutig bestimmt, sofern sie existiert.
Aufgrund der bereits bewiesenen Eindeutigkeit und da jede algebraische Korpererweiterung Vereinigung ihrer
endlichen Teilerweiterungen ist, konnen wir zum Nachweis der Existenz annehmen, dass K C L eine endliche
Erweiterung ist. Nach dem Satz vom primitiven Element existiert also ein ¢ € L mit L = K(t). Sei f das
Minimalpolynom von ¢ tiber K. Da die Kérpererweiterung separabel ist, gilt D1 (f)(¢) # 0. Da L = K(t) = K]t]
existiert p € K[X] mit

Wir betrachten

D: K[X] = K[X]
g+ Do(g) +p- Di(9)

Nach der Definition folgt sofort, dass D(g+h) = D(g)+D(h) und D(gh) = D(g)-h~+g-D(h) fir alle g, h € K[X].
Wir betrachten den Ringepimorphismus 7: K[X] — K[t] = L, der gegeben ist durch X +— ¢. Da

D(f)(t) = Do(f)(t) + p(t) - D1(f)(t) = O,

gilt D(f) € (f) = ker(w). Somit existiert nach der universellen Eigenschaft des Quotienten ein Gruppenhomo-
morphismus A: L = K[t] ~ K[X]/ker(r) — K[t] = L mit Aoxw = mo D. Dieser ist die gesuchte eindeutige
Erweiterung der Differentialkérperstruktur von K auf L.

Weiter ist auch o o A o 0~ ! eine Ableitung auf L die mit der Ableitung auf K iibereinstimmt, also gilt
coA=Aoo. A

Definition (elementare Korpererweiterung). Eine Differentialkorpererweiterung K C L heift elementar, falls
L = K(t,...,t,) mit t; algebraisch tiber K(t1,...,¢;—1) oder Logarithmus oder Exponential eines Elements
aus K(tl, ey ti—l)-

Bemerkung. Eine Funktion f: C — C (oder f: R — C) ist genau dann elementar im Sinne der Einlei-
tung, wenn sie meromorph auf einem Gebiet G C C ist und Element einer elementaren Korpererweiterung
des Korpers der rationalen Funktionen auf G (falls f nur auf R definiert ist, fordern wir zunéchst holomorphe
Fortsetzbarkeit auf ein Gebiet G C C). Wir erlauben hier komplexwertige Funktionen, denn dann lassen sich die
trigonometrischen und hyperbolischen Funktionen sowie ihre Umkehrabbildungen durch Exponentialfunktion
und Logarithmus darstellen, zum Beispiel gilt

arctan(z) = %i(log(l —ixz)—log(l+ix))

Da i algebraisch iiber R(t) ist, erlaubt der Begriff der elementaren Korpererweiterung es ohnehin nicht, kom-
plexwertige Funktionen auszuschliefsen.

Der Satz von Liouville

Geriistet mit diesen Begriffen, kénnen wir den Hauptsatz dieser Arbeit formulieren. Er erlaubt uns fiir gegebene
Funktionen zu entscheiden, ob sie elementar integrierbar sind.

Satz 4 (Liouville, 1833). Sei K ein Differentialkérper von Charakteristik 0 und f € K.
Ezistiert eine elementare Korpererweiterung K C L, sodass L die selben Konstanten wie K hat und ein g € L

mit ¢’ = f, dann gibt es Konstanten ci,...,c, € K und uy,...,u, € K*,v € K mit
n u’
3ot
i=1 i

Beispiel (neue Konstanten). Wir betrachten den rationalen Funktionenkdrper K := R(z) und

1 1 1 '
f= o arctan’(z) = <2 ilog(1—iz) — iilog(l + 1x)>
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Damit ist f in R(z) C R(z)(i,log(1 —iz),log(1 +ix)) = L elementar integrierbar. In dieser Erweiterung treten
allerdings neue Konstanten auf: Die Konstanten von K sind R, wéhrend die Konstanten von L durch C gegeben
sind. Tatséchlich ist f auch nicht von der im Satz von Liouville gegebenen Form:

Angenommen es existieren ¢i,...,¢, € R und u,...,u, € R(z)*,v € R(z) mit
n u/
= C; _* + rU/

Das Polynom p := 22 + 1 € R[z] ist irreduzibel. Tritt p v;-mal in der Primfaktorzerlegung von u; auf, so tritt

nach Lemma [2| p nicht im Nenner von Z— - vi% auf. Es gilt zudem

= w1 & ) P i P
/ 3 ?
v :f_ Ci+— = — — C; - — — U — _ CiV; —
Yool =g () e

also tritt p hochstens einmal im Nenner von v’ auf. Tritt p im Nenner von mindestens einmal v auf, so tritt p
nach Lemma [1| mindestens zweimal im Nenner von v auf. Damit tritt p nicht im Nenner von v und v" auf. Da

n ' p/ n p/ 1 n
U—l—Zci-(’—vi):f—chi: 1—|—Z2C¢’Uil‘
i=1 i p i PP i=1

folgt, dass 1+ Y1 | 2¢;v;z durch 2 + 1 teilbar ist. Widerspruch!

In diesem Beispiel ist der Satz von Liouville nicht anwendbar, da in der zu betrachtenden elementaren Korperer-
weiterung K C L neue Konstanten auftreten. Allerdings liegen die Konstanten von L zumindest im algebraischen
Abschluss von K. In der Tat ist der algebraische Abschluss von K die einzige Quelle fiir neue Konstanten. Dies
erlaubt eine Verallgemeinerung des Satz von Liouville ohne die Konstantenbedingung, vgl. |[Ris69} S. 171]. Fiir
den Beweis benétigen wir noch zwei weitere Lemmas:

Lemma 5. (logarithmische Differentialkorpererweiterung) Sei K C K(t) eine Differentialkérpererweiterunyg,
sodass K und K(t) die selben Konstanten haben, t transzendent iber K ist und t' € K (insbesondere wenn
t Logarithmus eines Elements aus K ). Dann ist fir jedes Polynom V = Y1  u;it' € K[t] mit n > 0 auch
(V(t)) € K[t] mit

deg((V(1))') =

n, falls pl, #0
n—1, fallspu, =0

Beweis: Es gilt

n n—1
(V) = py+ Y it + i - it ot = ™ g+ > (g + i) £
=1 =1

Falls p], # 0 folgt somit die Behauptung. Sei also p/, = 0. Angenommen
0= pin_y + pin-n-t" = (-1 + pin -0 - 1)’
SO i8t ft—1 + fn - n - t € L eine Konstante, also gilt pi,,—1 + py, - n -t € K. Widerspruch, zu ¢ ¢ K! 4

Lemma 6. (exponentielle Differentialkorpererweiterung) Sei K C K(t) eine Differentialkérpererweiterung,

sodass K und K(t) die selben Konstanten haben, t transzendent iber K ist und % € K (insbesondere wenn t
Ezponential eines Elements aus K ). Dann ist fir jedes nicht-konstante Polynom V € K|t] auch (V(t))" € K]t]
und deg(V) = deg((V(t))"), wobei (V (t)) nur dann ein Vielfaches von V ist, wenn V' ein Monom ist.

Beweis: Es gilt fiir allen e Nund 0 #a € K

€K

t/
(at™) = a't"™ 4+ nat" 't = (a’ +na- t> t".

Falls a’ + na - % = 0 gilt, ist at™ konstant, also at™ € K. Widerspruch zur Transzendenz von t, also gilt

a +na- %, #0.
Wendet man dies auf jedes Monom von V einzeln an, so folgt (V' (¢))" € K[t] und deg(V) = deg((V (¢))).
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Ist nun (V(t))' = f -V fiir ein f € K[t], gilt wegen der Grade sogar f € K. Angenommen V ist kein Monom.
Seien a,t™ und a,,t™ zwei verschiedene Monome von V mit n < m. Es gilt

n-ter Koeffizient m-ter Koeffizient
von (V(t))’ von (V(t))’
—_——~
/ t’ / t’
Gy, +nan o O, + M, T
an A
Somit gilt
/ t’ / t’ n+m
ant™ / ((an + nan7> Ay, — (am + nam?> . an) -t
' - 2 52 =0
Amt™ ag, - t<m
n .
also 42t ¢ K. Widerspruch zur Transzendenz von t. 4

amt™

Zudem bendtigen wir folgenden Satz

Satz 7 (Partialbruchzerlegung). Sei V(X) € K(X). Dann existieren eindeutig bestimmt gy, € K[X] fast alle
0 mit r > 0, h € K[X] normiert, irreduzibel und deg(gp, ) < deg(h), sowie p € K[X|, sodass

9h ’I‘(X)
V(X)=pX :
(M) =px)+ 3 PG
heK[X] r>0
irredusibel
Beweis. Folgt aus [Lan05, Kap. 4, Theorem 4.2, 4.3] zusammen mit Division mit Rest. A

Damit konnen wir uns nun dem Beweis des Satz von Liouville zuwenden.

Beweis Satz von Liouville: Nach Voraussetzung existiert eine Darstellung L = K (t1,...,ty) mit ¢; algebraisch
iiber K(t1,...,t;—1) oder Logarithmus bzw. Exponential eines Elements aus K (t1,...,t;_1).
Der Beweis erfolgt durch Induktion iiber V:
Induktionsanfang: N =0
Wir wahlen n :=0undv =g € L =K.
Induktionsschritt: N — 1~ N
Sei t := t;. Nach der Induktionsannahme angewendet auf K(t) C K(t1,...,tn) existieren Konstanten
015--+,0m € K(t) und A\y,..., N\, € K(t)*, n € K(t) sodass

AL
= i — 4
f Z; A v
Da L die selben Konstanten wie K hat, gilt 01,...,0, € K.
Fall 1: ¢ algebraisch {iber K
Somit existieren Polynome Uy, ...,U,,,V € K[X], sodass U;(t) = A; fiir alle 1 < i < m und V(¢) = p.
Seien 71,...,7s € K(t) die Konjugierten von ¢ = 71 in einem algebraischen Abschluss von K. Da wir in
Charakteristik 0 befinden, sind dies genau die einfachen Nullstellen des Minimalpolynoms von ¢ iiber K.
Wir wihlen Einbettungen o1,...,05: K(t) — K(t) iiber K mit o1(t) = 71,...,0s(t) = 7. Dann gilt fiir
1 <5 < s wegen

- N, & Ui(t
f:ZQi'E‘H‘ :291" (Ul((t)))

i=1

/

+ (V)

und Proposition [3] auch

Somit ist nach Lemma [2] (da Charakteristik 0 ist s € K*)

= %ZZ&- : (UU((TTJJ))) +(V(r)) = z_; % <UUii((7;))-.--Ui(Ts))’ N (V(n) +-

+ V() )/
J=1i=1 - Ui(Ts) s
Fir 1 < i < m sind Us(my)---Us(1s) und V(71) + --- + V(7s) symmetrische Polynome in 7,...,7;
mit Koeffizienten in K. Damit folgt durch Betrachten der Galoiserweiterung K C K(71,...,7s) schon
Ui(my) - Ui(1s), V(1) + - - + V(75) € K. Damit ist obige Darstellung von der gesuchten Form.
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Fall 2: t transzendent {iber K
Somit ist K (t) ein rationaler Funktionenkorper iiber K, also exitieren rationale Funktionen Uy, ..., U,,,V €
K(t), sodass U;(t) = \; fiir alle 1 < i < m und V(¢) = p. Fiir 1 < i < m erhalten wir durch Primfaktor-
zerlegung m; € N und fiir alle 1 < j < m; ein n;; € Z, o; € K und U;; € K[X] normiert und irreduzibel,
sodass

my

— Nij

= Qi H Usj
j=1

Nach Anwenden der Ableitungsregel fiir den Logarithmus aus Lemma [2 kdnnen wir deshalb oBdA. anneh-
men, dass U; € K oder U; € K[t] normiert und irreduzibel. Weiterhin kann angenommen werden, dass die
Ui, ..., U, paarweise verschieden sind und alle p; # 0.

Zudem betrachten wir die Partialbruchzerlegung von V nach Satz [7]

V(t) = p(t) + Z gh ol

heK|[t] r>0
normlert
irreduzibel

Zur Vereinfachung der Schreibweise setzen wir zudem gy = 0 fiir alle h € K[t] normiert, irreduzibel.
Fall 2.1: ¢ ist Logarithmus eines Elements aus K
Sei also a € K mit t' = <. Fiir 1 < i < m gilt, da U; normiert, nach Lemma (U;(t)) € K][t] und

deg(U;(t)) < deg(U;(t)). Da U; zudem irreduzibel, ist ((t))) vollstandig gekiirzt.
Die Partialbruchzerlegung von (V'(¢))’ ist nach Lemma I 1| gegeben durch

Ve =rt+ > Zghrt’ 7 g (t) - (h(t))

r+1
ReEK[] >0 h(t)
inredusibel
ghr ’I“—l) gh,r—lt'ht !
e Y Y DESLEG
heK[t] r>0
intedtizibel
Damit gilt
(i) /
= i V
f=Y o Gt ®)
_~ . wwy (gn.r(t) = (r—1) - gnr-1(t) - (A(1))’
i=1 heK]|[t] r>0
normlert

irreduzibel

Angenommen V' (¢) ist kein Polynom, also existiert h € K[X] normiert, irreduzibel mit

R :=max{r e N|gp,} >0.

Wie bereits bei den U; ist }E( B )),1 vollstdndig gekiirzt. Damit tritt
(h(2))’

—R-gnr(t)- (DR

in der Partialbruchzerlegung von f auf. Widerspruch zur Eindeutigkeit der Partialbruchzerlegung von
f € K aus Satz[7} also ist V(t) € K[X].

Analog folgt weiter, dass kein U; ein irreduzibles Polynom sein kann, also gilt A; = U; € K fir 1 <1i < m.
Nach entsprechendem Umstellen folgt damit (V(¢))’ € K. Nach Lemma [f]ist also V(t) = ot + v mit o € K
Konstante und v € K. Damit ist

Ui pV a’
— Lty —
/ ;Qz N gt

von der gesuchten Form.
Fall 2.2: ¢ ist Exponential eines Elements aus K
Somit ist existiert b € K mit ¥’ = *. Nach Lemma |§| ist fiir alle ¢ # P(t) € K[t] normiert und irreduzibel,
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auch (P(t))" € K[t] und P(t) teilt (P(¢))" nicht. Das selbe Argument wir in Fall 2.1 zeigt, dass P # U;(t)
flir 1 <4 < m und dass P in keinem Nenner der Partialbruchzerlegung von V auftritt. Somit gilt

_ E : 4J
= a;t
JEZ

mit a; € K fast alle 0. Da (U ((t)) € K fiir alle 1 < ¢ < m ist auch (V(¢)) € K, also ist nach Lemma
|§| auch p = V(t) € K. Sind alle Uy,...,U,, € K ist die gesuchte Darstellung gefunden. Sonst sei nach

Umnummerierung U; =t und Us, ..., U,, € K. Somit ist
— (Uit) / R (1O) s~ (U) /
_ - V) = o - — ;- V) = ;- b+ Vi(t
=Y e gt VO e T e T VO = Y e g+ b+ V)
von der gesuchten Form. A

Beispiel (e*ﬁ). Sei t == e~*". Wir zeigen zunschst, dass ¢ transzendent iiber F = C(x) ist. Angenommen ¢t
ist nicht transzendent iiber F', sei also

P=X"4+X\p 1 X" V4. 4 N € F[X]
das Minimalpolynom von t, also insbesondere
"+ A1t A = 0. (1)
Nach Ableiten beider Seiten folgt
—2z-m-t" 4+ X5 =0. (2)
Da P Minimalpolynom von ¢ muss Gleichung (2) proportional zu Gleichung (1) sein, insbesondere folgt
/
—2mx = i—g
Da alle irreduziblen Polynome in C[z] linear sind, folgt aus dem iiblichen Idee A\ in Primfaktoren zu zerlegen

und Lemma [2[ anzuwenden, dass :\\—6 entweder 0 ist, oder eine Summe von Briichen mit konstantem Z&hler und
linearem Nenner. Widerspruch! Dies zeigt, dass ¢ transzendent iiber F'.

Wir wenden uns nun dem eigentlichem Argument zu und betrachten K := C(z,t). Angenommen ¢t = e
ist elementar integrierbar. Somit existieren nach dem Satz von Liouville ¢i1,...,¢, € C und uy,...,u, €
(C(x,e_'”z)*,v € C(x, e‘mz) sodass

n l

— g c; - & + U/ (*)
: U;
=1

Sei F' := C(z). Somit sind uy,...,u, € F(t). Wir verfahren jetzt analog zum Beweis des exponentiellen Falls
im Satz von Liouville: Indem wir zuerst jedes u; als Produkt ganzzahliger Potenzen normierter, irreduzibler
Elemente von F'[t] schreiben und dann die Ableitungsregel des Logarithmus aus Lemma [2| anwenden, kénnen
wir o0BdA. annehmen, dass u; € F oder u; € F[¢] normiert und irreduzibel. Auferdem schreiben wir v mithilfe

_:1;2

der Partialbruchzerlegung als Summe eines Polynoms in F'[t] und Termen der Form h((tt))T mit h(t) € F[t] normiert
und irreduzibel, r > 0 und 0 # g(t) € F[t] mit deg(g(t)) < deg(h(t)). Wiederum folgt aus Lemma [6] dass

_ ot , .
vzg a;t? = v/:E aj']'t]';+a;-'ﬁ:§ (72x~aj'j+a;)~tj
JEZ JEZL JEZ

mit a; € F fast alle 0 und dass uq,...,u, € F U {t}. Somit gilt

n u/
E C; L e F
- uz
i=1
Nach Koeffizientenvergleich in (x) (hier geht insbesondere ein, dass ¢ transzendent iiber F') folgt, dass
1= —2za; + a}

Widerspruch, denn die Gleichung 1 = —2x - a + o’ ist fiir kein a € F = C(z) erfiillt.

Dieses Beispiel lisst sich leicht fiir beliebige Funktionen der Form f(z) - €9 fiir f,g € C(z) und f # 0,4 # 0
verallgemeinern (vgl. [Ros72, Abschnitt 6]).

Bemerkung. Der Satz von Liouville liefert zwar eine explizite Beschreibung jeder elementar integrierbaren
Funktion, allerdings ist es fiir beliebige Funktionen nicht so leicht festzustellen, sie von der beschriebenen Form
sind. Es gibt aber einen ,Algorithmus* nach Robert Risch, der fiir eine beliebige elementare Funktion ein
elementares Integral bestimmen kann, oder feststellt, dass es ein solches nicht gibt (vgl. |Ris69]).
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