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Einleitung
Nach dem Hauptsatz der Differential und Integralrechnung hat jede stetige reelle Funktion eine Stammfunktion.
Allerdings ist der Beweis nicht konstruktiv – dies wirft natürlich die Frage auf für welche Funktionen man eine
Stammfunktion „konkret hinschreiben“ kann. Damit ist gemeint, dass sich die Stammfunktion eine elementare
Funktion ist. Üblicherweise fallen unter diesen Begriff

• gebrochen rationale Funktionen (Konstanten, Potenzfunktionen, . . . ) und beliebig hohe Wurzelfunktionen

• die Exponential- und Logarithmusfunktionen

• trigonometrische und hyperbolische Funktionen (sin, cos, tan, . . . sinh, cosh, . . . ) und deren Umkehrung

und Funktionen die sich aus dieser Liste durch endliche Addition, Subtraktion, Multiplikation, Differenzen oder
Verkettung erzeugen lassen. Die Auswahl genau dieser Funktionen hat vor allem historische Gründe. Dies macht
den Begriff der elementaren Funktion allerdings mathematisch schwer fassbar. In dieser Arbeit wollen wir ihn
deshalb zuerst präzise algebraisch formulieren um danach mit dem Satz von Liouville eine Antwort auf die Frage
nach elementarer Integrierbarkeit geben zu können.
Der Ansatz den wir dabei verfolgen wollen stammt im Wesentlichen aus [Ros72].

Grundlegende Begriffe zu Differentialkörpern
Definition (Differentialkörper). Ein Differentialkörper ist ein Körper K zusammen mit einer Selbstabbildung
K → K, a 7→ a′, sodass für alle a, b ∈ K

- (a+ b)′ = a′ + b′

- (ab)′ = a′b+ ab′

Eine Element a ∈ K heißt Konstante, falls a′ = 0.

Beispiel (Meromorphe Funktionen). Der Körper der meromorphen Funktionen auf einem Gebiet G ⊆ C zu-
sammen mit der üblichen Ableitung ist ein Differentialkörper. Dieser ist für uns von besonderem Interesse,
da jede elementare Funktion meromorph auf einem geeigneten Gebiet ist. Die Konstanten dieses Körpers sind
genau die konstanten Funktionen im üblichen Sinn.

Lemma 1 (Grundlagen Differentialkörper). Ist K ein Differentialkörper, so gelten die üblichen Ableitungsregeln
für a, b ∈ K, b ̸= 0 und n ∈ Z:(a

b

)′
=

a′b− ab′

b2

( a

bn

)′
=

a′

bn
− n · ab′

bn+1
(an)′ = nan−1 · a′

und 0′ = 1′ = 0. Insbesondere bilden die Konstanten einen Teilkörper.

Beweis: Es gilt

0′ = (0 + 0)′ = 0′ + 0′ ⇒ 0′ = 0 und 1′ = (1 · 1)′ = 1′ + 1′ ⇒ 1′ = 0

somit folgt auch1

0 = 1′ = ((−1) · (−1))′ = −(−1)′ − (−1)′ = −2 · (−1)′ ⇒ (−1)′ = 0

1Im Fall char(K) = 2 gilt −1 = 1, also folgt ebenfalls (−1)′ = 0
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Weiter gilt

a′ =
(
b · a

b

)′
=

b′a

b
+ b ·

(a
b

)′
⇒

(a
b

)′
=

a′b− ab′

b2

daraus folgt direkt die andere Rechenregel zu Quotienten.
Nach induktiver Anwendung der Produktregel folgt (an)′ = nan−1 · a′ für n ≥ 1. Im Fall n = 0 wurde wegen
a0 = 1 bereits bewiesen und der Fall n ≤ −1 lässt sich mit der Quotientenregel und 1′ = 0 auf den Fall n ≥ 1
zurückführen.
Die Konstanten bilden einen Teilkörper, da

- 0′ = 1′ = (−1)′ = 0

- Abgeschlossenheit unter Addition und Multiplikation nach Summen- und Produktregel

- Abgeschlossenheit unter multiplikativen Inversen nach der Quotientenregel

Um unsere Problemstelldung vollständig zu algebraisieren, benötigen wir noch Definitionen von Exponential-
und Logarithmusfunktion, die ohne Grenzwerte auskommen. Da wir eigentlich nur an Ableitungen interessiert
sind, bietet es sich an diese über ihre Ableitungsregeln zu definieren:

Definition (Exponential und Logarithmus). Ist K ein Differentialkörper und a, b ∈ K mit a ̸= 0, so ist a ein
Exponential von b bzw. b ein Logarithmus von a falls

b′ =
a′

a

Lemma 2 (Ableitungsregel Logarithmus). Sei K ein Differentialkörper, a1, . . . , an ∈ K∗ und v1, . . . , vn ∈ Z.
Ist b ∈ K ein Logarithmus von av1

1 · · · avnn so gilt

b′ =
(av11 · · · avnn )′

av11 · · · avnn
= v1 ·

(a1)
′

a1
+ · · ·+ vn · (an)

′

an

Beweis: Durch induktives Anwenden der Produktregel erhält man

(av11 · · · avnn )′

av11 · · · avnn
=

1

av11 · · · avnn
·

n∑
i=1

av11 · · · âvii · · · avnn · (avii )
′

=
1

av11 · · · avnn
·

n∑
i=1

av11 · · · âvii · · · avnn · vi
(
avi−1
i

)
· (ai)′

= v1 ·
(a1)

′

a1
+ · · ·+ vn · (an)

′

an

Definition (Differentialkörpererweiterung). Eine Körpererweiterung differentieller Körper K ⊆ L heißt Diffe-
rentialkörpererweiterung, wenn die beiden Ableitungen auf K übereinstimmen.

Proposition 3 (algebraische Differentialkörpererweiterung). Sei K ein Differentialkörper und K ⊆ L eine se-
parable (insbesondere algebraische) Körpererweiterung. Dann existiert eine eindeutige Erweiterung der Ableitung
von K auf L. Außerdem gilt für jeden Automorphismus σ von L/K

(σ(t))′ = σ(t′) für alle t ∈ L

Beweis: 2 Wir zeigen zunächst die Eindeutigkeit, sei also angenommen, dass K ⊆ L eine Differentialkörperer-
weiterung ist. Dann gilt für f :=

∑n
i=0 aiX

i ∈ K[X] und t ∈ L

(f(t))′ =

n∑
i=0

(
ait

i
)′

=

n∑
i=0

a′it
i + ai · iti−1 · t′ = D0(f)(t) +D1(f)(t) · t′

wobei

D0 : K[X] → K[X]
n∑

i=0

aiX
i 7→

n∑
i=0

a′iX
i

2Ist man nur am klassischen Fall über R oder C interessiert, so folgt diese Aussage direkt aus dem Satz über implizierte Funktionen
und den Ableitungsregeln für implizite Funktionen.
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und D1 : K[X] → K[X] die übliche Ableitung. Wählen wir nun f gleich dem Minimalpolynom von t, so gilt
D1(f)(t) ̸= 0 da die Körpererweiterung separabel ist. Also gilt

t′ = −D0(f)(t)

D1(f)(t)

somit ist die Differenzialkörperstruktur auf L eindeutig bestimmt, sofern sie existiert.
Aufgrund der bereits bewiesenen Eindeutigkeit und da jede algebraische Körpererweiterung Vereinigung ihrer
endlichen Teilerweiterungen ist, können wir zum Nachweis der Existenz annehmen, dass K ⊆ L eine endliche
Erweiterung ist. Nach dem Satz vom primitiven Element existiert also ein t ∈ L mit L = K(t). Sei f das
Minimalpolynom von t über K. Da die Körpererweiterung separabel ist, gilt D1(f)(t) ̸= 0. Da L = K(t) = K[t]
existiert p ∈ K[X] mit

p(t) = −D0(f)(t)

D1(f)(t)

Wir betrachten

D : K[X] → K[X]

g 7→ D0(g) + p ·D1(g)

Nach der Definition folgt sofort, dass D(g+h) = D(g)+D(h) und D(gh) = D(g)·h+g ·D(h) für alle g, h ∈ K[X].
Wir betrachten den Ringepimorphismus π : K[X] → K[t] = L, der gegeben ist durch X 7→ t. Da

D(f)(t) = D0(f)(t) + p(t) ·D1(f)(t) = 0,

gilt D(f) ∈ (f) = ker(π). Somit existiert nach der universellen Eigenschaft des Quotienten ein Gruppenhomo-
morphismus A : L = K[t] ≃ K[X]/ ker(π) → K[t] = L mit A ◦ π = π ◦ D. Dieser ist die gesuchte eindeutige
Erweiterung der Differentialkörperstruktur von K auf L.
Weiter ist auch σ ◦ A ◦ σ−1 eine Ableitung auf L die mit der Ableitung auf K übereinstimmt, also gilt
σ ◦A = A ◦ σ.

Definition (elementare Körpererweiterung). Eine Differentialkörpererweiterung K ⊆ L heißt elementar, falls
L = K(t1, . . . , tn) mit ti algebraisch über K(t1, . . . , ti−1) oder Logarithmus oder Exponential eines Elements
aus K(t1, . . . , ti−1).

Bemerkung. Eine Funktion f : C → C (oder f : R → C) ist genau dann elementar im Sinne der Einlei-
tung, wenn sie meromorph auf einem Gebiet G ⊆ C ist und Element einer elementaren Körpererweiterung
des Körpers der rationalen Funktionen auf G (falls f nur auf R definiert ist, fordern wir zunächst holomorphe
Fortsetzbarkeit auf ein Gebiet G ⊆ C). Wir erlauben hier komplexwertige Funktionen, denn dann lassen sich die
trigonometrischen und hyperbolischen Funktionen sowie ihre Umkehrabbildungen durch Exponentialfunktion
und Logarithmus darstellen, zum Beispiel gilt

arctan(x) =
1

2
i (log(1− ix)− log(1 + ix))

Da i algebraisch über R(t) ist, erlaubt der Begriff der elementaren Körpererweiterung es ohnehin nicht, kom-
plexwertige Funktionen auszuschließen.

Der Satz von Liouville
Gerüstet mit diesen Begriffen, können wir den Hauptsatz dieser Arbeit formulieren. Er erlaubt uns für gegebene
Funktionen zu entscheiden, ob sie elementar integrierbar sind.

Satz 4 (Liouville, 1833). Sei K ein Differentialkörper von Charakteristik 0 und f ∈ K.
Existiert eine elementare Körpererweiterung K ⊆ L, sodass L die selben Konstanten wie K hat und ein g ∈ L
mit g′ = f , dann gibt es Konstanten c1, . . . , cn ∈ K und u1, . . . , un ∈ K∗, v ∈ K mit

f =

n∑
i=1

ci ·
u′
i

ui
+ v′

Beispiel (neue Konstanten). Wir betrachten den rationalen Funktionenkörper K := R(x) und

f :=
1

x2 + 1
= arctan′(x) =

(
1

2
i log(1− ix)− 1

2
i log(1 + ix)

)′
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Damit ist f in R(x) ⊆ R(x)(i, log(1− ix), log(1+ ix)) =: L elementar integrierbar. In dieser Erweiterung treten
allerdings neue Konstanten auf: Die Konstanten von K sind R, während die Konstanten von L durch C gegeben
sind. Tatsächlich ist f auch nicht von der im Satz von Liouville gegebenen Form:
Angenommen es existieren c1, . . . , cn ∈ R und u1, . . . , un ∈ R(x)∗, v ∈ R(x) mit

f =

n∑
i=1

ci ·
u′
i

ui
+ v′

Das Polynom p := x2 + 1 ∈ R[x] ist irreduzibel. Tritt p vi-mal in der Primfaktorzerlegung von ui auf, so tritt
nach Lemma 2 p nicht im Nenner von u′

i

ui
− vi

p′

p auf. Es gilt zudem

v′ = f −
n∑

i=1

ci ·
u′
i

ui
=

1

p
−

n∑
i=1

ci ·
(
u′
i

ui
− vi

p′

p

)
−

n∑
i=1

civi
p′

p

also tritt p höchstens einmal im Nenner von v′ auf. Tritt p im Nenner von mindestens einmal v auf, so tritt p
nach Lemma 1 mindestens zweimal im Nenner von v′ auf. Damit tritt p nicht im Nenner von v und v′ auf. Da

v +

n∑
i=1

ci ·
(
u′
i

ui
− vi

p′

p

)
= f −

n∑
i=1

civi
p′

p
=

1

p

(
1 +

n∑
i=1

2civix

)

folgt, dass 1 +
∑n

i=1 2civix durch x2 + 1 teilbar ist. Widerspruch!

In diesem Beispiel ist der Satz von Liouville nicht anwendbar, da in der zu betrachtenden elementaren Körperer-
weiterung K ⊆ L neue Konstanten auftreten. Allerdings liegen die Konstanten von L zumindest im algebraischen
Abschluss von K. In der Tat ist der algebraische Abschluss von K die einzige Quelle für neue Konstanten. Dies
erlaubt eine Verallgemeinerung des Satz von Liouville ohne die Konstantenbedingung, vgl. [Ris69, S. 171]. Für
den Beweis benötigen wir noch zwei weitere Lemmas:

Lemma 5. (logarithmische Differentialkörpererweiterung) Sei K ⊆ K(t) eine Differentialkörpererweiterung,
sodass K und K(t) die selben Konstanten haben, t transzendent über K ist und t′ ∈ K (insbesondere wenn
t Logarithmus eines Elements aus K). Dann ist für jedes Polynom V =

∑n
i=0 µit

i ∈ K[t] mit n > 0 auch
(V (t))′ ∈ K[t] mit

deg((V (t))′) =

{
n, falls µ′

n ̸= 0

n− 1, falls µ′
n = 0

Beweis: Es gilt

(V (t))′ = µ′
0 +

n∑
i=1

µ′
it
i + µi · iti−1 · t′ = µ′

nt
n + µ′

0 +

n−1∑
i=1

(
µ′
i−1 + µi · i · t′

)
ti.

Falls µ′
n ̸= 0 folgt somit die Behauptung. Sei also µ′

n = 0. Angenommen

0 = µ′
n−1 + µn · n · t′ = (µn−1 + µn · n · t)′

so ist µn−1 + µn · n · t ∈ L eine Konstante, also gilt µn−1 + µn · n · t ∈ K. Widerspruch, zu t /∈ K!

Lemma 6. (exponentielle Differentialkörpererweiterung) Sei K ⊆ K(t) eine Differentialkörpererweiterung,
sodass K und K(t) die selben Konstanten haben, t transzendent über K ist und t′

t ∈ K (insbesondere wenn t
Exponential eines Elements aus K). Dann ist für jedes nicht-konstante Polynom V ∈ K[t] auch (V (t))′ ∈ K[t]
und deg(V ) = deg((V (t))′), wobei (V (t))′ nur dann ein Vielfaches von V ist, wenn V ein Monom ist.

Beweis: Es gilt für alle n ∈ N und 0 ̸= a ∈ K

(atn)′ = a′tn + natn−1t′ =

∈K︷ ︸︸ ︷(
a′ + na · t

′

t

)
tn.

Falls a′ + na · t′

t = 0 gilt, ist atn konstant, also atn ∈ K. Widerspruch zur Transzendenz von t, also gilt
a′ + na · t′

t ̸= 0.
Wendet man dies auf jedes Monom von V einzeln an, so folgt (V (t))′ ∈ K[t] und deg(V ) = deg((V (t))′).
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Ist nun (V (t))′ = f · V für ein f ∈ K[t], gilt wegen der Grade sogar f ∈ K. Angenommen V ist kein Monom.
Seien ant

n und amtm zwei verschiedene Monome von V mit n < m. Es gilt

n-ter Koeffizient
von (V (t))′︷ ︸︸ ︷
a′n + nan

t′

t

an
= f =

m-ter Koeffizient
von (V (t))′︷ ︸︸ ︷

a′m +mam
t′

t

am

Somit gilt

(
ant

n

amtm

)′

=

((
a′n + nan

t′

t

)
· am −

(
a′m + nam

t′

t

)
· an
)
· tn+m

a2m · t2m
= 0

also ant
n

amtm ∈ K. Widerspruch zur Transzendenz von t.

Zudem benötigen wir folgenden Satz

Satz 7 (Partialbruchzerlegung). Sei V (X) ∈ K(X). Dann existieren eindeutig bestimmt gh,r ∈ K[X] fast alle
0 mit r > 0, h ∈ K[X] normiert, irreduzibel und deg(gh,r) < deg(h), sowie p ∈ K[X], sodass

V (X) = p(X) +
∑

h∈K[X]
normiert
irreduzibel

∑
r>0

gh,r(X)

h(X)r

Beweis. Folgt aus [Lan05, Kap. 4, Theorem 4.2, 4.3] zusammen mit Division mit Rest.

Damit können wir uns nun dem Beweis des Satz von Liouville zuwenden.

Beweis Satz von Liouville: Nach Voraussetzung existiert eine Darstellung L = K(t1, . . . , tN ) mit ti algebraisch
über K(t1, . . . , ti−1) oder Logarithmus bzw. Exponential eines Elements aus K(t1, . . . , ti−1).
Der Beweis erfolgt durch Induktion über N :
Induktionsanfang: N = 0

Wir wählen n := 0 und v := g ∈ L = K.
Induktionsschritt: N − 1⇝ N

Sei t := t1. Nach der Induktionsannahme angewendet auf K(t) ⊆ K(t1, . . . , tN ) existieren Konstanten
ϱ1, . . . , ϱm ∈ K(t) und λ1, . . . , λm ∈ K(t)∗, µ ∈ K(t) sodass

f =

m∑
i=1

ϱi ·
λ′
i

λi
+ µ′

Da L die selben Konstanten wie K hat, gilt ϱ1, . . . , ϱn ∈ K.
Fall 1: t algebraisch über K

Somit existieren Polynome U1, . . . , Um, V ∈ K[X], sodass Ui(t) = λi für alle 1 ≤ i ≤ m und V (t) = µ.
Seien τ1, . . . , τs ∈ K(t) die Konjugierten von t = τ1 in einem algebraischen Abschluss von K. Da wir in
Charakteristik 0 befinden, sind dies genau die einfachen Nullstellen des Minimalpolynoms von t über K.
Wir wählen Einbettungen σ1, . . . , σs : K(t) → K(t) über K mit σ1(t) = τ1, . . . , σs(t) = τs. Dann gilt für
1 ≤ j ≤ s wegen

f =

m∑
i=1

ϱi ·
λ′
i

λi
+ µ′ =

m∑
i=1

ϱi ·
(Ui(t))

′

Ui(t)
+ (V (t))′

und Proposition 3 auch

f = σj(f) =

m∑
i=1

ϱi ·
(σj(Ui(t)))

′

σj(Ui(t))
+ (σj(V (t)))′ =

m∑
i=1

ϱi ·
(Ui(τj))

′

Ui(τj)
+ (V (τj))

′

Somit ist nach Lemma 2 (da Charakteristik 0 ist s ∈ K∗)

f =
1

s

s∑
j=1

m∑
i=1

ϱi ·
(Ui(τj))

′

Ui(τj)
+ (V (τj))

′ =

m∑
i=1

ϱi
s

· (Ui(τ1) · · ·Ui(τs))
′

Ui(τ1) · · ·Ui(τs)
+

(
V (τ1) + · · ·+ V (τs)

s

)′

Für 1 ≤ i ≤ m sind Ui(τ1) · · ·Ui(τs) und V (τ1) + · · · + V (τs) symmetrische Polynome in τ1, . . . , τs
mit Koeffizienten in K. Damit folgt durch Betrachten der Galoiserweiterung K ⊆ K(τ1, . . . , τs) schon
Ui(τ1) · · ·Ui(τs), V (τ1) + · · ·+ V (τs) ∈ K. Damit ist obige Darstellung von der gesuchten Form.
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Fall 2: t transzendent über K
Somit ist K(t) ein rationaler Funktionenkörper über K, also exitieren rationale Funktionen U1, . . . , Um, V ∈
K(t), sodass Ui(t) = λi für alle 1 ≤ i ≤ m und V (t) = µ. Für 1 ≤ i ≤ m erhalten wir durch Primfaktor-
zerlegung mi ∈ N und für alle 1 ≤ j ≤ mi ein nij ∈ Z, αi ∈ K und Uij ∈ K[X] normiert und irreduzibel,
sodass

Ui = αi ·
mi∏
j=1

U
nij

ij

Nach Anwenden der Ableitungsregel für den Logarithmus aus Lemma 2 können wir deshalb oBdA. anneh-
men, dass Ui ∈ K oder Ui ∈ K[t] normiert und irreduzibel. Weiterhin kann angenommen werden, dass die
U1, . . . , Um paarweise verschieden sind und alle ϱi ̸= 0.
Zudem betrachten wir die Partialbruchzerlegung von V nach Satz 7

V (t) = p(t) +
∑

h∈K[t]
normiert

irreduzibel

∑
r>0

gh,r(t)

h(t)r

Zur Vereinfachung der Schreibweise setzen wir zudem gh,0 := 0 für alle h ∈ K[t] normiert, irreduzibel.
Fall 2.1: t ist Logarithmus eines Elements aus K
Sei also a ∈ K mit t′ = a′

a . Für 1 ≤ i ≤ m gilt, da Ui normiert, nach Lemma 1 (Ui(t))
′ ∈ K[t] und

deg(Ui(t)
′) < deg(Ui(t)). Da Ui zudem irreduzibel, ist (Ui(t))

′

Ui(t)
vollständig gekürzt.

Die Partialbruchzerlegung von (V (t))′ ist nach Lemma 1 gegeben durch

(V (t))′ = p′(t) +
∑

h∈K[t]
normiert

irreduzibel

∑
r>0

(gh,r(t))
′

h(t)r
− r · gh,r(t) · (h(t))′

h(t)r+1

= p′(t) +
∑

h∈K[t]
normiert

irreduzibel

∑
r>0

(gh,r(t))
′ − (r − 1) · gh,r−1(t) · (h(t))′

h(t)r

Damit gilt

f =

m∑
i=1

ϱi ·
(Ui(t))

′

Ui(t)
+ (V (t))′

=

m∑
i=1

ϱi ·
(Ui(t))

′

Ui(t)
+ p′(t) +

∑
h∈K[t]
normiert

irreduzibel

∑
r>0

(gh,r(t))
′ − (r − 1) · gh,r−1(t) · (h(t))′

h(t)r

Angenommen V (t) ist kein Polynom, also existiert h ∈ K[X] normiert, irreduzibel mit

R := max{r ∈ N | gh,r} > 0.

Wie bereits bei den Ui ist (h(t))′

h(t)r+1 vollständig gekürzt. Damit tritt

−R · gh,R(t) ·
(h(t))′

h(t)R+1

in der Partialbruchzerlegung von f auf. Widerspruch zur Eindeutigkeit der Partialbruchzerlegung von
f ∈ K aus Satz 7, also ist V (t) ∈ K[X].
Analog folgt weiter, dass kein Ui ein irreduzibles Polynom sein kann, also gilt λi = Ui ∈ K für 1 ≤ i ≤ m.
Nach entsprechendem Umstellen folgt damit (V (t))′ ∈ K. Nach Lemma 5 ist also V (t) = ϱt+ v mit ϱ ∈ K
Konstante und v ∈ K. Damit ist

f =

m∑
i=1

ϱi ·
λ′
i

λi
+ ϱ · a

′

a
+ v′

von der gesuchten Form.
Fall 2.2: t ist Exponential eines Elements aus K
Somit ist existiert b ∈ K mit b′ = t′

t . Nach Lemma 6 ist für alle t ̸= P (t) ∈ K[t] normiert und irreduzibel,
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auch (P (t))′ ∈ K[t] und P (t) teilt (P (t))′ nicht. Das selbe Argument wir in Fall 2.1 zeigt, dass P ̸= Ui(t)
für 1 ≤ i ≤ m und dass P in keinem Nenner der Partialbruchzerlegung von V auftritt. Somit gilt

V (t) =
∑
j∈Z

ajt
j

mit aj ∈ K fast alle 0. Da (Ui(t))
′

Ui(t)
∈ K für alle 1 ≤ i ≤ m ist auch (V (t))′ ∈ K, also ist nach Lemma

6 auch µ = V (t) ∈ K. Sind alle U1, . . . , Um ∈ K ist die gesuchte Darstellung gefunden. Sonst sei nach
Umnummerierung U1 = t und U2, . . . , Um ∈ K. Somit ist

f =

m∑
i=1

ϱi ·
(Ui(t))

′

Ui(t)
+ (V (t))′ = ϱ1 ·

t′

t
+

m∑
i=2

ϱi ·
(Ui(t))

′

Ui(t)
+ (V (t))′ =

m∑
i=2

ϱi ·
(Ui(t))

′

Ui(t)
+ (ϱ1b+ V (t))′

von der gesuchten Form.

Beispiel (e−x2

). Sei t := e−x2

. Wir zeigen zunächst, dass t transzendent über F := C(x) ist. Angenommen t
ist nicht transzendent über F , sei also

P := Xm + λm−1X
m−1 + · · ·+ λ0 ∈ F [X]

das Minimalpolynom von t, also insbesondere

tm + λm−1t
m−1 + · · ·+ λ0 = 0. (1)

Nach Ableiten beider Seiten folgt

−2x ·m · tm + · · ·+ λ′
0 = 0. (2)

Da P Minimalpolynom von t muss Gleichung (2) proportional zu Gleichung (1) sein, insbesondere folgt

−2mx =
λ′
0

λ0

Da alle irreduziblen Polynome in C[x] linear sind, folgt aus dem üblichen Idee λ0 in Primfaktoren zu zerlegen
und Lemma 2 anzuwenden, dass λ′

0

λ0
entweder 0 ist, oder eine Summe von Brüchen mit konstantem Zähler und

linearem Nenner. Widerspruch! Dies zeigt, dass t transzendent über F .
Wir wenden uns nun dem eigentlichem Argument zu und betrachten K := C(x, t). Angenommen t = e−x2

ist elementar integrierbar. Somit existieren nach dem Satz von Liouville c1, . . . , cn ∈ C und u1, . . . , un ∈
C(x, e−x2

)∗, v ∈ C(x, e−x2

) sodass

t = e−x2

=

n∑
i=1

ci ·
u′
i

ui
+ v′ (∗)

Sei F := C(x). Somit sind u1, . . . , un ∈ F (t). Wir verfahren jetzt analog zum Beweis des exponentiellen Falls
im Satz von Liouville: Indem wir zuerst jedes ui als Produkt ganzzahliger Potenzen normierter, irreduzibler
Elemente von F [t] schreiben und dann die Ableitungsregel des Logarithmus aus Lemma 2 anwenden, können
wir oBdA. annehmen, dass ui ∈ F oder ui ∈ F [t] normiert und irreduzibel. Außerdem schreiben wir v mithilfe
der Partialbruchzerlegung als Summe eines Polynoms in F [t] und Termen der Form g(t)

h(t)r mit h(t) ∈ F [t] normiert
und irreduzibel, r > 0 und 0 ̸= g(t) ∈ F [t] mit deg(g(t)) < deg(h(t)). Wiederum folgt aus Lemma 6, dass

v =
∑
j∈Z

ajt
j ⇒ v′ =

∑
j∈Z

aj · j · tj ·
t′

t
+ a′j · tj =

∑
j∈Z

(−2x · aj · j + a′j) · tj

mit aj ∈ F fast alle 0 und dass u1, . . . , un ∈ F ∪ {t}. Somit gilt
n∑

i=1

ci ·
u′
i

ui
∈ F.

Nach Koeffizientenvergleich in (∗) (hier geht insbesondere ein, dass t transzendent über F ) folgt, dass

1 = −2xa1 + a′1

Widerspruch, denn die Gleichung 1 = −2x · a+ a′ ist für kein a ∈ F = C(x) erfüllt.

Dieses Beispiel lässt sich leicht für beliebige Funktionen der Form f(x) · eg(x) für f, g ∈ C(x) und f ̸= 0, g′ ̸= 0
verallgemeinern (vgl. [Ros72, Abschnitt 6]).

Bemerkung. Der Satz von Liouville liefert zwar eine explizite Beschreibung jeder elementar integrierbaren
Funktion, allerdings ist es für beliebige Funktionen nicht so leicht festzustellen, sie von der beschriebenen Form
sind. Es gibt aber einen „Algorithmus“ nach Robert Risch, der für eine beliebige elementare Funktion ein
elementares Integral bestimmen kann, oder feststellt, dass es ein solches nicht gibt (vgl. [Ris69]).
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