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Abstract

In the first chapter of this thesis we define the Alexander polynomial of a knot using the Seifert
matrix of the knot and show that it is a knot invariant. For this we introduce the linking number
of two knots and recall Seifert surfaces. Exemplarily, we compute the Alexander polynomial for
certain knots and prove some of its properties.

Then, in the second chapter, we define satellite knots and sketch their basic theory. As examples
we consider cable knots, the connected sum of knots and the Whitehead double of a knot. The
main result of this work is to give a formula for the Alexander polynomial of a satellite knot.
We encounter torus knots when defining cable knots. In the last chapter we determine their
Alexander polynomial and classify them based on it.



Preliminaries

Literature

No proofs in this thesis are directly copied from the literature. In the first chapter we mainly
follow the account in [Rol03, Chapter 8] and [Lic97, Chapter 6]. The proof of the main theorem
expands upon [Lic97, Theorem 6.15]. The last chapter is based on ideas from [Mur08, Chapter 7].
The proofs used therein have not been provided by the literature.

We have used the table of knot invariants provided by [L.LM23] to find knots with specific properties.

Definitions and conventions

We view S? as the unit sphere in C? and fix some orientation on it. For drawing, we remove
a point and view S2\ {*} as R? in such a way that the orientation is given by the standard
orientation on R3.

An m-component link is a closed 1-dimensional smooth submanifold of $% with m € N components.
A knot is a connected link. A link is oriented if it is oriented as a submanifold.

We say an m-component link L is trivial or an unlink if it bounds m disjoint smoothly embedded
discs B” in S5.

Two m-component links L, J are equivalent, if there exists a smooth isotopy

F: (Dsl) x [0,1] — 83

with L = im(Fp) and J = im(Fy). If L and J are oriented, we additionally demand that
FioFy L. L — J is orientation preserving.

For an (oriented) link L we denote by L* its mirror image and by L the link with the orientation
reversed on all components.



1 Construction of the Alexander polynomial

1.1 Linking numbers

We begin with a section on the linking number of knots in S? exploring some of its key properties
for later use.

Definition. Let J, K C S be disjoint oriented knots. We choose a diagram D for the link
JUK C S3 and consider

TJ IJ
7 e

positive crossing negative crossing

Then the linking number of J and K is defined as
Ik(J, K) = #{positive crossings in D} — #{negative crossings in D}

Example 1.1.

EHD OO

k=0 k=1 lk =2
The following lemma gives some basic properties of linking numbers. In particular, it shows that
the linking number is a well-defined link invariant.

Lemma 1.2. Let J,K C S3 be disjoint oriented knots. The linking number 1k(J, K) is an
invariant of the link J U K and is commutative

k(J, K) =1k(K, J).
Furthermore, reversing the orientation of one knot or mirroring both knots changes the sign:
k(J,K)=—1k(J,K)=—1k(J,K) = —1k(J*, K*)

Proof. By the Reidemeister move theorem (see [0OSS15, Theorem B.1.1]) it suffices to prove that
the linking number is invariant under Reidemeister moves:

— A Reidemeister I move only introduces or removes a crossing of J (or K) with itself, hence
it leaves the number of positive and negative crossings unchanged.

— A Reidemeister IT move either leaves the number of positive and negative crossings un-
changed (if it only affects one of the knots, or if it moves J over K) or introduces/removes
exactly one positive crossing and one negative crossing, leaving n; — no unchanged.

— A Reidemeister III move leaves the number of positive and negative crossings unchanged,
as it just changes the position of crossings, but not their type.




1.2 Seifert surfaces

If we change all crossings in a diagram D for J U K we obtain a diagram for the mirror link of
J U K. Reflecting the result along a line gives us again a diagram D’ for J U K. But we now
have turned a crossing of K over J in D into a crossing of J over K in D’ without affecting the
sign of the crossing. Using D to calculate 1k(J, K) and D’ to calculate 1k(K,J) therefore shows
commutativity.

Reversing the orientation of one of the two knots, turns a positive crossing into a negative one
and vice versa. Therefore it changes the sign of the linking number.

Mirroring both J and K turns a positive crossing of K over J into a negative crossing of J over
K. This changes the sign of the linking number, since the linking number is commutative. W

We have now proven that the linking number is a link invariant, thus we can use it to show that
two knots are actually linked. Unfortunately, there are 2-component links with linking number 0
that are not an unlink:

Example 1.3. The two knots forming the Whitehead link below have linking number 0.

X

We will later see in Example 1.22 that they are non-trivially linked.

There are many different ways to define the linking number of two knots. A list of eight possible
definitions can be found in [Rol03, 5.D. Linking numbers]. The next lemma directly follows by
choosing definition (1) in that list:

Lemma 1.4. Let J, K C S3 be disjoint oriented knots and let 1 be a knot that generates
Hy(S3\ J) 2 Z. There exists some n € Z such that [K] = n - [u] and 1k(J, K) = 1k(J, ) - n.

1.2 Seifert surfaces

The goal of this section is to define the Seifert matrix of a knot and study how we can turn it
into a knot invariant. We begin by recalling Seifert surfaces, see [Lic97, Chapter 2]:

Definition. Let K C S3 be a knot or link. A Seifert surface for K is a compact orientable
connected 2-dimensional smooth submanifold ¥ C S% such that 0¥ = K. If K is oriented,
we demand that ¥ is oriented such that the orientation on K = 0% is given by the boundary
orientation.

Theorem 1.5. Every (oriented) link K C S has a Seifert surface.

Definition. Let K C S be a knot or link. The genus of K is the minimal genus of a Seifert
surface for K.

Furthermore, we consider the following definition and theorem:

Definition. Let Y C X be topological spaces. An embedding 5: Y x [-1,1] — X such
that 5(y,0) = y for all y € Y is a bicollar of Y in X. For every subset A C Y we refer to
AT == B(A x {1}) as the positive push-off of A.

Theorem 1.6. Let M be an oriented smooth manifold and N C M be a compact oriented
codimension-1 smooth submanifold. Then N has an orientation preserving smooth bicollar in M
and any two orientation preserving smooth bicollars of N in M are smoothly isotopic rel N.

Proof. A bicollar may essentially be treated as a codimension-1 tubular neighbourhood as defined
in [Wall6, Chapter 2.3]. Existence then follows from [Wall6, Theorem 2.3.8] and the uniqueness
from [Wall6, Theorem 2.5.5, Proposition 2.5.8]. [




1.2 Seifert surfaces

Having reminded the reader of Seifert surfaces, we can now introduce another definition for the
linking number of knots from [Rol03, 5.D. Linking numbers]:

Lemma 1.7. Let J,K C S be disjoint oriented knots and let ¥ be a Seifert surface for K
with an orientation preserving smooth bicollar 3: ¥ x [—-1,1] — S3. We may assume that J
intersects X transversally (see [Wall6, Chapter 4.5]), in particular, that J MY is finite. We say
an intersection point x € JNX is positive, if J passes from B(3 x [—1,0]) to (X x [0,1]) in a
small neighbourhood of x, else we say the intersection point is negative. Then

Ik(J, K) = #{positive intersection points} — #{negative intersection points}

Example 1.8.

We orient this surface such that the red side faces upwards. Then the left intersection is negative
and the right intersection positive, showing again that the Whitehead link has linking number 0.

To a Seifert surface we can associate a bilinear form on its first homology group, which will be
represented by the Seifert matrix. In detail, this turns out to be quite tricky to precisely define:

Construction 1.9. Let ¥ C S3 be a Seifert surface for an oriented knot or link K. By
Theorem 1.6 there exists an orientation preserving smooth bicollar 8: ¥ x [~1,1] — S3.
By the classification of surfaces, we can express every homology class h € Hy(X) as an integer

linear combination of smoothly embedded circles le, e fznh C ¥. We fix such a representation
for every h € Hy(2):

np,
h=)kn, - [hi]
=1

By generalizing linking numbers to homology classes in the second entry via Lemma 1.4 we
construct a well-defined map that is linear in the second entry:

®: Hi(Z) x Hy(Z) = Z
(a,b) = kq, - 1k(a;, b)
=1

This is independent of the choice of representation for a by Lemma 1.4, since

Na Ng Np Lemma 1.2 n, ny ny
D ki Tk(a5,07) =D > kagky, - 1k(aq, b)) x DD kaky, k(b a:) = ke, - k(b a)
i=1 i=1j=1 i=1j=1 j=1

Similarly it again follows from Lemma 1.2 that & is linear in the first entry and thereby a bilinear
form on the Z-module H;(X).

In light of this construction, we define:

Definition. Let K C S3 be a knot or link and ¥ C S3 be a Seifert surface for K. We choose an
orientation preserving smooth bicollar 3: ¥ x [~1,1] — S3. By Construction 1.9 there exists a
bilinear form ®: H;(X) x H;(X) — Z such that for knots a,b C ¥

®(a,b) = lk(a,b™)
For any basis {e1,...,e,} of Hi(X) as a Z-module, we call the matrix
((eis ej))gi,jgn

representing the Seifert form relative to this basis a Seifert matriz for K.




1.2 Seifert surfaces

Example 1.10. Let n € N. A Seifert surface for the n-component unlink is given by a disk
D C R? x {0} C S with n — 1 open disks removed from its interior. We choose the obvious
bicollar 3: D x [~1,1] — R? x [~1,1] C S3. Then the Seifert form is zero. Hence, the Seifert
matrix is an (n — 1) x (n — 1) zero matrix.

It is apparent that the Seifert matrix does not only depend on the knot, but also on the choice
of Seifert surface and basis. This dependency is illustrated by the next example:

Example 1.11. A Seifert surface for the trefoil given by

The red side faces upwards by our orientation convention. The Seifert matrix for the trefoil
originating from this Seifert surface relative to the basis {ej, ea} is then given by

()

We can also consider a different Seifert surface for the trefoil, given by adding a tube to the
Seifert surface above.

Considering the basis {e1,...,es4} yields the Seifert matrix
-1 0 0 O
1 -1 0 O
0 0 0 -1
0 0 0 O




1.2 Seifert surfaces

To deduce a knot invariant from the Seifert matrix, we will have to study its dependency on the
different choices. For the choice of basis, this is achieved purely by linear algebra:

Lemma 1.12. Let K C S3 be a knot or link and ¥ C S® be a Seifert surface for K with an
orientation preserving smooth bicollar 3: ¥ x [—1,1] — S3. Then the Seifert matriz only depends
on the choice of basis up to congruency over Z.

Proof. Let A and B be bases for Hy(X) and M 4 (respectively Mp) be the Seifert matrix relative
to A (respectively B). Because M4 and Mp represent the same bilinear form (i.e. the Seifert
form originating from ¥ and f)

My=5ST Mg-S

where S is the change-of-basis matrix from 4 to B. |

By considering some theory about bicollars one can also eliminate the dependence on the bicollar:

Lemma 1.13. Let K C S3 be a knot or link and ¥ C S® be a Seifert surface for K. The Seifert
form does not depend on the choice of orientation preserving smooth bicollar.

Proof. Let Bo,f1: ¥ x [0,1] — S2 be orientation preserving smooth bicollars for 3. By Theo-
rem 1.6 By and 3; are smoothly isotopic rel ¥ in S? since they are orientation preserving bicollars.
This implies that the Seifert forms of ¥ with respect to 5y and 5, are identical, since the linking
number is invariant under smooth isotopy by Lemma 1.2. |

The last remaining dependency in the Seifert matrix — other than the knot of course — is the
choice of Seifert surface. Therefore, we have to study the relationship between two Seifert surfaces
for a given knot:

Definition. Let ¥ C S be a compact oriented 2-dimensional smooth submanifold and let
P,Q € ¥\ 0% be two distinct points. We consider a smooth embedding ~y: [0,1] — S3 such that

7(0) = P,v(1) = Q, 7((0,1)) N ¥ = & and
— a positive basis of TpY together with 4/(0) form a positive basis of 53

— a positive basis of Tp¥ together with 4/(1) form a negative basis of S3.

By deleting small disks around P and ) and appropriately gluing in a cylinder along =y, we
obtain new compact oriented 2-dimensional smooth submanifold ¥’ C $3. Then %' is called a
stabilization of ¥ and X is called a destabilization of X'.!

Example 1.14.

stabilizations along

!Unfortunately, this definition has to remain rather vague, as a precise statement would be too lengthy to present
here. We hope that — together with the accompanying figure — the situation becomes clear enough. Else, we
refer the reader to [OSS15, Appendix B.3] for a slightly more detailed presentation.




1.2 Seifert surfaces

Theorem 1.15 (Reidemeister—Singer). Any two Seifert surfaces of an oriented link in S3
become ambient isotopic after an appropriate sequence of stabilizations and destabilizations.

Proof. see [OSS15, Appendix B.3]. The idea of the proof is as follows:

We first show that any Seifert surface can be stabilized to be the result of applying Seifert’s
algorithm to a diagram. Then we only have to prove that two Seifert surfaces resulting from
Seifert’s algorithm are related by stabilizations and destabilizations. This can be done by studying
Reidemeister moves on the underlying diagrams. |

We now have the means necessary to describe the dependency of the Seifert matrix on the Seifert
surface:

Definition. Let M be a square integer matrix and

M x 0 M 0 0
M:=10 01 or M=% 00
0 0 O 0 1 0

Then M’ is called an elementary enlargement of M and M is an elementary reduction of M’.
We say that two square matrices over Z are S-equivalent, if they are related by a sequence of
elementary reductions, elementary enlargements and congruences over Z.

Lemma 1.16. Any Seifert matrices for a fized oriented knot or link are S-equivalent.

Proof. Let K be an oriented knot or link and M be a Seifert matrix for K originating from a Seifert
surface 3 with homology basis {e1,...,e,} € Hi(X) and bicollar 8: ¥ x [-1,1] — S3. Let M’
be another Seifert matrix for K originating from a Seifert surface ¥'. By the Reidemeister-Singer
Theorem 1.15 ¥ and Y are ambient isotopic after a sequence of stabilizations and destabilizations.
By Lemma 1.13 the Seifert form remains unchanged after ambient isotopy. By Lemma 1.12
we can therefore assume that ¥ and Y/ are directly related by a sequence of stabilizations and
destabilizations after applying a congruency over Z to M’. Therefore is it enough to prove that
up to congruency over Z a stabilization of X corresponds to an elementary enlargement of M,
and a destabilization of 3 corresponds to an elementary reduction of M:

Let X' be an elementary enlargement of ¥ and let f; and fs be the 1-cycles indicated below. It is
possible to connect the ends of fi since ¥ is connected. We take any of the possible connections.

Then {e1,...,en, f1, fo} € Hi(X') is a basis by a Mayer—Vietoris argument. We notice that fo
bounds a disc in the cylinder glued in by the stabilization, hence by Lemma 1.4 for i € {1,...,n}

k(f2,e) = Ik(es, f3) = k(f2, f3) = 0

Depending on the orientation of the bicollar in the cylinder either

k(f1, f57) = 1, Ik(f2, /i) =0 or k(f1, f3) =0, k(fo, fi7) = #1
Therefore

M x 0 M x 0
M =1 % x =1 or M=% % 0
0O 0 O 0O =1 O

which is congruent over Z to an elementary enlargement of M.
Applying the same process in reverse shows that destabilization of ¥ leads to an elementary
reduction of M. ]




1.2 Seifert surfaces

Before introducing the main character of this thesis, we explore the change of the Seifert matrix
when reversing the orientation or taking mirror images for later reference:

Proposition 1.17. Let K C S3 be a knot or link with Seifert matriz M.
— A Seifert matriz for the reversion K is given by MT
— A Seifert matriz for the mirror knot K* is given by —M7T.

Proof. Let X be a Seifert surface for K. By the classification of surfaces there exists a homology
basis {e1,...,ey,} € Hi(X) consisting of smoothly embedded circles. By Lemma 1.12 it suffices
to prove the claim for a choice of basis, hence we may assume that M is the Seifert matrix for K
resulting from ¥ and the basis {ej,...,e,} C Hi(X).

For any two knots a,b C ¥ are the links aUS(bx {1}), B(ax{—1})UB(bx {1} and B(ax {—1})Ub)
smoothly isotopic through the bicollar. We therefore note that by Lemma 1.2

(%) Ik(a, B(b x {1})) =1k(B(a x {-1}), B(b x {1})) =1k(B(a x {-1}),b)
After this preliminary discussion we return to the original claims:

— Let X be ¥ with the orientation reversed. Then ¥ is a Seifert surface for K with orientation
preserving smooth bicollar
B:Ex[-1,1] = 83
(x,t) — Bz, —t)
For all i,5 € {1,...,n}

Lemma 1.2 (*)

2 1 4
li(er, Bles x {11) = Ik(er, Ble; x {—11)) % (Be; x {~1}),e0) % Ik(es, Bles x {1})
i.e. the Seifert matrix for K resulting from ¥ and the basis {e1,...,e,} C H1(¥) is MT.

— Let ¢: 83 — S3 be an orientation reversing diffeomorphism. Then ¥* := ¢(X) is a Seifert
surface for K* = ¢(K) with an orientation preserving smooth bicollar
By x [-1,1] — §°
(z,8) = (w0 B) (¢~ (x), —1)
and {p(e1),...,¢(en)} € Hi(X*) is a basis. Then for i,5 € {1,...,n}
Lemlrja 1.2
le(p(ei), 87 (0(ej) x {1})) = Ik(p(ei), (p o B)(ej x {=1})) = —1k(B(e; x {~1}), €:)

= —Ik(ej, Bler x {1))
(

=

i.e. the Seifert matrix for K* resulting from ¥* and the basis {¢(e1),...,¢(en)} € Hi(X¥)
is —MT. |




1.3 Alexander polynomial

1.3 Alexander polynomial

In principle, we have now defined a new knot invariant: The S-equivalence class of a Seifert matrix
for the knot. Unfortunately, there is no apparent way to tell if two matrices are S-equivalent.
For that, we need another invariant, this time one of S-equivalence classes — which will then also
be a knot invariant. This is given by the Alexander polynomial:

Definition. Let K be an oriented knot or link and choose a Seifert matrix M for K. An
Alezander polynomial of K is given by

Ae(t) = det(M —t- M) € Z[1]
Theorem 1.18. The Alezander polynomial is up to multiplication by +t*! a well-defined
tnvariant of oriented links.

Proof. Let K be an oriented knot or link with an n x n Seifert matrix M. By Lemma 1.16 it
suffices to prove that elementary enlargements and congruences over Z only change the Alexander
polynomial up to multiplication with +¢*:

— By Laplace expansion of the determinant

M 0 M o« o\ M—t-MT % 0

det| |0 0 1|—t-|0 0 1| |=det % 0 1|=t-det(M —t-MT)
0 00 0 00 0 —t 0
M 00 M o0 o\ M—t-MT % 0

det| [ + 0 0| —=t-| % 0 0] | =det * 0 —t| =t -det(M—t-M7T)
0 10 0 10 0 1 0

— We have det(P) = det(PT) € {£1} for any invertible n x n integer matrix P, therefore

det ((PTAP) —t- (PTAP)") = det(P") - det(A — t - AT) - det(P) = det(A — - A7)

In light of Theorem 1.18 we introduce the following notation:

Notation. Let f,g € Z[t,t~!] be Laurent polynomials. We write f = g if f = +t=" - g for some
n € Np.

Example 1.19. We have already seen in Example 1.10 that a Seifert matrix for the n-component
unlink L,, is given by an (n — 1) x (n — 1) zero matrix. Therefore is its Alexander polynomial
given by?

1, ifn=1

ALn(t) = det(On,l) =
0, else

This leads us to the following convention:

Convention 1.20. Let K be a knot or link. We say the Alexander polynomial of K is trivial if

1, if K is a knot

0, else

Ak (t) i{

We continue calculating Alexander polynomials from the Seifert matrices encountered previously:

2We admit that the n = 1 case is slightly pathological. By definition the determinant of the unit matrix is always
1. But the 0 x 0 zero matrix is also the 0 x 0 unit matrix and therefore must have determinant 1. If one does
not want to trust in this, one could of course choose a Seifert surface for the unknot of higher genus — for
example a torus with an open disk removed — and redo the calculation.




1.3 Alexander polynomial

Example 1.21. In Example 1.11 we saw that the matrices

1 0 0 0
1 0 1 -10 0
(1 —1> and 0 0 0 -1

0 0 0 0

are Seifert matrices for the trefoil 7. The Alexander polynomial of the trefoil is therefore given
by

Ap(t) =t —t+1 =3~ +1
Furthermore, we can now deliver on our promise from Example 1.3 to show that the Whitehead
link is non-trivial:

Example 1.22. The Whitehead link W has a Seifert surface > given by

As per usual we coloured the surface such that the red side faces upwards. The Seifert matrix
relative to the basis {e1, e2,e3} C Hi(X) is then given by

-1
1 -1
-1 1

It therefore has non-trivial Alexander polynomial
Aw(t) = —(t—12 =343t =3t +1#0

One might ask whether the Alexander polynomial is a complete knot invariant. The next example
quickly dispels that hope:

Example 1.23. We consider the knots K7 and K5 indicated below and choose orientations such
that the red side faces upwards.




1.3 Alexander polynomial

The Seifert matrix M; (respectively Ms) for K (respectively K») relative to {ei,...,e4} is then
given by
—1 3 -1

Therefore the Alexander polynomials of K7 and K5 are the same:
A, (t) = Ag, () =t =3+ 2 —t+1

Remark. In the last example we saw that the Alexander polynomial cannot distinguish certain
knots. But we motivated the Alexander polynomial by viewing it as an invariant for the S-
equivalence class of a Seifert matrix. This begs the question, whether it is a complete invariant of
S-equivalence. Unfortunately, it is not: The two Seifert matrices My and M are not S-equivalent,
despite giving the same Alexander polynomial.

For any matrix M the matrix M + M7 is symmetric. The signature

o(M + MT) = #{positive eigenvalues of M + M7} — #{negative eigenvalues of M + MT}
of this matrix is also invariant under S-equivalence of M.? Calculating this for M; and M, yields
o(Mi+M)=-14  and  o(My+ M) =0

Hence M and My are not S-equivalent.

We have seen that the Alexander polynomial is not a complete invariant of knots. But one could
still ask if it can detect the unknot. We will provide a class of knots with trivial Alexander
polynomial only in Corollary 2.17. It is much easier to do this for links:

Proposition 1.24. Let L, L' C S® be disjoint oriented knots or links. Assume there exists
¥ C 83 (respective X' C S3) Seifert surface for L (respective L') such that X NY' = &. Then the
Alezander polynomial of the link L U L' is trivial:

Arup(t) =0

Proof. Let P € ¥\ 0% and Q € ¥\ 9%'. We chose a smooth embedding 7: [0,1] — S® such that
7(0) = P,y(1) = Q, v((0,1)) N (XU Y) = & and

— a positive basis of TpX and 4/(0) form a positive basis of S>
— a positive basis of TpY' and +/(1) form a negative basis of S3.

Stabilization of XU along v produces a Seifert surface A for LUL’. Choose bases {eq,...,e,} C
Hi(X) and {e,...,e,} CH(X'). Let f be the cycle in the stabilization indicated below.

By a Mayer—Vietoris argument {ei,...,en,€},...,¢e.,, f} € Hi(A) is a basis. Let M be the
Seifert matrix of L U L’ relative to this basis. The cycle f bounds a disc inside the stabilization,
therefore the last row and column of M are equal to 0 by Lemma 1.7. Hence

00

3Therefore this also gives a knot invariant, called the signature of a knot, see [Mur08, Chapter 6.4].

Arup(t) = det(M —t- MT) = det (* 0) -0 -

10



1.3 Alexander polynomial

After all these examples we consider some basic properties of the Alexander polynomial:

Proposition 1.25. Let K C S3 be an oriented knot or link. The Alezander polynomial of K is
symmetric in t and t1:
Ag(t) = Ar(t™)

Furthermore, the mirror and reversion of K have the same Alexander polynomial as K :
Ak (t) = Ag=(t) = Ay (t)
Proof. Let M be a Seifert matrix for K. Then
Ap(t) = det(M —t- M) = det(—¢71- M+ M) = det(M — 7" - M) = Ag(t™)
By Proposition 1.17 —M is a Seifert matrix for K*. Therefore is
Aer(t) = det ((=M) =t - (=M)") = det (M —t- M) = Ax(t)
By Proposition 1.17 M7 is a Seifert matrix for K. Therefore is

Ag(t) = det(MT — ¢ (M7)T) = det< (M-t MT)T) —det(M —t-MT) = Ax(t) ®

Remark. By Proposition 1.25 the Alexander polynomial does not depend on the orientation
of a knot, i.e. it is an invariant of knots without orientation. This is different for links, as we
can reverse the orientation of the components separately and thereby obtain different Alexander

& ¢

For example the links
Ly Ly
differ only by reversing one of the orientations, but this changes their Seifert surface dramatically:

=

Calculating the Alexander polynomials from these yields

Ap,(t)=—2t+2 and Ap,(t)=-+t2—t+1

Hence we see that the orientation is important for the Alexander polynomial of a link.

11



1.3 Alexander polynomial

We have already seen in a few places that the Alexander polynomial behaves differently with
knots and links. In fact, it can distinguish between knots and links:

Proposition 1.26. Let K be an oriented knot or link. Then

+1, if K is a knot

0, else

Ag(1) = {

Proof. Let ¥ C 83 be an oriented Seifert surface for K with an orientation preserving smooth
bicollar 3: X x [0,1] — S3.

We begin with a preliminary claim:

Claim. Let a,b C X be oriented knots that intersect transversally. Then lk(a,b") — lk(b,a™)
does just depend on the abstract manifold 3, not on the embedding ¥ C S3.

Proof. Let {Py,..., Py} = anb C X be the intersection points of a and b. We consider the
smooth homotopy

(aUb) x [0,1] — 83
(az,t)r—>{

B(x,t), ifxeca
(z,1—1t), ifxebd

between a U b and b™ U a. It is a smooth isotopy everywhere except in {P,..., P.}. In these
points it induces a crossing change. These change the linking number by

{—1—1, if the tangent vectors of a and b in P; form a positive basis of Tp,%

—1, if the tangent vectors of a and b in P; form a negative basis of Tp, % ’
which implies the claim. O

By the classification of surfaces there exists an orientation preserving diffeomorphism ¢ from an
abstract surface of some genus g with n boundary components to Y, where n is the number of
components of L. We choose the basis for H;(X) that is induced under this diffeomorphism by
the basis indicated below:

abstract surface of genus g with n boundary components
oriented such that the red side faces upwards

12



1.3 Alexander polynomial

Let M = (Ik(p(ei), p(€j)")) 1< j<agin_1 e the Seifert matrix of K relative to this basis. By the
Claim T

Ag (1) = det (M — MT) = det<(lk(<ﬂ(ei)7 p(ef)™) — lk(p(ey), S0<ei>+))1<i7j<29+"_1>
— det((lk(ei, ef) — lk(ej, e?))

1
-1

1<i,j<2g+n1>

- 1, ifn=1
= det : e
1 0, else
-1

\ 2g X 2g On—1

This shows the claim for any Alexander polynomial of K by Theorem 1.18, since Ag (1) is the
sum of the coefficients, i.e. multiplication with +¢*! only changes it up to a sign. |

It does not make sense to consider the degree of the Alexander polynomial since it is only defined
up to multiplication by +t*!. Instead, we introduce the following notion:

Definition. Let f =Y,z Ant"™ € Z[t,t7!] be a non-zero Laurent polynomial. The breadth of f
is defined as
br(f) :=max{n € Z | A\, #0} —min{n € Z | \,, # 0} € Ny

if f # 0 and br(0) = —oc.

It is clear that this is invariant under multiplication by +t*!, i.e. well-defined for the Alexander
polynomial. It gives a lower bound on the genus of a knot:

Proposition 1.27. Let L be an oriented n-component link of genus g. Then
br(Ap(t)) <2g+n—1

Proof. Let X be a Seifert surface for L of genus g, i.e. Hi(X) is free on 2g + n — 1 generators.
Therefore many Seifert matrix for L relative to ¥ is a (2g+n — 1) x (2g + n — 1) matrix and the
degree of the Alexander polynomial det(M —t- MT) € Z[t] at most 2g +n — 1. This gives an
upper bound for the breadth of the Alexander polynomial, since the breadth of a polynomial is
less than or equal to its degree. |

Remark. This formula allows us sometimes to determine the genus of a knot or link. For
example, it can be used to show that the knots from Example 1.23 have genus 2. Unfortunately,
we will later see in Corollary 2.17 that this bound can become arbitrarily bad.

13



2 Satellite knots

2.1 Construction of satellite knots

In the second chapter, we will define satellite knots and give a formula for their Alexander
polynomial. We begin by introducing some terminology:

Definition. Let K C S? be an oriented knot. A thickening of K is a smooth orientation-
preserving embedding 7: St x B® — S8 that restricts to an orientation preserving diffeomorphism
St x {0} — K.* For any = € S* the oriented submanifold 7({z} x S!) is called a meridian of
K>

The thickening 7 is called a standard thickening if for some y € S* there exists a Seifert surface ¥
of K such that 7(S' x S1) N = 7(S! x {y}). In this case the oriented submanifold 7(S* x {y})
is called a longitude of K.

Example 2.1.

of the figure-8 knot of the trefoil not a longitude of the trefoil

This shows that one has to be somewhat careful when drawing longitudes in a knot diagram, as
they do in general not run parallel to the knot in a diagram. This is the case since by Lemma 1.4
the linking number of the knot and a longitude must be zero.

With this terminology in place, we can introduce the main character of this chapter:

Definition. We refer to a non-empty closed (oriented) 1-dimensional smooth submanifold of
S x B as an (oriented) pattern. We call two (oriented) patterns P,@Q C S* x B’ equivalent, if
there exists a smooth isotopy F': P x [0,1] — S! x B’ with P = im(Fp) and Q = im(F) (such
that Fj o Fy 1. P — Q is orientation preserving).

We call a pattern P C S! x B’ essential if im(p) N P # @ for every smooth embedding
p: B — S! x B” with ©(S1) € Hy (St x SY) non-trivial.

Definition. Let K C S be an oriented knot with a standard thickening 7: S* x B® — % and
P CS'x B be an (oriented) pattern. Then 7(P) is called a satellite link of K with pattern P.
It is called a satellite knot if P is connected. The knot K is the companion of the satellite 7(P).

4A thickening always exists by the Tubular Neighbourhood Theorem.
SWe equip B C C with the canonical orientation, S* = 9B~ with the boundary orientation and S* x B with
the product orientation. Then we consider the resulting orientation on 7({z} x S*)

14



2.1 Construction of satellite knots

Remark. The condition for a standard thickening ensures that the solid torus is not getting
twisted itself in the embedding. This is important if we want the satellite to be fully described
by the original knot and the pattern. The restriction we give appears somewhat artificial at the
moment. We will later see in Proposition 2.15 why it achieves the desired outcome.

The next lemma states that satellites are unique in a suitable way. As we will not use it in our
proof of the formula for the Alexander polynomial of satellites, we only sketch a proof.%

Lemma 2.2. Let K, K' C S be equivalent oriented knots and let T (respectively ') be standard
thickenings of K (respectively K'). Let furthermore P, P’ C St x B’ be equivalent (oriented)
patterns. Then the (oriented) knots or links T(P) and 7'(P’) are equivalent.

Sketch of proof. By the smooth Isotopy Extension Theorem (see [Fri23, Isotopy Extension
Theorem]) there exists an diffeotopy G: S3 x [0,1] — S? such that Gy = id, G1(K) = K’
and G1 o Gy 1. K — K’ is orientation preserving. By the Tubular Neighbourhood Theorem
(see [Wall6, Theorem 2.5.5]) and since the thickenings are standard and the orientations of K
and K’ are preserved by GG, we can additionally assume that Gy o 7 = 7/. This implies that
G1(7(P)) = 7/(P), in particular, the links 7(P) and 7/(P) are equivalent. The equivalence of the
patterns P and P’ gives the remaining part of the isotopy between the oriented knots 7(P) and
T(P'). [ |

Remark. In Lemma 2.2 we require the knots K and K’ to be equivalent as oriented knots. This
is needed to ensure that the standard thickening travels around both knots in the same direction.
If the knots were just equivalent as knots without orientation the situation would not be as clear.
In particular, one could easily reverse the orientation of the knot by a suitable choice of oriented
pattern. This is the reason we only consider satellites of oriented knots.

A converse of Lemma 2.2 holds for checking if a satellite is the unknot:

Proposition 2.3. Let K C S3 be a non-trivial oriented knot and P C S x EQ be a connected
essential pattern. Then the satellite of K with pattern P is not the unknot.

Proof. see [Rol03, Theorem 4.D.9]. [

On some occasions, we want to view a pattern as a knot in its own right. For this, we introduce
the following convention:

Convention 2.4. We refer to the smooth embedding

0: S xB* = s3c?

(7,y)
@9) = Tl

as the standard embedding of the solid torus into S3. It is a standard thickening for the unknot
{(z,0) € S3 C C?}.

We view a (oriented) pattern P C St x B’ as an (oriented) knot or link in S® by considering it
as a satellite of an unknot, for example ©(P). Lemma 2.2 ensures that this determines the knot
or link up to equivalence.

5To be quite honest, our condition on a standard thickening is entirely unsuitable for proving this.
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2.2 Examples of satellite knots

2.2 Examples of satellite knots

2.2.1 Cable knots

To find interesting examples of satellite knots, we have to find nice knots inside a solid torus.
We begin with the knots that are contained in its boundary:

Definition. Let p, ¢ € Z not both zero. We consider the smooth embedding of the torus’ R?/Z?
into a solid torus given by
:R2/72 > S' x B
(z,y) — (exp(2mix),exp(2miy))
The image of the set
X = {(x,y) €R? | gz —py € Z} CR?

under @ is called the (p, q)-torus link T(p,q) := ®(X). If it has one component, we refer to it as
a torus knot.8

The standard orientation for T(p,q) is obtained from orienting the submanifold X C R? by
choosing (g, p) as a positive basis in every tangent space.

Example 2.5.

)-torus knot , 3)-torus knot )-torus link

Since we defined the torus knots as subsets of a solid torus and then transported them to S3
instead of directly defining them as submanifolds of S, the reader might have already guessed
that we want to use them as a pattern:

Definition. Let K C S2 be a knot and p, q € Z not both zero. The satellite of K with pattern
T(p, q) is called the (p, q)-cable of K.

Example 2.6.

(3,2)-cable of the figure-8 knot )-cable of Stevedore’s knot

O

"The group action of Z2 on R? is the usual one given by component-wise addition.
8We use Convention 2.4 to view subsets of a solid torus S! x B° as links in S°.
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2.2 Examples of satellite knots

2.2.2 Connected sum of knots

A further class of examples for satellites is the connected sum of knots. We use the satellite
operation to define the connected sum. This is not the standard approach to do so — It is not
difficult to prove that the result is equivalent to the definition from [Lic97, p.4] or [Rol03, p.40].

Definition. Let J, K C S be oriented knots. We choose a smooth orientation-preserving
embedding ¢: St x B® — S8 such that

— K Cim(yp)
- Kﬂ(p({a—i—bieSl | a <0} ><§2> =p({a+bi€ S'|a<0}x{0})
— p:{a+bie S| a<0} x {0} — K is orientation preserving
The satellite of .J with pattern o~ !(K) is called the connected sum J#K of J and K.

Example 2.7.

D& &

As the reader expects, this definition does not depend on any choices. Again we will not use this
and therefore only sketch a proof:

Lemma 2.8. Let Ji, Jo, K1, Ky C S® be oriented knots where J, and Jo (respectively K1 and

K3) are equivalent. For any smooth orientation-preserving embeddings o1, p2: St x B 58
such that fori=1,2

— K; Cim(p;)
~ Kingi({a+bic S |a<0} x B’) = pi({a+bic S| a<0}x{0})
— p:{a+bie S'|a<0}x {0} = K is orientation preserving
the satellite of Jy with pattern o7 (K1) and the satellite of Jo with pattern o5 * (K1) are equivalent.

Sketch of proof. We may assume that there exists an interval on which K7 and K> agree, including
their orientations. The complement of a small enough thickening of a meridian of Ky and Ks
around that interval is an embedded solid torus 7' C S® \ (K7 U K3). An appropriate choice of
embedding ¢: ST x B =T C S3 fulfils the properties from the definition for K and K. Since
K1 and K3 are equivalent, we deduce that ¢~ 1(K7), =1 (K3) C St x B’ are equivalent patterns,
hence by Lemma 2.2 the satellite of J; with pattern ¢ ~!(K7) and the satellite of .J; with pattern
¢~ 1(K1) are equivalent knots or links.

Any two embeddings constructed in this manner are smoothly isotopic up to twisting the solid
torus. These twist can be pushed into go({a +bie S| a<0}x Ez) hence they do not affect

¢~ 1(K). This proves the claim since any embedding fulfilling the given properties can be smoothly
isotoped to be of the described form. [ |




2.2 Examples of satellite knots

The experienced reader might miss the statement that the connected sum of knots is commutative.
The given definition is unfortunately not really suited for proving this. One could probably force
out a proof, but to be honest one is better off proving equivalence to a more standard definition
— where commutativity should be apparent. But in contrast to such a definition, we can quite
easily prove non-triviality:

Proposition 2.9. Let J, K C S be oriented knots. The connected sum J#K of J and K is
trivial if and only if both J and K are trivial.

Proof. 1t is clear that the sum of trivial knots is trivial.
Assume J and K are non-trivial. We choose a orientation-preserving smooth embedding ¢: S* x
B® — S8 such that

- K Cim(y)
~ Knp({a+bies' [a<0}xB) =p({a+bic s [a<0}x{0})
— p:{a+bie S| a<0} x {0} — K is orientation preserving

By Proposition 2.3 suffices it to show that o~ }(K) C St x B’ is an essential pattern:

Suppose it is not. Then there exists a smooth embedding ) : B’ = S' x B® with P(St) €
H, (S x S') non-trivial such that im(¢)) N ¢~L(K) = @. By Lemma 1.4 k(¥ (S1), o~ H(K)) = 0.
The second condition on ¢ ensures that Ik({—1} x S!, ¢~ }(K)) = £1. By Lemma 1.4 these two
linking numbers are equal since 1(S') and {—1} x S! are homologous. Contradiction! |

2.2.3 Whitehead double of a knot

Our last class of examples is given by Whitehead doubles. It is an incongruous example, because
we want to consider it for knots without orientation.

Definition. Let K C S3 be a knot. Choose any orientation on K. A satellite knot of K with
one of the patterns indicated below is called a Whitehead double of K.

OO0

Example 2.10.

Whitehead double of the trefoil Whitehead double of the figure-8 knot

18



2.2 Examples of satellite knots

Remark. In the definition of a Whitehead double we could have distinguished between the
two given patterns. The resulting satellite knot would then depend on the orientation of the
original knot. We have not done so, since the Alexander polynomial studied here cannot detect a
reversion of orientation by Proposition 1.25.

Due to this remark, we defined the Whitehead double as an operation on knots without orientation.
Therefore the uniqueness does not immediately follow from Lemma 2.2, but has to be stated
separately:

Lemma 2.11. Let K, K’ C S® be equivalent knots. Then a Whitehead doubles of K is equivalent
to a Whitehead double of K'.

Proof. By Lemma 2.2 we only need to consider the effect of the choice of orientation. The claim
follows since witching orientations precisely corresponds to switching between the two given
patterns. ]

The Whitehead double of a knot is very close to being unknotted: a single crossing change will
make it trivial. Nevertheless, the following proposition holds:

Proposition 2.12. The Whitehead double of a non-trivial knot has genus 1, in particular, it is
non-trivial.

Proof. There is a Seifert surface of genus 1 for the pattern P of a Whitehead double that is fully
contained in the solid torus:

Seifert surface consisting of an annulus and a disc above it
with two twisted bands between them
Contrary to our usual convention both red and blue face upwards.

Pushing this through the standard thickening gives a genus 1 Seifert surface for any Whitehead
double. Hence, we only need to prove that the Whitehead double of a non-trivial knot is
non-trivial:

By Proposition 2.3 it suffices to prove that the pattern P C S' x B used to define Whitehead
doubles is essential. Suppose it is not, i.e. that there exists a smooth embedding ¢: B> = S'xB°
with ¢(S1) € Hy(S* x S') non-trivial such that im(¢)N P = @. Then PUp(S!) is the Whitehead
link. We have seen in Example 1.22 that it has non-trivial Alexander polynomial.

But by a compactness argument around Theorem 1.5 we can show that there exists a Seifert
surface & C 82 for P such that Y U % <§2> C S3isa compact orientable 2-dimensional smooth
submanifold with two path-components. This implies by Proposition 1.24 that the Alexander
polynomial of P U ¢(S!) is trivial. Contradiction! [ |

19



2.3 Alexander polynomial of satellite knots

2.3 Alexander polynomial of satellite knots

In this section, we want to give a formula for the Alexander polynomial of satellite knots. To
this end, we need to introduce some further terminology:

Definition. Let P C S' x B’ be an oriented pattern. The winding number of P is the unique
natural number n € Ny such that P represents n times a generator of H; (S L x EQ) = 7.

Example 2.13. Two oriented patterns of winding number 0:

To calculate the Alexander polynomial of a satellite, we need to construct a Seifert surface for it:

Construction 2.14. Let K C S3 be an oriented knot with a standard thickening 7 and
PCStx B’ be an oriented pattern with winding number n. We first construct a partial Seifert
surface for P contained in S* x B*: The solid torus S! x B projects onto an annulus S x [—1,1]
embedded into R?2. We may assume that this projection results in a diagram for P in S x [—1,1].
We can now proceed similarly to Seifert’s algorithm:”

After removing all crossings in the usual orientation compatible way, we obtain a set of em-
bedded circles in S x [~1,1]. These are either null-homotopic in S* x [~1,1] or a generator
of 71 (St x [~1,1]). We cap off all circuits that are null-homotopic with disks. Next, we add
annuli between any two adjacent circuits that go around S* x [—~1,1] in opposite directions. As
usual, we might have to stack these disks and annuli. In doing so, we make sure that they are
still within S' x B°. The remaining circles go around S' x B~ in the same direction. For each
of them we add a vertical annulus connecting it to an embedded circle in S' x S'. We can
always do this, since we previously only capped off adjacent pairs of circles. Lastly, we add
twisted bands at the crossings to obtain a compact oriented 2-dimensional smooth submanifold
I cstx B” whose oriented boundary is given by P and coherently oriented embedded circles
li,...,l, € 8' x S'. The number of these is n, since P is homologous to their union. If T is not
connected, we stabilize appropriately to make it connected.

Since 7 is a standard thickening, there exists some y € S' such that there is a Seifert surface ¥
for K with [ := 7(S1 x {y}) = 7(S! x S1)NE. We can assume that this intersection is transversal
(see [Wall6, Chapter 4.5]). By Theorem 1.6 there exists an orientation preserving smooth bicollar
B: 3 x [~1,1] — S3. After a smooth isotopy of the bicollar we can additionally assume that

B x [0,1]) = im(8) 75" x §*)

Let ¥/ :== (¥ \ im(7)) Ul. We may assume after a smooth isotopy in S x B’ that there exist
xry < -+ <y €[0,1) such that I; = B(I x {x;}) for i € {1,...,n} and such that

A=rI)ulB(E x{a})
=1

is a Seifert surface for 7(P), i.e. the satellite of K with pattern P.

9We abuse the similarity to Seifert’s algorithm to be a bit vague in the following paragraph. All issues occurring
here also arise in a similar way in Seifert’s algorithm. As we trust the experienced reader to know Seifert’s
algorithm, we will not give a detailed description of these slightly bothersome matters.
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2.3 Alexander polynomial of satellite knots

Definition. Let K C S2 be an oriented knot with Seifert surface ¥ and P C ST x PQ be an
oriented pattern. The Seifert surface A constructed in Construction 2.14 is the satellite Seifert
surface for the satellite of K with pattern P resulting from 3.

Before we come to the main theorem, we can now describe in what sense standard thickenings
are untwisted. This will also turn out useful in proving the main theorem:

Proposition 2.15. Let K C S3 be an oriented knot with a standard thickening 7 : St x EQ — 53,
For two disjoint oriented patterns P,Q C S* x B> we havel”

(P, Q) = Ik(r(P),7(Q))

Proof. Let T be a standard thickening of K. Let A be the satellite Seifert surface for 7(P), the
satellite of K with pattern P. Let Ay be the satellite Seifert surface for ©(P), i.e. the satellite of
the unknot with pattern P. We need compatible bicollars for A and Ag: Let Bg: Ag x [—1,1] — S3
be an orientation preserving smooth bicollar. We may assume that So(0(T") x [—1,1]) C im(O).
Hence, 7 0 ©7! o 3 is an orientation preserving smooth bicollar of 7(T"). It follows essentially
from [Wall6, p.57] that we can extend this to an orientation preserving smooth bicollar of A. The
claim now follows by calculating the linking numbers from these Seifert surfaces and bicollars
using Lemma 1.7. |

Now we can state and prove the main theorem of this chapter:

Theorem 2.16. Let K C S® be an oriented knot and P C S' x EQ be an oriented pattern with
winding number n. Let L be the satellite of K with pattern P. Then

Ap(t) = Ap(t) - Ag(t")

Proof. We continue in the notation from Construction 2.14, in particular, let

n
A=rD)ul B x {a})

i=1
be the satellite Seifert surface for the satellite of K with pattern P.
Let e1,...,ex € X be oriented knots such that {ej,...,ex} C Hi(X') is a basis. The satellite
Seifert surface Ag for P as a satellite of the unknot with standard thickening © consists of I' and
n discs. There exist smoothly embedded circles fi,..., f, C T such that {f1,..., fm} C Hi(I)
is a basis. It follows from a Mayer—Vietoris argument that

{r(f)s- s m(f)y U{B (e x {zi}) [z € {1,...,n}} C Hi(A)

is a basis.

Let B': A x [-1,1] — S be an orientation preserving smooth bicollar of A. We may assume
that 8/(7(I') x [~1,1]) C im(7) and that im(p’) C im(B). Hence, 7 0 ©~! 0 3 is an orientation
preserving smooth bicollar of ©(T"). If follows essentially from [Wall6, p.57] that we can extend
this to an orientation preserving smooth bicollar of Ag. Let M be the Seifert matrix for P
resulting from Ag and this bicollar. By Proposition 2.15 is the Seifert matrix of 7(P) resulting

from A is equal to
M N
N X
for appropriate matrices N, N’ and X.

The satellite Seifert surfaces for fi,..., fi, and fi,... ,f,j as satellites of K can be taken to be
disjoint from any given knot in im(f3) \ im(7). Hence, we can show by calculating the linking

10 A5 linking numbers are only defined in S* we make use of Convention 2.4 as usual.
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2.3 Alexander polynomial of satellite knots

numbers via Lemma 1.7 that N and N’ are zero matrices. The matrix X is the n x n block

matrix
A A A ... A
AT A A ... A
X = AT AT A ... A
AT AT AT .. A

where A is the Seifert matrix for K resulting from ¥ and the basis {ei,...,ex} € Hi(X). This is
the case since for all pairs of knots whose linking number appears in X there is an appropriate
equivalent pair of knots whose linking number appears in A. It can be found by shifting the
higher of the knots into (X' x {1}) and the lower into 3(X' x {0}). We therefore calculate that

A A A ... A A A A ... A"
AT A A ... A AT A4 A ... A
det(X—t-XT):det AT AT A ... A _t. AT AT A ... A
AT AT AT . A AT AT AT . A
A—t- AT A—t-A A—t-A A—t
AT — . AT A—t- AT  A—-t-A A—t-A
—det| AT —t- AT AT —¢. AT At AT A—t
AT — . AT AT . AT AT . AT A—t- AT
replace first row by A_tnAT A_tnAT A_tnAT A_tnAT
St (row i) AT — . AT A—t. AT A—t. A A-t-A
+oget| AT —t- AT AT — . AT At AT A—t-A
AT — . AT AT . AT AT . AT A—t- AT
A—tr. AT 0 0 0
spibtract, first column A—AT *
idet * 0 A—AT
by Proposition 1.26 * O O A - AT

det(A—AT)=Af (1)==%1

+ (+£1)"! . det (A —t". AT) = Ag(t")

Therefore is

AL(t)idet<<M X)—t-<M X)):det(M—t-MT>-det(X—t-XT)

= Ap(t) - Ag(t™) n

As a corollary we describe the Alexander polynomial for the connected sum of knots and for
Whitehead doubles:

Corollary 2.17.

(i) Let J, K C S? be oriented knots. The Alezander polynomial of the connected sum J#K is
given by
Ajpr(t) = As(t) - Ak(t)

(ii) The Alexander polynomial of the Whitehead double of any knot is equal to 1.
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2.3 Alexander polynomial of satellite knots

Proof.

(i) The second condition in the definition of the connected sum of knots ensures that the
winding number is 1 in this case. The claim now follows from Theorem 2.16.

(ii) The pattern P for the Whitehead double W of a knot K has winding number 0. Therefore

Aw (1) ? Ap(t) - Ax(t%) ? Ap(t)=1

Theorem 2.16 Proposition 1.26
since ©(P) C S? is the unknot. [ |

Remark. We can now see that the lower bound on the genus of a knot given by the breadth of
its Alexander polynomial from Proposition 1.27 is not always sharp: By Proposition 2.12 the
genus of the Whitehead double of a non-trivial knot is 1 and by Corollary 2.17 the breadth of its
Alexander polynomial is 0.

In fact, this bound can become arbitrarily bad: Let W be the Whitehead double of any non-trivial
knot. The g-fold connected sum of W with itself has genus g, since the genus of a knot is additive
under connected sum (see [Lic97, Theorem 2.4]), but the breadth of its Alexander polynomial is
still 0 by Corollary 2.17.
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3 Torus knots

3.1 Basic properties of torus knots

In Section 2.2.1 we used torus knots to define cables of knots. At that point, we did not develop
any theory about torus knots — a shortcoming that we want to remedy in this chapter. For
convenience, we begin by recalling their definition:!'!

Definition. Let p,q € Z not both zero. We consider the smooth embedding of the torus R2 / 72
into S® given by
o: R2/7% - © (51 x FZ) c g3
1
(z,y) — 7 (exp(2mix),exp(2wiy))
The image of the set
X = {(z,y) €R? | gz — py € Z} C R?

under @ is called the (p, q)-torus link T(p,q) := ®(X). If it has one component, we refer to it as
a torus knot.

The standard orientation for T(p,q) is obtained from orienting the submanifold X C R? by
choosing (g, p) as a positive basis in every tangent space.

Example 2.5.

(2, 3)-torus knot (4,3)-torus knot (2,4)-torus link

One might ask for a way to determine if a torus link is supposed to be called a torus knot. The
next lemma gives even a bit more than that:

Lemma 3.1. Let p,q € Z not both zero. The link T(p,q) has ged(p, q) components, in particular
T(p,q) is a knot < p,q coprime

Furthermore, each path-component of T(p,q) is equivalent to T(p/ged(p, q), q/ged(p, q)).

Proof. We consider the submanifold X := {(z,y) € R? | px — qy € Z} C R? from the definition
of a torus link and notice that the group action of Z? on R? by component-wise addition restricts
to a group action on X. We need to count the path-components of X/Z2.
In principle, the rest is combinatorics. To ease the notation, we note that

70(X/Z?) x 7o(X/Z*) — mo(X/Z2)
[2] + [y] = [z + Y]

"The eagle-eyed among the readers will have noticed, that we now directly incorporated Convention 2.4 into the
definition.
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3.1 Basic properties of torus knots

defines a group structure on the set of path-equivalence classes of X/Z? and only consider the
case ¢ # 0 (the case p # 0 is analogous). Then

Z)qZ — mo(X/Z?)

)

is a well-defined group epimorphism with kernel [p] - (Z/qZ). Hence,

mo(X/Z?) = (Z/qZ)/([p) - (Z/pZL)) = Z/gcd(p, q) L.

Shifting X C R? an appropriate amount in z-direction shows that all components of T(p, q) are
equivalent knots. This proves the second claim, since the component originating from the line in
X going through (0, 0) is precisely the same as T(p/ged(p, q), q¢/ged(p, q)). [ |

One might ask when torus knots are trivial and more generally which torus knots are equivalent.
We give a partial answer in the following proposition:

Proposition 3.2. Let p,q € Z not both zero.

The links T(p,q), T(—p, —q), T(q,p) and T(—q,—p) are equivalent as oriented links.
The link T(p, q) is trivial if |qg| <1 or |p| < 1.

The mirror image of T(p,q) is T(p, —q).

4

—~~ o~ o~
w
— ~— ~—

The link T(p,q) is invertible.

(1) By Lemma 2.2 the (p, q) cable of any unknot is equivalent to T(p,q). The claim therefore
follows by considering the standard thickenings of unknots given by

S x B 5 §3 Cc 2 8t x B 5 83 C 2
(—$, _y) (y,l‘)
fL',y - .%',y —
(@ 9) = 1 =y @) =

and noticing that as oriented submanifolds
7(T(p,q)) = O(T(-p,—q))  and  7'(T(p,q)) = O(T(q,p))

(2) By (1) we only need to show that T(0,q) and T(+1, q) are trivial:
The link T(0, ¢) is the boundary of the smoothly embedded disks (with k =1,...,q)

@<{62“Z} X BQ> c §3
The satellite Seifert surface for T(£1, ¢) as a satellite of the unknot with thickening © is
also a smoothly embedded disk.
(3) The orientation reversing diffeomorphism
5% — §°
(LL‘, y) = (—Jf,y)
maps T(p, q) to T(p, —q).

(4) By definition the oriented submanifolds T(p, ¢) and T(—p, —q) differ precisely in orientation,
therefore, T(—p, —q) is the reversion of T(p,q). The claim now follows from (1). [ |
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3.2 Alexander polynomial of torus knots

To provide a more concrete way of viewing torus knots we construct a knot diagram for them:

Construction 3.3. Let p, g € Z not both zero. In light of Proposition 3.2 we only consider the
case p > 0. By projecting the torus vertically downwards onto an annulus, we then get a knot
diagram for T(p,q). If p > 0,q > 0 this is given by

\ AANAANTAAN

If ¢ < 0 all crossings in the diagram have to be changed.

3.2 Alexander polynomial of torus knots

In this section, we want to find the Alexander polynomial of torus knots. Therefore we need to
construct a Seifert surface and Seifert matrix for them:

Construction 3.4. Let p,q € Z not both zero. We only consider the case p,q > 0. Seifert
surfaces for other values of p, ¢ can be obtained using Proposition 3.2. In principle, we could
directly apply Seifert’s algorithm to the diagram constructed in Construction 3.3, but this would
lead to a Seifert surface consisting of stacked discs which makes finding the harder. Instead, we
shift the p parallel strands running at the top down, obtaining a new diagram for T(p, q).'?

P and g downwards diagonals

12This technique for obtaining a “flat” Seifert surface from a braid word is further explored in [WCO06, “flat style”].
For an abstract way to archive this without braids, see [OSS15, Proposition B.3.3].
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3.2 Alexander polynomial of torus knots

This diagram leads to the following Seifert surface for T(p,q). We orient it such that the red
side faces upwards:

The Seifert matrix from this Seifert surface relative to the basis {eg,...,€p-1)g-1)-1} is a
(g — 1) x (¢ — 1) block matrix, where each block is (p — 1) x (p — 1):

-1 1 1 -1
Unfortunately, the Seifert matrix constructed in this way is somewhat unwieldy. We need to find

a better way of describing it if we are to have any hope of calculating the Alexander polynomial
from it:

Definition. Let A = (ajj)1<i<n and B = (b;j)1<i<v be matrices over a ring. The nn' x mm/

. 1<j<m 1<j<m’
matrix
ai1 - B ai2 - B ... a1m * B
ax1-B asp-B ... asy, B
AR B= . . . .
an,1 - B ai2 - B ... Gnm * B

is the Kronecker product of A and B.
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3.2 Alexander polynomial of torus knots

Example 3.5. Let p,q € N. The Seifert matrix for T(p, q) form Construction 3.4 is

(g=1)x(g—1) (p=1)x(p—1)

We need a bit of theory about the Kronecker product. Far more can be said about it, as it acts
as the tensor product of linear maps when considering matrices (see [JH91, Chapter 4.2]).

Lemma 3.6. Let A = (aij)lgign ,B = (bij)lgign’ ,C = (Cij)1gigm and D = (dij)1gigm' be matrices

1<j<m 1<j<m/ 1<5<1 1<j<l’
over a ring R. Then

1) A\-(A®B)=(M)®B =A® (AB) for all \ € R

3) (A® B)(C ® D) = AC ® BD

(1)

(2) (Ae B)T = AT @ BT

(3)

(4) (A@B)"'=A"'®@ B~ if A and B are invertible

Proof. Claims (1) and (2) follow by direct calculation, for (3) one additionally needs to consider
the rules for multiplying block matrices. Claim (4) is a direct consequence of (3) and the fact
that 1, ® 1, = 1m. |

Furthermore, we remind the reader of roots of unity:
Definition. Let for all n € N be (, := e €Chea primitive n-th root of unity. and
Uy ={CeC| (" =1} = (G} C C°

be the group of n-th roots of unity.
Lemma 3.7. Let p,q € N with d == ged(p,q). The group epimorphism

®: Upx Uy — Uns

(€.8) = C-¢
is d-to-1.
Proof. A direct calculation shows that ® is a well-defined group homomorphism. Its kernel is
given by
ker(@) = {(¢,¢7) | Ce Uu}
since for ((,§) € U, x U,
(&) Eker(®) & (-(=1 & (=¢'eU,NU,=Uy

In particular | ker(®)| = d. By cardinality this implies that ® is an epimorphism and

27 ({¢H) =d

for every ¢ € U%z. [ ]
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3.2 Alexander polynomial of torus knots

Thus prepared, we can state and prove a formula for the Alexander polynomial of a torus knot:

Theorem 3.8. Let p,q € Z not both zero. If p =10 or ¢ =0, A, q) is trivial.

Ifp,q#0, d
o (tpdq' — 1) (t—1)
A(p,g) (t) = H (t - C\zPICIJQ\) - (tlPl — 1) (tlal — 1)

where d := ged(p, q) € N.

Proof. By Proposition 3.2 T(p, q) is trivial if p = 0 or ¢ = 0, which proves the first claim. Hence,
we only need to consider the case p,q # 0. By Proposition 3.2

T(p.q) = T(=p,—q) = (T(p, —q))" = (T(-p,q))"
Therefore by Proposition 1.25
Arpg)(t) = Ar(—p—q) () = Arp,—g) () = Ar(—pq) (1)

Hence we only need to consider the case p,q > 0.
We consider for all n € N the (n — 1) x (n — 1) matrix

and start with a preliminary claim:

Claim. For alln € N there exists an invertible complex matriz X, such that

_Cn
. @
X (A7) Ay Xt = —n
_rn—1
n
Proof. We calculate that

1 11 1 1 1
11 1 -1 1 -1 1
(Ag)‘lAn:: 1o 1. -1 1 _ ~1 1
1 -1 1 -1 1

By Laplace extension in the last column its characteristic polynomial is therefore equal to

X -1
1 X _1 n—1 . ) Xn + (_1)n+1
XA_lAT(X) = det . : — Z(_l)l . XTL*I*’L _ X—
" 1 X -1 i=0 !
1 X-1

In particular, for all z € C\ {—1}
Xaoiar(2) =0 & 2"+ ()" =0 & (=2)"=1 & —zeU,\{1}

-1
which proves that the diagonalization of (AZ) A, is as claimed. O
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3.3 Alexander polynomial of torus knots

By Construction 3.4 a Seifert matrix for T(p, q) is given by M = A, ® (—A4,). We can now
calculate that

det (M —t- M") = det ((MT>1) det(t - MT — M) = det (t Ap1)(go1) — (MTY1 M)

N—_——
=(-1)(p=1(a-1)

Lemma 3.6

1 -1 —1
= det (t L1y — ((A:}F) Ag® (Az?) Ap))
-1 -1 B
= det((Xq © Xp) - (t Lp1)(go1) — ((AqT) A, (A7) A,,)) (X ® X)) 1)
*Cq *Cp
Claim _C(? _ g
=det |t 1 1)g-1) — . ®

_rq-1 _¢p-1
q <p

= I (t-64)
i=1,...,p—1
Jj=1,..,q—1

which proves the first equality. For the second equality, we note that

I (-ga)-@-ve-n=TI (-¢q) II (t-¢) I (t-4)

i=1,...,p—1 i=1,...,p—1 i=1,....p 7j=1,....q
j=1,...,q—1 Jj=1,...,g—1
_ irJ J ¥e)
=¢-1n I (t-¢q) II (t-¢)=6- ) 1 (t—cpcq)
i=1,....p—1 7j=1,....q 1=1,....,p
Jj=1,....q J: 4

Remark. We have used in the last proof that the Alexander polynomial calculated from an

-1
invertible Seifert matrix M is given by the characteristic polynomial of (M T) M.

This can be further developed in the context of fibred knots — such as torus knots — since the
—1
Seifert matrix M originating from a fibre surface ¥ is always invertible. The matrix (M T) M

then describes the monodromy of 3, see [BZH13, Lemma 8.6] and [Sav12, Lemma 8.3].
As a corollary we obtain the genus of a torus knot:

Corollary 3.9. Let p,q € Z not both zero with d := ged(p,q) € N. The genus of T(p,q) is
pl=D(gl=1)—d+1
{(\ “D0d-D-d+1

2
0, ifp=0o0rq=0

Proof. By Proposition 3.2 T(p,q) is a trivial knot or link if p = 0 or ¢ = 0, which proves the
second case. Hence, we only need to consider the case p,q # 0. By Theorem 3.8

br(Apg) (1) = (Ip] = (gl = 1)

By Lemma 3.1 T(p, q) is a d-component link. By Proposition 1.27 the genus of T(p, q) is therefore
greater than or equal to

br(Arg(#) ~d+1 (]~ 1)(Jal~ 1) ~d+ 1
2 N 2
This proves the claim, since the Seifert surface constructed in Construction 3.4 has 2|pq| — 2
discs and 3|pq| — |p| — |¢| — 2 bands with d boundary components and thereby genus

Blpgl —Ipl =gl =2) = Q2lpg| =2)+1—-(d—1) _(p[=1D)(l¢/-1) —d+1
2 2
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3.3 Classification of torus knots

3.3 Classification of torus knots

The aim of this last section is to prove that between torus knots only the equivalences described
in Proposition 3.2 hold. Part of this is to show that torus knots are chiral:

Proposition 3.10. Any non-trivial torus link is chiral.

Proof. see [Mur(08, Theorem 7.4.2].

The idea of the proof is to show that the signature of a non-trivial torus link is non-zero. This
proves the claim, as it follows from Proposition 1.17 that the signature of an amphichiral link
must be 0. |

With this proposition in place, we can give a complete classification of torus knots:
Theorem 3.11. Let p,q,p’,q € Z not both zero.

(1) Two non-trivial torus links T(p,q) and T(p',q’) are equivalent oriented links if and only if
@' d) € {(w,9),(a,p), (=P, —q), (¢, —p)}

(2) The link T(p,q) is trivial if and only if |p| <1 or|q| < 1.
Proof. By Proposition 3.2 we only need to prove the “only if” direction of both claims:

(2) Assume T(p,q) is trivial. The claim is true of p = 0 or ¢ = 0, hence we only need to
consider p,q # 0. By Theorem 3.8

AT(p,q) (t) = A H (t o C‘ZP|C|]‘I‘)

This product is non-zero. Since Ay, 4(t) is trivial we must therefore have A, y(f) = 1.
This implies that the product is empty, i.e. [p| =1 or |¢| = 1.

(1) As we only consider non-trivial links |p|, |¢| > 2 by (2).
Assume T(p,q) and T(p',q’) are equivalent as oriented links. Let d = ged(p,q) and
d = ged(p',q). By Lemma 3.1 d = d’ is the number of components of T(p, q) (or T(p/,q')).
By Theorem 3.8

[pal = Ip| = la| = 1 =br (T (8)) = br(Tir g (@) = '] = 1P| = ¢/ — 1

[pa] P'q|
d = I}llgif {AT(p,q) (Cn) = 0} = I;ngi]{ {AT(p’,q’) (Cn) = 0} = d’

Therefore, |p| - |q| = [p'] - |¢'| and |p| + |¢| = |p| + |¢|. This implies that

(X = Ip)(X = gl) = X* = (Ip| + gD X + |pq]
=X2— (PI+1dDX + 'l = (X - pNX - |d))

ie. {|pl,lq|} = {I?'|,|d'|}. By Proposition 3.10 T(p, q) is not equivalent to T(p,—q). The
claim now follows from Proposition 3.2. |
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