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Die Féarbbarkeit eines Knotens ist eine klassische Knotenvariante. Sie folgt direkt aus dem Satz
iber die Reidemeisterbewegungen von 1926 [Rei27]. Dieser Satz entstammt der historischen
Knotentheorie, welche Knoten als endliche Polygonziige im Raum betrachtet. Die moderne
Sichtweise betrachtet Knoten jedoch als glatte Untermannigfaltigkeiten. Den Satz iiber die Reide-
meisterbewegungen darin zu beweisen ist technisch und aufwendig'. Méchte man also zeigen, dass
Farbbarkeit eine Invariante von glatten Knoten ist, muss man einen alternativen Beweis finden.
Die Idee dafiir ist, die Farbungseigenschaften in Eigenschaften von Gruppenhomomorphismen
aus der Fundamentalgruppe des Knotenkomplements zu iibersetzen. Dieser Ansatz stammt von
Ralph Fox, [CF77, p.93].

In der Entwicklung der allgemeinen Theorie folgen wir [Fri23, Chapters 69-70].
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'In der Literatur wird der Beweis gerne einfach iibersprungen. Einer der wenigen zufriedenstellenden Beweise fiir
glatte Knoten findet sich in [OSS15, Appendix B.1].




2. Konventionen und Definitionen zu Knoten

1 Konventionen und Definitionen zu Knoten

Zu Beginn wollen wir kurz unsere Sichtweise auf die Knotentheorie fixieren:

Definition. Ein Knoten K ist eine glatte Untermannigfaltigkeit von S = R3 U {cc}, die
diffeomorph zu S?! ist.
Zwei Knoten K, J sind dquivalent oder glatt isotop, wenn eine glatte Isotopie von K nach J gibt,
also eine glatte Abbildung F: S x [0,1] — S3, sodass

— F(S' x{0}) = K und F(S' x {1}) =J

— F;: St — S3 fiir t € [0,1] eine glatte Einbettung ist
Der Unknoten ist der Knoten {(z,y,0) € R3 | 22 + %> = 1} C R3U {co} = S3. Ein Knoten ist
trivial, wenn er aquivalent zum Unknoten ist.

Eine wesentliche Rolle in den nachfolgenden Uberlegungen werden Knotendiagramme spielen:

Definition. Sei K C R3 C S3 ein Knoten und p: R? — R? x {0} die Projektion. Es existiert ein
zu K dquivalenter Knoten K’ mit einem Diffeomorphismus ¢: S* — K’ sodass
— Fiir alle a € St ist (po @) (a) #0
— Fiir alle z € R? gilt #(po ) '({x}) € {0,1,2}
— Fiir alle a # b € S mit (po p)(xz) = (po ¢)(y) sind (po )(a) und (p o )(b) linear
unabhéingig
Ein x € im(p o ¢) mit #(po p) "1 ({z}) = 2 heiBlt Kreuzung. Wir betrachten die Abbildung

c¢: {Kreuzungen} — S!

T @t (Das Element von p~!({z}) N K’ mit kleinerer :ng—Kooridate)

Dann ist (pow: S* — R?,¢) ein Knotendiagramm fiir K. Das Bild einer Zusammenhangskompo-
nente von S! \ im(c) unter p o 7 ist ein Stringe des Knotendiagramms.

Da in dieser Definition ein Knotendiagramm durch eine Abbildung gegeben ist, ist es immer
orientiert — auch wenn der Knoten urspriinglich nicht orientiert war. Dies machen wir uns in
folgender Definition zu nutze.

Definition. Sei ® = (7, ¢) ein Knotendiagramm mit einer Kreuzung x mit v~ *({z}) = {a, b},
wobei b € im(c).
In einer kleinen Umgebung von x liegen genau drei Stringe o, u, u’. Wir sagen der eindeutige Strang
o, der x enthilt, liegt oben bei x, die anderen beiden liegen unten. Wir schreiben x = (o|u, u’). Die
Kreuzung x heiit positiv, wenn {(p o ) (a), (p o 7)'(b)} C R3 eine positive Basis ist. Ansonsten
heifit  negativ.

Natiirlich fehlen hier Beweise fiir wesentliche Eigenschaften dieser Definitionen — zum Beispiel fiir
die Existenz von Knotendiagrammen. Fiir diese sei auf die Literatur verwiesen — eine sorgfiltige
Betrachtung findet sich in [Fri23, Chapter 70].

2 Knotenfarbbarkeit — diagrammatisch

Nach dieser Begriffskldarung wollen wir uns dem eigentlichen Inhalt zuwenden.
Definition. Sei n € N. Wir ein Knotendiagramm 2. Eine n-Fdrbung von ® ist eine Abbildung
f: {Strédnge von ®} — Z/nZ = {0,...,n — 1}
S — Farbe von S

sodass 2- f(0) = f(u)+ f(u') bei allen Kreuzungen z = (o|u, u’). Eine n-Farbung ist trivial, wenn

#im(f) = 1.
Ein Knotendiagramm ® heifit n-fdrbbar, wenn eine nicht-triviale n-Farbung von existiert. Ein
Knoten K ist n-farbbar, wenn er ein n-fairbbares Knotendiagramm besitzt.
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o &

3-Farbung des Kleeblattknoten 5-Farbung des Achterknoten

Bemerkung. Wir betrachten n-Farbungen fiir kleines n:
— Kein Knoten ist 1-farbbar, da alle 1-Farbungen trivial sind.
— Kein Knoten ist 2-farbbar, da alle 2-Farbung trivial sind:
Die Farbbarkeitsbedingung impliziert bei 2-Farbungen, dass die Farben der unteren beiden
Stringe an jeder Kreuzung gleich sind. Da Knotendiagramme ein Bild von S! sind, miissen
somit alle Stréange die gleiche Farbe haben.

Im Folgenden wird es sich herausstellen, dass es einfacher ist Knotenfarbungen nur fir Primzahlen
zu betrachten. Die nédchste Proposition erlaubt dies.

Proposition 2.2. Sei ® ein Knotendiagramm und n € N. Dann gilt
D n-fairbbar < dp €N prim, p|n:D p-farbbar

Beweis.
»=" Es reicht aus zu zeigen, ist n = a - b, so ist ® a-farbbar oder b-farbbar.
Sei f : {Strange von ®} — Z/nZ eine nicht-triviale n-Farbung.
Fall 1: Es existieren Striange S, S’ mit f(S) # f(S’) mod a
Dann ist

g: {Strange von ®} — Z/aZ
S f(5)
eine nicht-triviale a-Farbung.
Fall 2: Fiir alle Strange S, S’ gilt f(S) = f(S’) mod a
Sei ¢ := f(9) fiir einen Strang S. Dann ist
g: {Strénge von ©} — Z/bZ
f(5)—c

a

S —

wohldefiniert. Die Abbildung g ist eine b-Farbung, da fiir jede Kreuzung (o|u, )
flo)—c flu)—c f)—c 2f(0) = f(u) - f(u)

a a a a

29(0) —g(u) —g(u') = 2- =0
Da f nicht-trivial, existiert ein Strang S’ mit f(S’) =n-a+ ¢ und 0 # n < b. Dann
ist in Z/bZ
f(S) —c¢
o(s) =L = 0= g(9)

a
Also ist g nicht-trivial. Damit ist © b-farbbar.
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»<="“ Sei p ein Primfaktor von n und f: {Strdnge von ®} — Z/pZ eine nicht-triviale p-Farbung.
Dann ist

g : {Stringe von D} — Z/nZ

n

S f(S)-—
(5)-2
eine nicht-triviale n-Farbung, da fir die Kreuzung (o|u,u’) in Z/nZ

+(2f(0) = f(u) = f(u)) =0

Vielfaches von p

29(0) — g(u) — g(u') =

=S

L

Sucht man lange genug nach Beispielen fiir Knotenfdrbungen — oder ist bereits mit ihren
Eigenschaften vertraut — so findet man folgenden Satz:

Satz 2.3. Sein € N.
— FEin Knoten ist genau dann n-fdrbbar, wenn alle seine Diagramme n-farbbar sind.
— Aquivalente Knoten sind gleichzeitig n-farbbar, also ist n-Férbbarkeit eine Knoteninvariante.

Ublicherweise beweist man diesen Satz mithilfe des Satzes iiber die Reidemeisterbewegungen
(siehe [Mur(08, Chapter 5.6]) — wegen seiner schwierigen Beweisbarkeit fiir glatte Knoten, méchten
wir diesen allerdings nicht verwenden. Stattdessen entwickeln wir im nédchsten Abschnitt eine
andere, rein topologische Sichtweise auf dieses Problem.

3 Fundamentalgruppe des Knotenkomplements

Mithilfe des Isotopie-Vortsetzungssatz aus der Differentialtopologie kann man glatte Isotopien
einer Untermannigfaltigkeit zu einer Diffeotopie der umgebenden Mannigfaltigkeit fortsetzen.
Dies impliziert insbesondere, dass die Komplemente glatt-isotoper Knoten diffeomorph sind. Die
(differential-)topologischen Invarianten des Komplements eines Knoten sind also ein reicher Fundus
an Knoteninvarianten. Im Folgenden interessieren wir uns besonders fiir die Fundamentalgruppe.

Satz 3.1. Seien K und J glatt-isotope Knoten. Dann ist m1(S®\ K) = 71(S%\ J).

Beweis. Sei F: S' x [0,1] — 83 eine glatte Isotopie von K nach J. Nach dem Isotopie-
Fortsetungssatz (siehe [Fri23, Theorem 37.1]) existiert eine glatte Diffeotopie G': S? x [0,1] — S3
mit Gy = id und G1(K) = J. Insbesondere ist ®: 3\ K — S$3\ J ein Diffeomorphismus. &

Beispiel 3.2. Sei U := {(z,y,0) | 224y = 1} C $3 der Unknoten. Dann ist {0}2 x RU{oo} C S?
ein Deformationsretrakt von S\ U. Somit ist 71 (5% \ U) = Z.

Ein expliziter Beweis fiir das letzte Beispiel ist bereits relativ aufwendig. Fiir beliebige Knoten
erscheint es aussichtslos, die Fundamentalgruppe ihres Komplements bestimmen zu kénnen. Der
folgende Satz schafft hier Abhilfe.

Satz 3.3. Sei K ein Knoten mit Knotendiagramm 2. Seien x1,...,x, die Stringe von © in der
Reihenfolge der Orientierung von ®. Wir setzen xg = x, und Tpy1 = x1. Seien ky, ..., ky die
Kreuzungen von m. Firi € {1,...,n} und k; = (z4|zp, Tp11) sei

{xaxbﬂx;lazbl, wenn a; positive Kreuzung
ri =
J

:E;lbuxax;l, wenn a; negative Kreuzung

Dann ist
T (SP\K) 2 (xy,..., 20 | 1, , )
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Tq / Tp Tq / Tp
Tpt1 / Zq Th+1 / Ta

ergibt die Relation ergibt die Relation
$a$b+1l’(;1$b_1 x;lxbﬂxaxb_l
Beweis. Fiir ein prizises Argument siehe [Fri23, Proposition 70.23]. A

Definition. Sei K ein Knoten. Die Darstellung von 71(S% \ K) aus Satz 3.3 heifit Wirtinger-
Darstellung.

Bemerkung. In einem Knotendiagramm mit mindestens einer Kreuzung gibt es gleich viele
Striange und Kreuzungen, da jeder Strang an einer eindeutigen Kreuzung beginnt. In diesem Fall
darf bei der Wirtinger-Darstellung eine der Relationen entfallen.

Beispiele 3.4. Wir bestimmen die Fundamentalgruppe des Komplements von Kleeblatt-und
Achterknoten:

N y

-1 11 -1 “1.-1 -1 -1 -1
(1,22, 3 | X5 Tow3x] ", Ty XT1TaTy ) (T1,T2,T3,%4 | T1T3T] Ty, Ty ToT4T1, Ty LaZols )

4 Knotenfarbbarkeit — gruppentheoretisch

Im Allgemeinen ist es unméglich zu entscheiden, ob zwei gegebene Gruppendarstellungen isomorph
sind. Eine Méglichkeit dies zu tun ist, zu untersuchen ob es nicht-triviale Abbildungen zu einer
fixierten Gruppe gibt. Wir betrachten dafiir insbesondere folgende Gruppen:

Definition. Sei n € N. Wir definieren die n-te Diedergruppe als D,, :== (r,s | 7", %, srsr).

Anschaulich sind die Elemente von D, fiir n > 3 die Symmetrieren eines reguldren n-Fcks

r Rotation um 27”

—
s Spiegelung

Da die Diedergruppen iiber eine Gruppendarstellung definiert sind, miissen wir zeigen, dass sie
nicht-trivial sind.
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Proposition 4.1. Sein € N. Fir alle x € D,, existieren eindeutige i € {0,...,n—1},5 € {0,1}
mit x = r's?. Insbesondere ist

D, = (r,s | 1™, s, srsr) :{risj ‘ iE{O,...,n—l},jE{O,l}}

eine 2n-elementige Gruppe. Es ist Dy = 7./27., Dy = 7./27%. Fiir n > 3 ist D,, nicht abelsch.

Beweis. Da sr = r~! ist jedes « € D,, von der Form r’s? fiir 4, € N. Da 7" = s? = ¢, kann
i € {0,...,n —1},5 € {0,1} angenommen werden. Sei rs/ = r'si". Durch betrachten der
Abbildungen
D, — Z/nZ D, — Z/sZ
r o— 1 und r — 0
s — 0 s — 1
folgt 4 =4 mod n und j = 5/ mod 2. A

Nun haben wir genug allgemeine Theorie entwickelt, um zu Knotenfirbungen zuriickkehren zu
konnen:

Proposition 4.2. Sei p € N prim und K ein Knoten. Es gilt
— Ist K p-firbbar, so existiert ein Epimorphismus m1(S% \ K) — D,.
— Euistiert ein Epimorphismus 71(S® \ K) — D,, so ist jedes Knotendiagramm von K
p-farbbar.

Beweis. Sei K p-farbbar. Dann existiert ein p-firbbares Knotendiagramm ® fiir K. Wir betrach-
ten die Wirtinger-Darstellung von 71(S% \ K), die aus D resultiert

T (SP\K) = (xy, .2 | 1,0 )
Sei f: {x1,...,xn} — Z/pZ eine nicht-triviale Farbung fir ©. Dann ist
¢: m(S*\ K) = D,
;> srf (@)

ein wohldefinierte Homomorphismus, da fiir jede Kreuzung (o|u, u')

(o 0¥ ) = (Srf(o))il (sr0) (Srf(O))jFl (Srf(u))_l

i (517 (5076 (57 (507

L~ f) (W)= fo)+f(w) —_

Da f nicht-trivial, existieren a,b € im(f) mit a # b. Somit sind s, s’ € im(p). Nach Propositi-
on 4.1 ist s7? # sr®. Damit enthélt im(p) zwei Elemente der Ordnung 2. Da # im(f)|#D, = 2p
und p prim, folgt im(f) = D,,.

Sei ¢: m(S%\ K) = D,, ein Epimorphismus und ® ein Knotendiagramm fiir K. Wir betrachten
wiederum die Wirtinger-Darstellung von 71(S% \ K), die aus ® resultiert

1 (SP\K) 2 (xy,..., 20 | T1,. ., Tm)

Wir identifizieren wieder xg = xy,, Tp4+1 = x1. Sei i € {1,...,n}. Dann existiert eine Kreuzung
(2q|xs, 2i11). Somit gilt zFla, 2T e; = e, also sind z; und :ci;ll konjugiert. Damit sind auch
¢(z;) und p(x;41) konjugiert undes gilt ord(x;) = ord(x;+1). Somit ist ord(yp(z;)) = ord(¢(z;))
fiur alle 7,5 € {1,...,n}.

Nach dem Satz von Lagrange ist ord(z;) € {1,2,p, 2p}. Nach Proposition 4.1 ist D,, nicht zyklisch,
also ord(x;) # 2p. Da ¢ ein Epimorphismus ist, ord(¢(z;)) # 1. Angenommen ord(y) = p. Dann
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ist im(¢) C (r), also ist ¢ kein Epimorphismus. Widerspruch! Also gilt ord(¢(z;)) = 2. Nach
Proposition 4.1 existiert a; € {0,...,n — 1} mit p(x;) = sr%.
Wir betrachten die Abbildung

fidzr,...,xn} = Z/0Z
T; —r a;

Da ¢ Epimorphismus, ist # im(f) > 2. Zudem gilt fiir eine Kreuzung (x4|z;, 2i41)
pf @) +f(25)=2f(a) — (srf(o))il (srf(“,)) (srf(o)):Fl (srf(“))_l = @(xflib‘wrlw;clwi_l) =e

lxi_ L oder x;lxiﬂxaxi_ ! eine Relation der Wirtinger-Darstellung ist. Damit gilt

p | (i) + fzj) = 2f (2a),

also f(z;) + f(zj) —2f(xq) =0 € Z/pZ. Somit ist f eine nicht-triviale p-Féarbung.

da zqxit12,

>

Damit konnen wir nun Satz 2.3 beweisen:

Satz 2.3. Sein € N.
— Ein Knoten ist genau dann n-farbbar, wenn alle seine Diagramme n-farbbar sind.
— Aquivalente Knoten sind gleichzeitig n-firbbar, also ist n-Farbbarkeit eine Knoteninvariante.

Beweis. Fiir n prim folgt die Behauptung aus Proposition 4.2. Damit folgt die Behauptung fiir
allgemeines n € N aus Proposition 2.2. o\
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