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Die Färbbarkeit eines Knotens ist eine klassische Knotenvariante. Sie folgt direkt aus dem Satz
über die Reidemeisterbewegungen von 1926 [Rei27]. Dieser Satz entstammt der historischen
Knotentheorie, welche Knoten als endliche Polygonzüge im Raum betrachtet. Die moderne
Sichtweise betrachtet Knoten jedoch als glatte Untermannigfaltigkeiten. Den Satz über die Reide-
meisterbewegungen darin zu beweisen ist technisch und aufwendig1. Möchte man also zeigen, dass
Färbbarkeit eine Invariante von glatten Knoten ist, muss man einen alternativen Beweis finden.
Die Idee dafür ist, die Färbungseigenschaften in Eigenschaften von Gruppenhomomorphismen
aus der Fundamentalgruppe des Knotenkomplements zu übersetzen. Dieser Ansatz stammt von
Ralph Fox, [CF77, p.93].
In der Entwicklung der allgemeinen Theorie folgen wir [Fri23, Chapters 69-70].
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1In der Literatur wird der Beweis gerne einfach übersprungen. Einer der wenigen zufriedenstellenden Beweise für
glatte Knoten findet sich in [OSS15, Appendix B.1].
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2. Konventionen und Definitionen zu Knoten

1 Konventionen und Definitionen zu Knoten
Zu Beginn wollen wir kurz unsere Sichtweise auf die Knotentheorie fixieren:

Definition. Ein Knoten K ist eine glatte Untermannigfaltigkeit von S3 := R3 ∪ {∞}, die
diffeomorph zu S1 ist.
Zwei Knoten K, J sind äquivalent oder glatt isotop, wenn eine glatte Isotopie von K nach J gibt,
also eine glatte Abbildung F : S1 × [0, 1] → S3, sodass

– F (S1 × {0}) = K und F (S1 × {1}) = J
– Ft : S1 → S3 für t ∈ [0, 1] eine glatte Einbettung ist

Der Unknoten ist der Knoten {(x, y, 0) ∈ R3 | x2 + y2 = 1} ⊆ R3 ∪ {∞} = S3. Ein Knoten ist
trivial, wenn er äquivalent zum Unknoten ist.

Eine wesentliche Rolle in den nachfolgenden Überlegungen werden Knotendiagramme spielen:

Definition. Sei K ⊆ R3 ⊆ S3 ein Knoten und p : R3 → R2 × {0} die Projektion. Es existiert ein
zu K äquivalenter Knoten K ′ mit einem Diffeomorphismus φ : S1 → K ′, sodass

– Für alle a ∈ S1 ist (p ◦ φ)′(a) ̸= 0
– Für alle x ∈ R2 gilt #(p ◦ φ)−1({x}) ∈ {0, 1, 2}
– Für alle a ̸= b ∈ S1 mit (p ◦ φ)(x) = (p ◦ φ)(y) sind (p ◦ φ)(a) und (p ◦ φ)(b) linear

unabhängig
Ein x ∈ im(p ◦ φ) mit #(p ◦ φ)−1({x}) = 2 heißt Kreuzung. Wir betrachten die Abbildung

c : {Kreuzungen} → S1

x 7→ φ−1
(
Das Element von p−1({x}) ∩ K ′ mit kleinerer x3-Kooridate

)
Dann ist (p ◦ π : S1 → R2, c) ein Knotendiagramm für K. Das Bild einer Zusammenhangskompo-
nente von S1 \ im(c) unter p ◦ π ist ein Stränge des Knotendiagramms.

Da in dieser Definition ein Knotendiagramm durch eine Abbildung gegeben ist, ist es immer
orientiert – auch wenn der Knoten ursprünglich nicht orientiert war. Dies machen wir uns in
folgender Definition zu nutze.

Definition. Sei D = (γ, c) ein Knotendiagramm mit einer Kreuzung x mit γ−1({x}) = {a, b},
wobei b ∈ im(c).
In einer kleinen Umgebung von x liegen genau drei Stränge o, u, u′. Wir sagen der eindeutige Strang
o, der x enthält, liegt oben bei x, die anderen beiden liegen unten. Wir schreiben x = (o|u, u′). Die
Kreuzung x heißt positiv, wenn {(p ◦ π)′(a), (p ◦ π)′(b)} ⊆ R3 eine positive Basis ist. Ansonsten
heißt x negativ.

Natürlich fehlen hier Beweise für wesentliche Eigenschaften dieser Definitionen – zum Beispiel für
die Existenz von Knotendiagrammen. Für diese sei auf die Literatur verwiesen – eine sorgfältige
Betrachtung findet sich in [Fri23, Chapter 70].

2 Knotenfärbbarkeit – diagrammatisch
Nach dieser Begriffsklärung wollen wir uns dem eigentlichen Inhalt zuwenden.

Definition. Sei n ∈ N. Wir ein Knotendiagramm D. Eine n-Färbung von D ist eine Abbildung

f : {Stränge von D} → Z/nZ = {0, . . . , n − 1}
S 7→ Farbe von S

sodass 2 · f(o) = f(u) + f(u′) bei allen Kreuzungen x = (o|u, u′). Eine n-Färbung ist trivial, wenn
# im(f) = 1.
Ein Knotendiagramm D heißt n-färbbar, wenn eine nicht-triviale n-Färbung von existiert. Ein
Knoten K ist n-färbbar, wenn er ein n-färbbares Knotendiagramm besitzt.
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2. Knotenfärbbarkeit – diagrammatisch

Beispiele 2.1.

3-Färbung des Kleeblattknoten

0

1 2

5-Färbung des Achterknoten

0

1 4

3

Bemerkung. Wir betrachten n-Färbungen für kleines n:
– Kein Knoten ist 1-färbbar, da alle 1-Färbungen trivial sind.
– Kein Knoten ist 2-färbbar, da alle 2-Färbung trivial sind:

Die Färbbarkeitsbedingung impliziert bei 2-Färbungen, dass die Farben der unteren beiden
Stränge an jeder Kreuzung gleich sind. Da Knotendiagramme ein Bild von S1 sind, müssen
somit alle Stränge die gleiche Farbe haben.

Im Folgenden wird es sich herausstellen, dass es einfacher ist Knotenfärbungen nur für Primzahlen
zu betrachten. Die nächste Proposition erlaubt dies.

Proposition 2.2. Sei D ein Knotendiagramm und n ∈ N. Dann gilt

D n-färbbar ⇔ ∃p ∈ N prim, p | n : D p-färbbar

Beweis.
„⇒“ Es reicht aus zu zeigen, ist n = a · b, so ist D a-färbbar oder b-färbbar.

Sei f : {Stränge von D} → Z/nZ eine nicht-triviale n-Färbung.
Fall 1: Es existieren Stränge S, S′ mit f(S) ̸≡ f(S′) mod a

Dann ist

g : {Stränge von D} → Z/aZ
S 7→ f(S)

eine nicht-triviale a-Färbung.
Fall 2: Für alle Stränge S, S′ gilt f(S) ≡ f(S′) mod a

Sei c := f(S) für einen Strang S. Dann ist

g : {Stränge von D} → Z/bZ

S 7→ f(S) − c

a

wohldefiniert. Die Abbildung g ist eine b-Färbung, da für jede Kreuzung (o|u, u′)

2g(o) − g(u) − g(u′) = 2 · f(o) − c

a
− f(u) − c

a
− f(u′) − c

a
= 2f(o) − f(u) − f(u′)

a
= 0

Da f nicht-trivial, existiert ein Strang S′ mit f(S′) = n · a + c und 0 ̸= n < b. Dann
ist in Z/bZ

g(S′) = f(S′) − c

a
= n ̸= 0 = g(S′)

Also ist g nicht-trivial. Damit ist D b-färbbar.
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3. Fundamentalgruppe des Knotenkomplements

„⇐“ Sei p ein Primfaktor von n und f : {Stränge von D} → Z/pZ eine nicht-triviale p-Färbung.
Dann ist

g : {Stränge von D} → Z/nZ

S 7→ f(S) · n

p

eine nicht-triviale n-Färbung, da für die Kreuzung (o|u, u′) in Z/nZ

2g(o) − g(u) − g(u′) = n

p
·
(
2f(o) − f(u) − f(u′)

)︸ ︷︷ ︸
Vielfaches von p

= 0

Sucht man lange genug nach Beispielen für Knotenfärbungen – oder ist bereits mit ihren
Eigenschaften vertraut – so findet man folgenden Satz:

Satz 2.3. Sei n ∈ N.
– Ein Knoten ist genau dann n-färbbar, wenn alle seine Diagramme n-färbbar sind.
– Äquivalente Knoten sind gleichzeitig n-färbbar, also ist n-Färbbarkeit eine Knoteninvariante.

Üblicherweise beweist man diesen Satz mithilfe des Satzes über die Reidemeisterbewegungen
(siehe [Mur08, Chapter 5.6]) – wegen seiner schwierigen Beweisbarkeit für glatte Knoten, möchten
wir diesen allerdings nicht verwenden. Stattdessen entwickeln wir im nächsten Abschnitt eine
andere, rein topologische Sichtweise auf dieses Problem.

3 Fundamentalgruppe des Knotenkomplements
Mithilfe des Isotopie-Vortsetzungssatz aus der Differentialtopologie kann man glatte Isotopien
einer Untermannigfaltigkeit zu einer Diffeotopie der umgebenden Mannigfaltigkeit fortsetzen.
Dies impliziert insbesondere, dass die Komplemente glatt-isotoper Knoten diffeomorph sind. Die
(differential-)topologischen Invarianten des Komplements eines Knoten sind also ein reicher Fundus
an Knoteninvarianten. Im Folgenden interessieren wir uns besonders für die Fundamentalgruppe.

Satz 3.1. Seien K und J glatt-isotope Knoten. Dann ist π1(S3 \ K) ∼= π1(S3 \ J).

Beweis. Sei F : S1 × [0, 1] → S3 eine glatte Isotopie von K nach J . Nach dem Isotopie-
Fortsetungssatz (siehe [Fri23, Theorem 37.1]) existiert eine glatte Diffeotopie G : S3 × [0, 1] → S3

mit G0 = id und G1(K) = J . Insbesondere ist Φ: S3 \ K → S3 \ J ein Diffeomorphismus.

Beispiel 3.2. Sei U := {(x, y, 0) | x2+y1 = 1} ⊆ S3 der Unknoten. Dann ist {0}2×R∪{∞} ⊆ S3

ein Deformationsretrakt von S3 \ U . Somit ist π1(S3 \ U) ∼= Z.

Ein expliziter Beweis für das letzte Beispiel ist bereits relativ aufwendig. Für beliebige Knoten
erscheint es aussichtslos, die Fundamentalgruppe ihres Komplements bestimmen zu können. Der
folgende Satz schafft hier Abhilfe.

Satz 3.3. Sei K ein Knoten mit Knotendiagramm D. Seien x1, . . . , xn die Stränge von D in der
Reihenfolge der Orientierung von D. Wir setzen x0 := xn und xn+1 := x1. Seien k1, . . . , km die
Kreuzungen von m. Für i ∈ {1, . . . , n} und ki = (xa|xb, xb+1) sei

rj :=
{

xaxb+1x−1
a x−1

b , wenn ai positive Kreuzung
x−1

a xb+1xax−1
b , wenn ai negative Kreuzung

Dann ist
π1(S3 \ K) ∼= ⟨x1, . . . , xn | r1, . . . , rm⟩
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4. Knotenfärbbarkeit – gruppentheoretisch

xb

xb+1 xa

xa

ergibt die Relation
xaxb+1x−1

a x−1
b

xb

xb+1 xa

xa

ergibt die Relation
x−1

a xb+1xax−1
b

Beweis. Für ein präzises Argument siehe [Fri23, Proposition 70.23].

Definition. Sei K ein Knoten. Die Darstellung von π1(S3 \ K) aus Satz 3.3 heißt Wirtinger-
Darstellung.

Bemerkung. In einem Knotendiagramm mit mindestens einer Kreuzung gibt es gleich viele
Stränge und Kreuzungen, da jeder Strang an einer eindeutigen Kreuzung beginnt. In diesem Fall
darf bei der Wirtinger-Darstellung eine der Relationen entfallen.

Beispiele 3.4. Wir bestimmen die Fundamentalgruppe des Komplements von Kleeblatt-und
Achterknoten:

⟨x1, x2, x3 | x−1
3 x2x3x−1

1 , x−1
2 x1x2x−1

3 ⟩

x1

x3 x2

⟨x1, x2, x3, x4 | x1x3x−1
1 x−1

2 , x−1
4 x2x4x1, x−1

2 x4x2x−1
3 ⟩

x1

x2 x3

x4

4 Knotenfärbbarkeit – gruppentheoretisch
Im Allgemeinen ist es unmöglich zu entscheiden, ob zwei gegebene Gruppendarstellungen isomorph
sind. Eine Möglichkeit dies zu tun ist, zu untersuchen ob es nicht-triviale Abbildungen zu einer
fixierten Gruppe gibt. Wir betrachten dafür insbesondere folgende Gruppen:

Definition. Sei n ∈ N. Wir definieren die n-te Diedergruppe als Dn := ⟨r, s | rn, s2, srsr⟩.

Anschaulich sind die Elemente von Dn für n ≥ 3 die Symmetrieren eines regulären n-Ecks

s Spiegelung

r Rotation um 2π
n

Da die Diedergruppen über eine Gruppendarstellung definiert sind, müssen wir zeigen, dass sie
nicht-trivial sind.
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4. Knotenfärbbarkeit – gruppentheoretisch

Proposition 4.1. Sei n ∈ N. Für alle x ∈ Dn existieren eindeutige i ∈ {0, . . . , n − 1}, j ∈ {0, 1}
mit x = risj. Insbesondere ist

Dn = ⟨r, s | rn, s2, srsr⟩ =
{

risj
∣∣∣ i ∈ {0, . . . , n − 1}, j ∈ {0, 1}

}
eine 2n-elementige Gruppe. Es ist D1 ∼= Z/2Z, D2 ∼= Z/2Z2. Für n ≥ 3 ist Dn nicht abelsch.

Beweis. Da sr = r−1 ist jedes x ∈ Dn von der Form risj für i, j ∈ N. Da rn = s2 = e, kann
i ∈ {0, . . . , n − 1}, j ∈ {0, 1} angenommen werden. Sei risj = ri′

sj′ . Durch betrachten der
Abbildungen

Dn → Z/nZ
r 7→ 1
s 7→ 0

und
Dn → Z/sZ

r 7→ 0
s 7→ 1

folgt i ≡ i′ mod n und j ≡ j′ mod 2.

Nun haben wir genug allgemeine Theorie entwickelt, um zu Knotenfärbungen zurückkehren zu
können:

Proposition 4.2. Sei p ∈ N prim und K ein Knoten. Es gilt
– Ist K p-färbbar, so existiert ein Epimorphismus π1(S3 \ K) → Dp.
– Existiert ein Epimorphismus π1(S3 \ K) → Dp, so ist jedes Knotendiagramm von K

p-färbbar.

Beweis. Sei K p-färbbar. Dann existiert ein p-färbbares Knotendiagramm D für K. Wir betrach-
ten die Wirtinger-Darstellung von π1(S3 \ K), die aus D resultiert

π1(S3 \ K) ∼= ⟨x1, . . . , xn | r1, . . . , rm⟩

Sei f : {x1, . . . , xn} → Z/pZ eine nicht-triviale Färbung für D. Dann ist

φ : π1(S3 \ K) → Dp

xi 7→ srf(xi)

ein wohldefinierte Homomorphismus, da für jede Kreuzung (o|u, u′)

φ(o±1u′o∓1u) =
(
srf(o)

)±1 (
srf(u′)

) (
srf(o)

)∓1 (
srf(u)

)−1

(srk)−1 = r−ks = srk

↓=
(
srf(o)

) (
srf(u′)

) (
srf(o)

) (
srf(u)

)
srk = r−ks

↓= r−f(o)+f(u′)−f(o)+f(u) = e

Da f nicht-trivial, existieren a, b ∈ im(f) mit a ̸= b. Somit sind sra, srb ∈ im(φ). Nach Propositi-
on 4.1 ist sra ̸= srb. Damit enthält im(φ) zwei Elemente der Ordnung 2. Da # im(f)|#Dp = 2p
und p prim, folgt im(f) = Dn.
Sei φ : π1(S3 \ K) → Dn ein Epimorphismus und D ein Knotendiagramm für K. Wir betrachten
wiederum die Wirtinger-Darstellung von π1(S3 \ K), die aus D resultiert

π1(S3 \ K) ∼= ⟨x1, . . . , xn | r1, . . . , rm⟩

Wir identifizieren wieder x0 := xn, xn+1 := x1. Sei i ∈ {1, . . . , n}. Dann existiert eine Kreuzung
(xa|xi, xi+1). Somit gilt x±1

a xi+1x∓1
a xi = e, also sind xi und x−1

i+1 konjugiert. Damit sind auch
φ(xi) und φ(xi+1) konjugiert undes gilt ord(xi) = ord(xi+1). Somit ist ord(φ(xi)) = ord(φ(xj))
für alle i, j ∈ {1, . . . , n}.
Nach dem Satz von Lagrange ist ord(xi) ∈ {1, 2, p, 2p}. Nach Proposition 4.1 ist Dp nicht zyklisch,
also ord(xi) ̸= 2p. Da φ ein Epimorphismus ist, ord(φ(xi)) ̸= 1. Angenommen ord(φ) = p. Dann
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4. Knotenfärbbarkeit – gruppentheoretisch

ist im(φ) ⊆ ⟨r⟩, also ist φ kein Epimorphismus. Widerspruch! Also gilt ord(φ(xi)) = 2. Nach
Proposition 4.1 existiert ai ∈ {0, . . . , n − 1} mit φ(xi) = srai .
Wir betrachten die Abbildung

f : {x1, . . . , xn} → Z/pZ
xi 7→ ai

Da φ Epimorphismus, ist # im(f) ≥ 2. Zudem gilt für eine Kreuzung (xa|xi, xi+1)

rf(xi)+f(xj)−2f(xa) =
(
srf(o)

)±1 (
srf(u′)

) (
srf(o)

)∓1 (
srf(u)

)−1
= φ(x±1

a xi+1x∓1
a x−1

i ) = e

da xaxi+1x−1
a x−1

i oder x−1
a xi+1xax−1

i eine Relation der Wirtinger-Darstellung ist. Damit gilt

p | f(xi) + f(xj) − 2f(xa),

also f(xi) + f(xj) − 2f(xa) = 0 ∈ Z/pZ. Somit ist f eine nicht-triviale p-Färbung.

Damit können wir nun Satz 2.3 beweisen:

Satz 2.3. Sei n ∈ N.
– Ein Knoten ist genau dann n-färbbar, wenn alle seine Diagramme n-färbbar sind.
– Äquivalente Knoten sind gleichzeitig n-färbbar, also ist n-Färbbarkeit eine Knoteninvariante.

Beweis. Für n prim folgt die Behauptung aus Proposition 4.2. Damit folgt die Behauptung für
allgemeines n ∈ N aus Proposition 2.2.
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