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Elemente der Vektorrechnung
Ein Vektor ist ein „Pfeil“ im R2. Schreibweise(
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)
,

Zwei Vektoren werden addiert, in dem man ihre einzelnen Koordinaten addiert(
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)
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2
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)
=
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)
Ebenfalls koordinatenweise erfolgt die Multiplikation eines Vektors mit einem Skalar (=reellen Zahl)
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Der Mittelpunkt der Verbindungsstrecke zweier Punkte x =

(
x1

x2

)
, y =
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)
∈ R2 ist gegeben durch

x+ y

2
=

1

2

((
x1

x2

)
+

(
y1
y2

))
=

(
x1+y1

2
x2+y2

2

)

Zwei Vektoren
(
x1

x2

)
,

(
y1
y2

)
spannen im R2 ein Parallelogramm auf:

P
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x2

)
,

(
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:=

{
a1 ·

(
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)
+ a2 ·

(
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)
| a1, a2 ∈ [0, 1]

}
Der Flächeninhalt dieses Parallelogramms ist gegeben durch

Vol(P ) = |x1y2 − y1x2|

Beweis für Vektoren im ersten Quadranten durch Bild:
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(x1 + y1)(x2 + y2)− x1x2 − y1y2 − 2x2y1 = x1y2 − y1x2
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Zwei Vektoren
(
x1

x2

)
,

(
y1
y2

)
heißen linear unabhängig, wenn für a1, a2 ∈ R aus

a1

(
x1

x2

)
+ a2

(
y1
y2

)
= 0

bereits a1 = a2 = 0 folgt, sonst sind sie linear abhängig.

Zwei Vektoren x =

(
x1

x2

)
, y =

(
y1
y2

)
sind genau dann linear abhängig, wenn

- einer der beiden der Nullvektor ist.

- sie parallel sind, also einer ein Vielfaches des anderen ist.

a1x+ a2y = 0, a1 ̸= 0 ⇒ x = −a2
a1

y

x = ay ⇒ x− ay = 0

- das von ihnen aufgespannte Parallelogramm Flächeninhalt 0 hat.

Vol(P (x, y)) = 0

Lemma 1. Sind
(
x1

x2

)
,

(
y1
y2

)
∈ R2 linear unabhängig, so existieren für jeden Vektor

(
v1
v2

)
∈ R2 eindeutig

bestimmte a1, a2 ∈ R, sodass
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)
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)
=
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)
Beweis der Eindeutigkeit. Seien a1, a2, b1, b2 ∈ R, sodass

a1

(
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)
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(
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=

(
v1
w1

)
= b1

(
x1

x2

)
+ b2

(
y1
y2

)
Dann gilt

(a1 − b1)

(
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)
+ (a2 − b2)

(
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)
= 0,

also wegen der linearen Unabhängigkeit a1 = b1 und a2 = b2.

Gitter im R2

Definition 2 (Gitter). Ein Gitter G im R2 ist eine Menge der Form

G = {ax · x+ ay · y | ax, ay ∈ Z}

wobei x, y ∈ R2 linear unabhängig sind. Die Vektoren x, y ∈ R2 heißen Gitterbasis von G.

Beispiel (nicht linear unabhängig). Gitter entlang einer Geraden

Beispiel (Gitterbasis nicht eindeutig). Für die Vektoren
(
1
0

)
,

(
0
1

)
erhält man genau die Punkte mit ganzzah-

ligen Koordinaten - genauso für die Vektoren
(
1
1

)
,

(
1
0

)
oder allgemeiner

(
a
1

)
,

(
1
0

)
mit a ∈ Z. Die Gitterbasis

zu einem gegebenen Gitter ist also nicht eindeutig.

Bemerkung. In obigen Beispiel ist in gewisser Weise
(
1
0

)
,

(
0
1

)
eine einfachere Gitterbasis als

(
1
1

)
,

(
1
0

)
.

Im Allgemeinen möchte man z.B. eine möglichst kurze Gitterbasis finden. Dies ist für allgemeine Gitter nicht
einfach möglich. Zumindest eine Approximation daran erhält man mithilfe des LLL-Algorithmus.

Definition 3 (Grundmasche, Gittervolumen). Für ein Gitter G mit Gitterbasis x, y heißt P (x, y) Grundmasche
des Gitters. Das Volumen der Grundmasche

Vol(G) := Vol(P (x, y))

heißt Gittervolumen von G.
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Direkt nach Definition ist nicht klar, warum das Gittervolumen nur von Gitter und nicht auch von der
konkreten Wahl der Gitterbasis abhängt. Das folgende Lemma weißt dies nach:

Lemma 4. Für v, w und x, y Gitterbasen von G gilt Vol(P (v, w)) = Vol(P (x, y)).

Beweis. Seien v, w und x, y zwei Gitterbasen von G. Dann existieren ax, ay, bx, by ∈ Z mit v = ax ·x+ay ·y, w =
bx · x+ by · y. Also gilt

Vol(P (v, w)) = |(axx1 + ayy1)(bxx2 + byy2)− (bxx1 + byy1)(axx2 + ayy2)|
= |axx1bxx2 + axx1byy2 + ayy1bxx2 + ayy1byy2 − bxx1axx2 − bxx1ayy2 − byy1axx2 − byy1ayy2|
= |axx1byy2 + ayy1bxx2 − bxx1ayy2 − byy1axx2|
= |(axby − aybx)x1y2 − (axby − aybx)y1x2| = |axby − aybx| · |x1y2 − y1x2|

Da in obiger Rechnung nur ganze Zahlen auftreten und Vol(P (v, w)) ̸= 0, folgt |axby − aybx| ≥ 1, also

Vol(P (v, w)) ≥ Vol(P (x, y))

Analog erhält man auch Vol(P (v, w)) ≤ Vol(P (x, y)), somit gilt die Behauptung.

Der Gitterpunktsatz von Minkowski
Definition 5 (symmetrisch). Eine Menge M ⊆ R2 heißt punktsymmetrisch zum Ursprung, wenn für alle x ∈ M
auch −x ∈ M .

Definition 6 (konvex). Eine Menge M ⊆ R2 heißt konvex, wenn zwei Punkte x, y ∈ M auch ihre Verbindungs-
strecke in M liegt.

{t · x+ (1− t) · y | t ∈ [0, 1]} ⊆ M

Satz 7 (Gitterpunktsatz von Minkowski). Sei G ein Gitter und M ⊆ R2 konvex und punktsymmetrisch zum
Ursprung. Gilt

Vol(M) > 4 ·Vol(G),

so enthält M außer dem Ursprung einen weiteren Gitterpunkt.

Beweis. Sei v, w eine Gitterbasis von G und P := P (2v, 2w) viermal die Grundmasche von G. Somit gilt

Vol(P ) = 4Vol(G) < Vol(M).

Betrachte⋃
x∈2G

(x+M) ∩ P ⊆ P

Angenommen für alle x, y ∈ 2G, x ̸= y sind die Mengen (x+M) ∩ P und (y +M) ∩ P disjunkt. Damit gilt

Vol(M) > Vol(P ) ≥ Vol(
⋃

x∈2G

(x+M) ∩ P ) =
∑
x∈2G

Vol((x+M) ∩ P ) = Vol(M)

Widerspruch! Also existieren x, y ∈ 2G, x ̸= y, sodass x +M und y +M einen gemeinsamen Punkt haben, es
existieren also a, b ∈ M mit x+ a = y + b. Da M symmetrisch, liegt auch −b ∈ M . Wegen M konvex, gilt auch
a−b
2 ∈ M .

Es existieren λv, λw, µv, µw ∈ Z, sodass x = 2λvv + 2λww, y = 2µvv + 2µww. Damit gilt
1

2
(a− b) =

1

2
(y − x) =

1

2
(2µvv + 2µww − 2λvv − 2λww) = (µv − λv)v + (µw − λw)w ∈ G

Da x ̸= y ist dies nicht der Ursprung.

Korollar 8 (kürzester Gittervektor). In einem Gitter G existiert ein Punkt P mit

∥P∥ ≤
√

4

π
Vol(G).

Beweis: Sei P ∈ G der Punkt mit minimaler Länge ∥P∥1. Nach Definition enthält der randlose Kreis mit Radius
∥P∥ um den Ursprung außer diesem keine Gitterpunkte. Nach dem Satz von Minkowski gilt also

∥P∥2π ≤ 4Vol(G)

1Dieser existiert, da für r ∈ R groß genug im Kreis mit Radius r um den Ursprung mindestens ein, aber aufgrund der umgekehrten
Dreiecksungleichung nur endlich viele Gitterpunkte liegen.
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Zwei Quadrate Satz von Fermat
Satz 9 (Zwei Quadrate Satz). Eine ungerade Primzahl p kann genau dann als Summe von zwei Quadratzahlen
dargestellt werden, wenn p bei der Division durch 4 Rest 1 hat.

Beispiel.

2 = 12 + 12, 5 = 12 + 22, 13 = 22 + 32, 17 = 12 + 42, . . .

Beweis:
p = 4n+ 3 ⇒ p nicht als Summe von zwei Quadraten darstellbar
Dies gilt sogar für alle Zahlen, die bei der Division durch 4 den Rest 3 haben, denn betrachtet man nur den Rest
bei der Division durch 4, sind nur 0, 1 Quadratzahlen. Insbesondere hat die Summe von zwei Quadratzahlen
nicht Rest 3.

p = 4n+ 1 ⇒ p ist als Summe von zwei Quadraten darstellbar
Für jede Primzahl obiger Form existiert eine Zahl a ∈ N, sodass a2 + 1 ≡ 0 = p · n.2

Die Vektoren
(
p
0

)
,

(
a
1

)
sind linear unabhängig, spannen also ein Gitter G auf. Es gilt

Vol(G) = p

Sei K ein Kreis mit Radius
√
2p um den Ursprung, dann gilt

Vol(K) = 2π · p > 4p = 4Vol(G)

Nach dem Gitterpunktsatz von Minkowski existieren also x, y ∈ Z nicht beide 0, sodass:

Q := x ·
(
p
0

)
+ y ·

(
a
1

)
=

(
x · p+ y · a

y

)
∈ K,

Es gilt

∥Q∥2 = (xp+ ya)2 + y2 = x2p2 + 2xypa+ y2(a2 + 1) = (x2p+ 2xya)p+ y2(a2 + 1),

Da a2 + 1 ≡ 0 mod p ist dies ein Vielfaches von p. Da Q ∈ K gilt außerdem

∥Q∥2 < 2p.

Da Q nicht der Ursprung ist, folgt somit ∥Q∥2 = p. Damit erhält man

p = (xp+ ya)2 + y2.

Korollar 10 (Zwei Quadrate Satz). Eine natürliche Zahl ist genau dann als Summe zweier Quadrate darstellbar,
wenn in ihrer Primfaktorzerlegung alle Primfaktoren der Form 4n+ 3 in gerader Potenz auftreten.

Beispiel.

23 · 5 · 132 · 74 · 112 ist als Summe von zwei Quadraten darstellbar.

2Das folgt daraus, dass die multiplikative Gruppe des Körpers Z/pZ zyklisch mit 4n Elementen ist, also ein Element der Ordnung
4 enthält.
Alternativ erhält man durch den kleinen Satz von Fermat für alle x ∈ Z/pZ mit p = 4n+ 1:
0 = x4n − 1 = (x2n − 1)(x2n + 1) ⇒ ∃y ∈ Z/pZ : y8 + 1 = 0 ⇒ (y4)2 = −1
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