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Elemente der Vektorrechnung

Ein Vektor ist ein ,,Pfeil* im R2. Schreibweise

()

Zwei Vektoren werden addiert, in dem man ihre einzelnen Koordinaten addiert
1 n 2\ (3
V2 0) \v2
Ebenfalls koordinatenweise erfolgt die Multiplikation eines Vektors mit einem Skalar (=reellen Zahl)
1 V2
()= (%)
Der Mittelpunkt der Verbindungsstrecke zweier Punkte x = <x1> Y = <Zl> € R? ist gegeben durch
2
rry Lo (n)) 2 Zitin
2 2 \ \ 22 Yo Leilz

Zwei Vektoren (il) , <Zl> spannen im R? ein Parallelogramm auf:
2 2

P () = e () v () 1wt

Der Fléacheninhalt dieses Parallelogramms ist gegeben durch

Vol(P) = |x1y2 — y122]

Beweis fiir Vektoren im ersten Quadranten durch Bild:

(1 +y1) (@2 + y2) — 2102 — Y1y2 — 2T2y1 = T1Y2 — Y122
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Zwei Vektoren (ﬁl) , (zl> heifsen linear unabhéngig, wenn fiir a;, a2 € R aus
2 2

ia Y1
a +a =0
' <x2) ’ (yz)
bereits a; = as = 0 folgt, sonst sind sie linear abhéngig.
Zwei Vektoren x = (il) Y = (§1> sind genau dann linear abhéngig, wenn
2 2

- einer der beiden der Nullvektor ist.

- sie parallel sind, also einer ein Vielfaches des anderen ist.

ax+ay=0, a1 #0 = x:—a—zy
a

r=ay = xz—ay=20
- das von ihnen aufgespannte Parallelogramm Flidcheninhalt 0 hat.

Vol(P(z,y)) =0

Lemma 1. Sind <i1> , <.Zl) € R? linear unabhingig, so existieren fiir jeden Vektor (21> € R? eindeutig
2 2 2

bestimmte a1, a2 € R, sodass

o () e () = ()

Beweis der Eindeutigkeit. Seien aq,as, by, bs € R, sodass

o () +or () = () =0 G2) + = ()

Dann gilt
Mo Y1
—b —b =0,
(a1 1) (xz) + (a2 2) <y2)
also wegen der linearen Unabhéngigkeit a; = by und as = bs. 4

Gitter im R?
Definition 2 (Gitter). Ein Gitter G im R? ist eine Menge der Form
G={ay-v+ay y|az,ay €Z}
wobei z,y € R? linear unabhingig sind. Die Vektoren x,y € R? heifen Gitterbasis von G.

Beispiel (nicht linear unabhéngig). Gitter entlang einer Geraden

erhélt man genau die Punkte mit ganzzah-

Beispiel (Gitterbasis nicht eindeutig). Fiir die Vektoren ((1) , (1)

ligen Koordinaten - genauso fiir die Vektoren (1) , (é) oder allgemeiner (Cf) ) (1

0) mit a € Z. Die Gitterbasis

zu einem gegebenen Gitter ist also nicht eindeutig.

Bemerkung. In obigen Beispiel ist in gewisser Weise (1)> , (1)) eine einfachere Gitterbasis als (1) , <é>

Im Allgemeinen mo6chte man z.B. eine moglichst kurze Gitterbasis finden. Dies ist fiir allgemeine Gitter nicht
einfach moglich. Zumindest eine Approximation daran erhdlt man mithilfe des LLL-Algorithmus.

Definition 3 (Grundmasche, Gittervolumen). Fiir ein Gitter G mit Gitterbasis z,y heift P(z,y) Grundmasche
des Gitters. Das Volumen der Grundmasche

Vol(G) = Vol(P(z,y))

heilst Gittervolumen von G.
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Direkt nach Definition ist nicht klar, warum das Gittervolumen nur von Gitter und nicht auch von der
konkreten Wahl der Gitterbasis abhéngt. Das folgende Lemma weiftt dies nach:

Lemma 4. Firv,w und x,y Gitterbasen von G gilt Vol(P(v,w)) = Vol(P(z,y)).
Beweis. Seien v, w und z,y zwei Gitterbasen von G. Dann existieren ay, ay, bz, by € Zmit v = a,-x+ay -y, w =
by -+ by - y. Also gilt
Vol(P(v, w)) = [(az®1 + ayy1) bz + byyz) — (b1 + byyr)(asrz + ayyz)|
= |agZ1by®2 + agx1byyo + ayy1byxa + ayy1byys — bpx1a,22 — byx1ayY2 — byy1a,T2 — byy1ayYy2|
= |azx1byy2 + ayy1byaxe — byiayy2 — byy1az22|
= |(azby — aybs)z1y2 — (asby — aybs)y1za| = |asby — aybsl - |21y2 — Y172
Da in obiger Rechnung nur ganze Zahlen auftreten und Vol(P(v,w)) # 0, folgt |azb, — a,bz| > 1, also
Vol(P(v,w)) > Vol(P(z,y))
Analog erhélt man auch Vol(P(v,w)) < Vol(P(z,y)), somit gilt die Behauptung.

<2

Der Gitterpunktsatz von Minkowski
Definition 5 (symmetrisch). Eine Menge M C R? heikt punktsymmetrisch zum Ursprung, wenn fiir alle x € M
auch —x € M.

Definition 6 (konvex). Eine Menge M C R? heiRt konver, wenn zwei Punkte x,y € M auch ihre Verbindungs-
strecke in M liegt.

{t-z+(1-¢t)-y|tel0,1]} CM
Satz 7 (Gitterpunktsatz von Minkowski). Sei G ein Gitter und M C R? konvexr und punktsymmetrisch zum
Ursprung. Gilt
Vol(M) > 4 - Vol(G),
so enthdlt M aufler dem Ursprung einen weiteren Gitterpunkt.
Beweis. Sei v, w eine Gitterbasis von G und P := P(2v,2w) viermal die Grundmasche von G. Somit gilt
Vol(P) = 4 Vol(G) < Vol(M).
Betrachte
U @+mnprPcp

z€2G
Angenommen fiir alle z,y € 2G,z # y sind die Mengen (z + M) N P und (y + M) N P disjunkt. Damit gilt
Vol(M) > Vol(P) > Vol( | J (z+M)nP)= > Vol((x+ M) N P) = Vol (M)
z€2G re2G

Widerspruch! Also existieren x,y € 2G,x # y, sodass ¢ + M und y + M einen gemeinsamen Punkt haben, es
existieren also a,b € M mit x4+ a = y + b. Da M symmetrisch, liegt auch —b € M. Wegen M konvex, gilt auch

a—b
=2 ec M.
2
Es existieren Ay, Ay, fhy, fhw € Z, sodass £ = 2,0 + 2 ,w, y = 20,V + 2u,w. Damit gilt
1 1 1
i(a -b) = §(y —x) = 5(2/@1} + 2pw — 20,0 — 22 w) = (fy — X))V + (fy — Ap)w € G

<2

Da x # y ist dies nicht der Ursprung.

Korollar 8 (kiirzester Gittervektor). In einem Gitter G existiert ein Punkt P mit

1P|l < ,/%VOl(G).

Beweis: Sei P € G der Punkt mit minimaler Linge || P||'. Nach Definition enthilt der randlose Kreis mit Radius
| P|| um den Ursprung aufer diesem keine Gitterpunkte. Nach dem Satz von Minkowski gilt also

| P||?m < 4 Vol(G)
A

IDieser existiert, da fiir r € R groR genug im Kreis mit Radius 7 um den Ursprung mindestens ein, aber aufgrund der umgekehrten
Dreiecksungleichung nur endlich viele Gitterpunkte liegen.
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Zwei Quadrate Satz von Fermat

Satz 9 (Zwei Quadrate Satz). Fine ungerade Primzahl p kann genau dann als Summe von zwei Quadratzahlen
dargestellt werden, wenn p bei der Division durch 4 Rest 1 hat.

Beispiel.
2=12+12 5=12+22 13=224+3% 17=12+42, ...

Beweis:

p =4n+ 3 = p nicht als Summe von zwei Quadraten darstellbar

Dies gilt sogar fiir alle Zahlen, die bei der Division durch 4 den Rest 3 haben, denn betrachtet man nur den Rest
bei der Division durch 4, sind nur 0,1 Quadratzahlen. Insbesondere hat die Summe von zwei Quadratzahlen
nicht Rest 3.

p=4n+1 = p ist als Summe von zwei Quadraten darstellbar
Fiir jede Primzahl obiger Form existiert eine Zahl a € N, sodass a> +1=0=p-n.

Die Vektoren (g) , <?> sind linear unabhéngig, spannen also ein Gitter G auf. Es gilt

2

Vol(G) =p
Sei K ein Kreis mit Radius y/2p um den Ursprung, dann gilt
Vol(K) =27 - p > 4p = 4 Vol(G)

Nach dem Gitterpunktsatz von Minkowski existieren also x,y € Z nicht beide 0, sodass:

oer o () () e

Es gilt

QI = (zp + ya)? +y* = 2?p? + 2zypa + y*(a® + 1) = (2®p + 2zya)p + y*(a® + 1),
Da a?+1=0 mod p ist dies ein Vielfaches von p. Da Q € K gilt auferdem

QI < 2p.
Da Q nicht der Ursprung ist, folgt somit ||Q||?> = p. Damit erhilt man

p = (zp+ya)® +y°.

Korollar 10 (Zwei Quadrate Satz). Fine natirliche Zahl ist genau dann als Summe zweier Quadrate darstellbar,
wenn in shrer Primfaktorzerlegung alle Primfaktoren der Form 4n + 3 in gerader Potenz auftreten.

Beispiel.

23.5.13%.7%. 112 ist als Summe von zwei Quadraten darstellbar.

2Das folgt daraus, dass die multiplikative Gruppe des Korpers Z/pZ zyklisch mit 4n Elementen ist, also ein Element der Ordnung
4 enthélt.
Alternativ erhdlt man durch den kleinen Satz von Fermat fiir alle z € Z/pZ mit p = 4n + 1:
O=2% -1=(@>" -1 +1) = WeZ/HpZ: y¥¥*+1=0 = (yH)?=-1



