I Theorem

Let A be a factorial ring. Then the polynomial ring $A[X]$ in one variable is factorial. Its prime elements are the primes of A and polynomials in $A[X]$ which are irreducible in $K[X]$ and have content 1.

Remark: Let $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ be a polynomial with integer coefficients. The content of P is the greatest common divisor of the coefficients of P. It’s denoted by $c(P)$.

II Criteria for irreducibility

2.1

Let A be a factorial ring. Let K be its quotient field. Let $f(X) = a_n X^n + \ldots + a_1 X + a_0$ be a polynomial of degree $n \geq 1$ in $A[X]$. Let p be a prime of A, and assume:
- $a_n \not\equiv 0 \pmod{p}$
- $a_i \equiv 0 \pmod{p}$ $\forall i < n$
- $a_0 \not\equiv 0 \pmod{p^2}$

Then $f(X)$ is irreducible in $K[X]$.

2.1.1 Example

Let a be a non-zero square-free integer $\neq \pm 1$. Then for any integer ≥ 1, the polynomial $X^n - a$ is irreducible over \mathbb{Q}.

The polynomials $3X^5 - 15$ and $2X^{10} - 21$ are irreducible over \mathbb{Q}.

2.1.2 another one

Let p be a prime number. Then the polynomial $f(X) = X^{p-1} + \ldots + 1$ is irreducible over \mathbb{Q}.

2.1.3 remark

Let E be a field and t an element of some field containing E such that t is transcendental over E (\ldots)

(\ldots) This comes from the fact that the ring $A = E[t]$ is factorial and that t is a prime in it.

Lineare Algebra II - remarks 1
2.2

Let \(p \) be a prime number. \(X^p - X - 1 \) is irreducible over the field \(\mathbb{Z}/p\mathbb{Z} \). Hence \(X^p - X - 1 \) is irreducible over \(\mathbb{Q} \supseteq \mathbb{Z}/p\mathbb{Z} \).

Similarly:

\(X^5 - 5X^4 - 6X - 1 \) is irreducible over \(\mathbb{Q} \).

2.3

Let \(A \) be a factorial ring and \(K \) its quotient field. Let \(f(X) = a_nX^n + \ldots + a_0 \in A[X] \).

Let \(\alpha \in K \) be a root of \(f \) with \(\alpha = \frac{b}{d} \) expressed with \(b, d \in A \) and \(b, d \) relatively prime.

Then \(b \mid a_0 \) and \(d \mid a_n \).

In particular, if the leading coefficient \(a_n \) is 1, then a root \(\alpha \) must lie in \(A \) and divides \(a_0 \).

III tensor products of algebras

In this section, we again let \(R \) be a commutative ring. By an \(R \)-algebra we mean a ring homomorphism \(R \rightarrow A \) into a Ring \(A \) such that the image of \(R \) is contained in the center of \(A \).

Let \(A, B \) be \(R \)-algebras. We shall make \(A \otimes B \) into an \(R \)-algebra. Given \((a, b) \in A \times B \) we have an \(R \)-bilinear map

\[
M_{a,b} : A \times B \rightarrow A \otimes B \text{ such that } M_{a,b}(a', b') = aa' \otimes bb'
\]

Hence \(M_{a,b} \) induces an \(R \)-linear map \(m_{a,b} : A \otimes B \rightarrow A \otimes B \) such that \(m_{a,b}(a', b') = aa' \otimes bb' \).

But \(m_{a,b} \) depends bilinearly on \(a \) and \(b \), so we obtain finally a unique \(R \)-bilinear map

\[
A \otimes B \times A \otimes B \rightarrow A \otimes B
\]

such that \((a \otimes b)(a' \otimes b') = aa' \otimes bb' \). This map is obviously associative, and we have a natural ring homomorphism

\(R \rightarrow A \otimes B \) given by \(c \mapsto 1 \otimes c = c \otimes 1 \).

Thus \(A \otimes B \) is an \(R \)-algebra, called the ordinary tensor product.