Math 1210-009 Fall 2013

Second Midterm Examination

28th October 2013

Name:

- No cell phones, computers, etc.
- No cheating.
- No notes, cheat sheets, books, etc.
- Write your name on each page.
- Show your work to get full credit.
- Make sure that what you write down is mathematically correct, e.g. don't forget equal signs etc.

	1	2	3	4	\sum	$\%$
Possible points	15	15	10	10	50	100
Your points						

1. First order derivatives.
(a) Show that the first derivative of the following function is $\frac{2}{x^{2}}$. (5 points)

$$
\begin{aligned}
f(x) & =\frac{(x-2)^{2}}{x(x-2)}=\frac{x-2}{x} \\
f^{\prime}(x) & =\frac{x-(x-2)}{x^{2}}=\frac{2}{x^{2}} \\
f^{\prime}(x) & =x(x-2)(2 x-4)-\left(x^{2}-4 x+4\right)(x+(x-2)) \\
& =x \cdot 2(x-2)^{2}-\frac{(x-2)^{2}(2 x-2)}{x-2)^{2}} \\
& =2 x-\frac{x^{2}(x-2)^{2}}{x^{2}}+2=
\end{aligned}
$$

(b) FInd the first derivative of the following function. (5 points)

$$
\begin{aligned}
& f(x)=\sin ^{2} x \\
& f^{\prime}(x)=2 \sin x \cdot \cos x \\
& f^{\prime}(x)=1-\cos ^{2} x \\
& \\
& f^{\prime}(x)
\end{aligned}
$$

(c) Show that the first derivative of the following function is $\frac{4 x}{\sqrt{2-x^{2}}}$. (5points)

$$
\begin{aligned}
f^{\prime}(x) & =-4\left(\frac{1}{\frac{2 \sqrt{2-x^{2}}}{\left(2-x^{2}\right)}}\right) \cdot(-2 x)=\frac{4}{\sqrt{2-x^{2}}} \\
& =\frac{4 x}{\left(2-x^{2}\right) \sqrt{2-x^{2}}}= \\
& =\sqrt{\frac{4 x}{2-x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =4 \cdot\left(2-x^{2}\right)^{-1 / 2} \\
f^{\prime}(x) & =4\left(-\frac{1}{2}\right) \cdot\left(2-x^{2}\right)^{-3 / 2}(-2 x)= \\
& =4 x\left(2-x^{2}\right)^{-3 / 2}= \\
& =\frac{4 x}{\sqrt{2-x^{2}}}
\end{aligned}
$$

2. Show that the third order derivative of the following function is $\frac{8 A 8}{(1-x)^{4}}$. 15 points)

$$
\begin{aligned}
& f(x)=\frac{3 x}{1-x} \\
& \left.\frac{d f}{d x}(x)=f^{\prime}(x)=\begin{array}{l}
(1-x) \frac{3-3 x(-1)}{(1-x)^{2}}=\frac{3-3 x+3 x}{(1-x)^{2}}=\frac{3}{(1-x)^{2}} \\
\frac{d^{2} f}{d x}(x)=f^{\prime \prime}(x)=-3 \cdot 2(1-x)(-1) \\
(1-x)^{4}
\end{array}\right)=\frac{6}{(1-x)^{3}} \\
& \frac{d^{3} f(x)=f^{(3)}(x)=-6 \cdot 3(1-x)^{2}(-1)}{(1-x)^{6}}=\frac{18}{(1-x)^{4}}
\end{aligned}
$$

3. Recall that $n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1$. The goal of this problem is to find a formula for

$$
\frac{d^{n}}{d x^{n}}\left(\frac{1}{(-1)^{n} \cdot(n!) \cdot x}\right)
$$

(a) Calculate the first five derivatives of the function $f(x)=\frac{1}{x}$. (5 points)

$$
\begin{aligned}
& \frac{d f}{d x}=-\frac{1}{x^{2}} \\
& \frac{d^{2} f}{d x^{2}}=\frac{2}{x^{3}} \\
& \frac{d^{3} f}{d x^{3}}=-\frac{6}{x^{4}} \\
& \frac{d^{4} f}{d f^{4}}=\frac{24}{x^{5}} \\
& \frac{d^{5} f}{d x^{5}}=-\frac{120}{x^{6}}
\end{aligned}
$$

(b) Describe the pattern that you discover in the previous part and use this to give a formula for the following (Xp points) $\frac{d^{n}}{d x^{n}}\left(\frac{1}{x}\right)$.
-attemalung signs: -1 for node, $1+1$ for now

- numorater : n!
-denominator x^{n+1}

$$
\Rightarrow \quad \frac{d^{n}}{d x^{n}}\left(\frac{1}{x}\right)=(-1)^{n} \frac{n!}{x^{n+1}}
$$

(c) Use the previous result to give a formula for the following (2 points)

$$
\left.\frac{d^{n}}{d n^{n}}\left(\frac{1}{(-1)^{n} \cdot(n!) \cdot x}\right)=\frac{1}{(-1)^{n} \cdot n!} \cdot \frac{d^{n}}{d x^{n}}\left(\frac{1}{x}\right)=\frac{(-1)^{n}}{n!}(-1)^{n} \frac{n!}{x^{n+1}}=\frac{1}{x^{n+1}}\right)
$$

4. Consider the two following circles:
$\begin{array}{lll}c_{1} & : & x^{2}+y^{2}=1 \quad \text { centre }(0,0) \text { and radius } 1 \\ c_{2} & : & x^{2}+(y-1)^{2}=4 \quad \text { centre }(0,1) \text { and radius } 2\end{array}$
(a) Sketch the graphs of these two circles in a coordinate system. (2 points)

(b) Calculate their intersection point P. (3 points)

$$
\begin{aligned}
& c_{1}: x^{2}= 1-y^{2} \\
& c_{2}: x^{2}= 4-(y-1)^{2} \\
& c_{1}=c_{2}: 1-y^{2}= 4-(y-1)^{2} \\
& 1-y^{2}=4-\left(y^{2}-2 y+1\right) \\
& 1-y^{2}= 3-y^{2}+2 y \\
&-2= 2 y \\
&-1=y
\end{aligned} \quad \begin{aligned}
& y=-1 \operatorname{in} c_{1}: \quad x^{2}=1-(-1)^{2}=0 \quad \Rightarrow x=0 \\
& P=(0,-1)
\end{aligned}
$$

(c) Use implicit differentiation to find the slopes of the circles at this intersection point. (4 points)

$$
\begin{aligned}
\frac{d}{d x} c_{1}: \quad 2 x+2 y \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{x}{y} \\
\frac{d y}{d x}(0,-1) & =-\frac{0}{(-1)}=0 \\
\frac{d}{d x} c_{2}: \quad 2 x+2(y-1) \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{x}{(y-1)} \\
\frac{d y}{d x}(0,-1) & =-\frac{0}{(-1-1)}=0
\end{aligned}
$$

(d) At what angle do the tangent lines of the cirlces at the point P intersect? Mark the correct
answers): (1 point)

- At a right angle.

Both circles have the same tangent lines at this point.
At a 0-degree angle.

- Between 45 and 90 degree.

