Differentiation

The first derivative at a point calculates the slope of a curve at that point. The slope of th curve at a point is the slope of the tangent line. We can find it using limits.

Definition 1. Let f be a function and x_0 an element of the domain. If the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists, we call it first derivative of f at the point x_0 and denote it by $f'(x_0)$

Sometimes the derivative is denoted as

$$\frac{df}{dx}(x)$$
 or $D_x f(x)$

We say that f is differentiable at x_0 , if the above limit exists. If it is differentiable at all point of the domain, we say f is differentiable. In that case, we are looking for a function $f': x \mapsto m(x)$ where m(x) is the slope of f at x.

Theorem 2. If a function is differentiable at a point, it is also continuous at this point.

But the converse is not true! If a function is discontinuous, it is not differentiable at this point. It is alos not differentiable at a cusp or a pole.

Differentiation rules

1. Constant function rule: If f(x) = k for $k \in \mathbb{R}$ then

f'(x) = 0

- 2. Identity function rule: If f(x) = x then
- 3. Power rule: For $f(x) = x^n$ with $n \in \mathbb{N}$

$$f'(x) = nx^{n-1}$$

f'(x) = 1

4. Constant multiple rule: If $k \in \mathbb{R}$ and f(x) is f'(x) exists then

$$\left(kf(x)\right)' = kf'(x)$$

5. Sum and difference rule: If f and g are differentiable then

$$(f+g)'(x) = f'(x) + g'(x)$$

6. Square root rule: If $f(x) = \sqrt{x}$ then

$$f'(x) = \frac{1}{2\sqrt{x}}$$

7. Product rule: If f and g are differentiable then

$$(f \cdot g)'(x) = f'(x)g(x) + g'(x)f(x)$$

8. Quotient rule: If f and g are differentiable and $g(x) \neq 0$ then

$$\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

Ertl Veronika

University of Utah

Mathematics Department

9. Trigonometric functions:

$$sin'(x) = cos(x)$$

$$cos'(x) = -sin(x)$$

$$tan'(x) = sec^{2}(x)$$

$$sec'(x) = sec(x) tan(x)$$

$$cot'(x) = -csc^{2}(x)$$

$$csc'(x) = -csc(x) cot(x)$$

10. Chain rule: Let f and g be differentiable. Then

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

Higher derivatives

To get the second derivative, you need the first derivative first. THe process is recursive.

Implicit differentiation

Given an equation f(y) = g(x). This can be seen as a function y(x) given implicitely. Oftentimes we cannot solve directly for y in terms of x. But we can try to differentiate it.

$$\frac{d}{dx} (f(y)) = \frac{d}{dx} g(x)$$

$$f'(y(x))y'(x) = g'(x)$$

$$y'(x) = \frac{g'(x)}{f'(y)}$$

Related Rates