Differentiation

The first derivative at a point calculates the slope of a curve at that point. The slope oif th curve at a point is the slope of the tangent line. We can find it using limits.

Definition 1. Let f be a function and x_{0} an element of the domain. If the limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists, we call it first derivative of f at the point x_{0} and denote it by $f^{\prime}\left(x_{0}\right)$
Sometimes the derivative is denoted as

$$
\frac{d f}{d x}(x) \quad \text { or } \quad D_{x} f(x)
$$

We say that f is differentiable at x_{0}, if the above limit exists. If it is differentiable at all point of the domain, we say f is differentiable. In that case, we are looking for a function $f^{\prime}: x \mapsto m(x)$ where $m(x)$ is the slope of f at x.

Theorem 2. If a function is differentiable at a point, it is also continuous at this point.
But the converse is not true! If a function is discontinuous, it is not differentiable at this point. It is alos not differentible at a cusp or a pole.

Differentiation rules

1. Constant function rule: If $f(x)=k$ for $k \in \mathbb{R}$ then

$$
f^{\prime}(x)=0
$$

2. Identity function rule: If $f(x)=x$ then

$$
f^{\prime}(x)=1
$$

3. Power rule: For $f(x)=x^{n}$ with $n \in \mathbb{N}$

$$
f^{\prime}(x)=n x^{n-1}
$$

4. Constant multiple rule: If $k \in \mathbb{R}$ and $f(x)$ is $f^{\prime}(x)$ exists then

$$
(k f(x))^{\prime}=k f^{\prime}(x)
$$

5. Sum and difference rule: If f and g are differentiable then

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)
$$

6. Square root rule: If $f(x)=\sqrt{x}$ then

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

7. Product rule: If f and g are differentiable then

$$
(f \cdot g)^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)
$$

8. Quotient rule: If f and g are differentiable and $g(x) \neq 0$ then

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g^{2}(x)}
$$

9. Trigonometric functions:

$$
\begin{aligned}
\sin ^{\prime}(x) & =\cos (x) \\
\cos ^{\prime}(x) & =-\sin (x) \\
\tan ^{\prime}(x) & =\sec ^{2}(x) \\
\sec ^{\prime}(x) & =\sec (x) \tan (x) \\
\cot ^{\prime}(x) & =-\csc ^{2}(x) \\
\csc ^{\prime}(x) & =-\csc (x) \cot (x)
\end{aligned}
$$

10. Chain rule: Let f and g be differentiable. Then

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Higher derivatives

To get the second derivative, you need the first derivative first. THe process is recursive.

Implicit differentiation

Given an equation $f(y)=g(x)$. This can be seen as a function $y(x)$ given implicitely. Oftentimes we cannot solve directly for y in terms of x. But we can try to differentiate it.

$$
\begin{aligned}
\frac{d}{d x}(f(y)) & =\frac{d}{d x} g(x) \\
f^{\prime}(y(x)) y^{\prime}(x) & =g^{\prime}(x) \\
y^{\prime}(x) & =\frac{g^{\prime}(x)}{f^{\prime}(y)}
\end{aligned}
$$

Related Rates

