Practice Midterm #1

Name:	
StudentID:	
Major:	
Time: 60 minutes.	
Date: Tuesday, 8 th February 2011.	

Justify your solutions and show all your steps. Write down the formulae used.

Number	1	2	3	4	5	\sum
Possible Points	12	12	5	5	6	40
Points						

- 1. Let $f(x) = x^4 + 4\frac{1}{2}x^3 + 3x^2 10x 12$. Let G_f be its graph. The goal is to sketch the graph.
 - (a) Find the first three derivatives of the function.
 - (b) Find the *y*-intercepts and the *x*-intercepte (zeros).
 - (c) Find the zeros of the first derivative.
 - (d) Use this to find critical points. Determine if they are maxima or minima or neither.
 - (e) Determine where the graph is increasing and where decreasing.
 - (f) Find the zeros of the second derivative.
 - (g) Use this to find possible inflection points. Use the third derivative to make sure you really found an inflection point.
 - (h) Determine by using the first derivative if it's a saddle point.
 - (i) Use your information to graph the function.

2. Do the same for the function

$$f(x) = \frac{5x - 15}{x + 2}$$

taking asymptotes into account.

and of

3. Find the derivative of

 $y = \frac{1 + e^{-x}}{1 - e^{-x}}$

$$y = \ln(x^{12} - 2x^4 + 5).$$

4. Find the slope of the tangent at (1, -1) to the curve

$$x^2 + 4x + y^2 + 2y - 4 = 0.$$

5. The volume of a cube is increasing at a rate of $64cm^3/sec$. At what rate is the length of each edge of the cube changing when the edges are 6 cm long?