Practice Midterm \#1

Name:
 StudentID:
 Major:
 Time: 60 minutes.
 Date: Tuesday, $8^{\text {th }}$ February 2011.

Justify your solutions and show all your steps. Write down the formulae used.

Number	1	2	3	4	5	6	\sum
Possible Points	5	8	7	10	5	5	40
Points							

1. Evaluate the limits if they exist:

$$
\begin{gathered}
\lim _{x \rightarrow 7} \frac{x^{2}-5 x-14}{x^{2}-6 x-7} \\
\lim _{x \rightarrow-5} \frac{5 x-25}{x+5}
\end{gathered}
$$

2. (a) Write the limite definition for $f^{\prime}(x)$.
(b) Use the definition to find $f^{\prime}(x)$ for $f(x)=8 x^{3}-x^{2}+7$.
3. Use the definition of continuity to investigate whether $f(x)$ is continuous at $x=-2$.

$$
f(x)= \begin{cases}6-x & \text { if } x \leq-2 \\ x^{3} & \text { if } x>-2\end{cases}
$$

4. Let $f(x)=x^{4}-2 x^{3}-12 x^{2}+x+7$.
(a) Write the equation of the line tangent to the graph of $y=f(x)$ at $x=1$.
(b) Find all points where $f^{\prime}(x)=0$.
5. If

$$
\frac{d y}{d x}=\sqrt{x^{2}-4}
$$

find $\frac{d^{3} y}{d x^{3}}$.
6. Find y^{\prime} if

$$
y=\frac{x}{\sqrt[3]{3 x-1}}
$$

